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Abstract—Machine learning algorithms have recently shown
promise in predicting Energy Star Scores for buildings, outper-
forming traditional forecasting methods. While previous studies
have focused on specific building types, this comprehensive
research expands the scope to analyze and predict Energy Star
Scores across four diverse building categories in New York City:
residential, educational, commercial, and lodging structures. Our
study employs rigorous feature engineering and selection to
develop nine distinct regression models applied to these four
building types. We compare various machine learning algorithms
to identify the most effective predictive model for each category.
The Gradient Boosting Regressor (GBR) consistently emerges as
the top performer across building types, demonstrating superior
accuracy and stability in predictions. We provide a detailed
analysis of feature importance for each building category, offering
insights into the key factors influencing energy efficiency across
different sectors. By extending the analysis to multiple building
types and employing a range of regression models, this study
contributes to a more comprehensive understanding of urban
energy efficiency and provides tailored strategies for improving
energy performance across New York City’s diverse building stock
for urban planners, building managers, and policymakers.

Keywords-Machine learning; Regression; Data analysis; Model
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I. INTRODUCTION

This paper serves as an expansion of our initial study on the
prediction of the Energy Star Score for residential buildings:
A case study of New York City [1]. In this expanded version,
we broaden the scope of our regression models to forecast
Energy Star Scores across a diverse range of building types,
encompassing not just residential structures but also educational
buildings, commercial buildings, and lodging buildings in New
York. All the buildings studied in this paper possess a common
attribute, namely, that individuals spend substantial amounts
of time within them.

As economic and social development has progressed, the
consumption of energy and water resources by human behaviors
has increased by an order of magnitude, leading to a rise in
annual carbon dioxide emissions and a severe reduction of
water resources [2]. This trend has significant implications
for the sustainable development of human society. Buildings
account for approximately 40% of global energy consumption,
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a percentage projected to increase in the coming decades [3].
This growth is attributed to two main factors: the frequent
extreme temperature fluctuations caused by climate change [4],
and rising human demands for housing and improved living
standards [5]. Among various energy end uses in buildings,
space heating typically consumes the largest share, accounting
for over 30% of total energy use, which is followed by water
heating, cooling, ventilation, and lighting, though the exact
order can vary depending on the building type [6]. Notably,
residential buildings are responsible for almost 70% of the
energy consumption of the sector, mainly due to the usage
for cooking and heating [7]. Fortunately, it illustrates a great
potential to enhance the energy efficiency of buildings by
analyzing the retrofit options or adjusting human activities in
energy consumption.

The Energy Star Score for buildings was developed by
the United States Environmental Protection Agency (EPA)
in collaboration with the U.S. Department of Energy (DOE),
evolving from the broader Energy Star Program launched in
1992 [8]. This 1-100 scoring system provides a standardized
method for measuring and comparing energy efficiency across
different types of buildings. A score of 100 indicates top
performance, placing the building among the most energy-
efficient nationwide, while a score of 1 represents the lowest
performance [9]. The Energy Star Score is a crucial metric
for assessing the energy efficiency of buildings, enabling
stakeholders to evaluate and compare building performance
objectively. Estimating this score is therefore essential for
building owners, managers, and policymakers seeking to
improve energy efficiency in the built environment.

However, the complexity of building energy consumption,
influenced by numerous factors such as weather conditions,
occupancy patterns, building characteristics, and operational
schedules, etc. poses significant challenges to accurately pre-
dicting building energy consumption, which directly influences
the Energy Star Score. A lot of efforts from academia, industry,
and governments have originated multiple methods or tools for
the estimation of buildings’ energy consumption. The Building
Energy Software Tools Directory [10] provides comprehensive
information on building software tools for evaluating energy
efficiency and sustainability in buildings. This directory also
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shows that efforts can be derived for different components
to minimize energy consumption. With the widespread applic
ation of machine learning techniques, a growing number of
researchers have recently proposed to introduce regression
models for predicting building energy consumption, offering
a data-driven method to navigate this intricate landscape of
variables and their interactions [11]-[13]. Linear regression
model is the most basic model applied to predict building
energy consumption, due to its simplicity, straightforward
implementation, and computational efficiency [14]. However,
linear regression often falls short in capturing the intricate,
non-linear relationships between input variables and energy
consumption outcomes. Thus, regression models capable of
handling non-linear relationships are often necessary to achieve
higher prediction accuracy in the multifaceted domain of
building energy consumption.

Various advanced regression techniques have been proposed
to address the limitations of linear regression in predicting
building energy consumption. Jung et al. and Ma et al. sug-
gested using support vector regression (SVR) due to its ability
to handle complex non-linear relationships in data [15], [16]. Yu
et al. proposed tree-like structures, particularly decision trees,
to analyze building parameters and predict energy demand,
allowing for the identification of key influencing factors [17]. To
enhance the performance of single decision trees, the Random
Forest method was introduced, which ensembles multiple
trees [18]. This concept of ensembling improves predictive
performance by combining multiple models together to leverage
their collective strengths, reduce individual weaknesses, and
capture diverse aspects of the data. Similar principles are
employed in Gradient Boosting and extreme gradient boosting
models, both of which have been applied to building energy
consumption prediction [19], [20].

Artificial Neural Networks (ANN), inspired by biological
neural networks, have gained popularity for their ability to
solve non-linear problems associated with high-dimensional
datasets [21]. Deep Learning, an advanced form of ANN,
excels at capturing consumption patterns from historical data
and discovering non-linear relationships between inputs and
outputs [22]. Among the various types of neural networks, the
Multilayer Perceptron (MLP) has emerged as a particularly
effective tool for predicting building energy consumption,
including heating and cooling loads [23]. This application
represents a rapidly growing research area due to its potential to
significantly enhance energy efficiency in building management
systems. However, these methods, including Support Vector
Machines, Decision Trees, Random Forest, and Artificial Neural
Networks, often require significant computational resources for
parameter optimization and model tuning. Deep Learning, in
particular, demands not only substantial computing power but
also high-quality, large-scale labeled datasets.

In contrast, some researchers have explored simpler methods
like k-Nearest Neighbors (KNN) for building energy con-
sumption prediction. kNN forecasts energy consumption by
identifying similar past instances based on relevant factors such
as weather conditions, appliance usage, and time of day [24].
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This method’s appeal lies in its simplicity, ease of interpretation,
and minimal assumptions about data distribution, with only
one parameter (k) to optimize.

This study focuses on urban buildings, given the high
population density and concentrated energy consumption in
metropolitan areas. Almost all the aforementioned regression
models are employed to forecast the Energy Star Score of build-
ings using disclosed energy and water consumption data from
New York City. The performance of these various approaches
is then systematically compared. Moreover, by evaluating the
significance of different features, this research identifies key
factors that substantially influence energy consumption for each
building type. These insights offer valuable guidance for future
building design, retrofit strategies, and occupant behaviors
related to heating and cooking. Ultimately, this work aims
to support efforts to reduce emissions and conserve energy
in urban environments, contributing to more sustainable and
efficient city infrastructures.

The structure of the paper is as follows. Section II briefly
introduces the five conventional regression methods utilized
in this work. Section IIT depicts the modeling procedure and
results for the residential building energy consumption data in
New York, presenting and discussing the findings. We conclude
with Section IV.

II. METHODS

Regression approaches, one of the most popular types of
machine learning algorithms, demonstrate superior predictabil-
ity with promising results in various domains, including energy
consumption [25], bankruptcy prediction [26], air pollution
[27], epidemiology [28], and some other applications. This
study introduces 9 typical regression methods, including k-
Nearest Neighbor Regression [29], Linear Regression [30],
Ridge Regression [31], Decision Tree Regression [32], Random
Forest Regression [33], Support Vector Regression [34], and
Gradient Boosting Regression [35], eXtreme Gradient Boosting
Regression [36], and Multi-Layer Perceptron [37] to predict
the Energy Star Score of residential buildings and investigates
the prediction results using four metrics, i.e., MAE, SSE,
R?, Adjusted R? [38]. The coefficient of determination, R?,
measures the proportion of the variance in the dependent
variable that is predictable from the independent variables.
Adjusted R? is a modified version of R? that adjusts for the
number of predictors in the model.

Mathematically, given a training dataset D with features X
and target values Y, and a new data point x for which we
want to predict the target value ¢, we briefly introduce the nine
regression models and calculate y in each regression model
accordingly.

A. k-Nearest Neighbor Regression

kNN regression, or k-Nearest Neighbors regression, is a
non-parametric regression method that predicts target values
by averaging the observed values of the k nearest samples in
the feature space [29]. Hence,

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1 k
[ = — is 1
(] k;:1y, (D

where y; are the target values of the k nearest neighbors of
x. The nearest neighbors are typically determined based on a
distance metric, such as Euclidean distance.

B. Linear Regression

Linear regression is a parametric regression technique
that models the linear relationship between dependent and
independent variables by minimizing the residual sum of
squares [30]. The predict value g is calculated using (2):

U= Bo+ prx1 + Bozo + ... + Bpwp, )

where (3o, 81, B2, ..., B, are the estimated parameters for the
linear regression model and x4, s, ..., =, are the values of
the independent variables for the new data point.

C. Ridge Regression

Ridge Regression is a regularized linear regression method
that introduces an L2 penalty term to mitigate multicollinearity
and reduce model variance [31]. The prediction ¥ is calculated
using:

9= Bo+ Prr1 + Baxa + ... + By, 3)

where Sy, 51, B2, .., By are the estimated parameters. These
parameters are obtained by minimizing:

S w3+ A8 &)
i=1 j=1

where ) is the regularization parameter that controls the strength

of the penalty.

D. Decision Tree Regression

Decision Tree Regression is a non-parametric model that
predicts target values by recursively partitioning the feature
space into regions with homogeneity and assigning predictions
based on local sample averages [32]. The prediction y for a
new data point x is given by:

M
§=Y cml(x € Ry), (5)
m=1

where M is the number of leaf nodes, ¢, is the predicted
value in the m-th leaf node, R,, is the region of feature space
corresponding to the m-th leaf node, and I is an indicator
function that equals 1 if x is in region R,, and O otherwise.

E. Random Forest Regression

Random Forest Regression is an ensemble learning approach
that combines predictions from multiple decision trees trained
on bootstrapped samples to reduce variance and improve
generalization [33]. ¢ is predicted by (6):

1 N
@:N;ﬁw, (©6)
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where f;(x) is the prediction of the i*" decision tree for the
new data point x and IV is the total number of decision trees
in the Random Forest.

F. Support Vector Regression

Support Vector Regression is a regression technique that
seeks a hyperplane in a high-dimensional space to minimize
prediction errors within a predefined tolerance, supported by a
margin [34]. ¢ is predicted by (7):

j=w"x+b, ()
where w is the weight vector and b is the bias term.

G. Gradient Boosting Regression

Gradient Boosting Regression is a sequential ensemble
method that optimizes a differentiable loss function by con-
structing regression trees in a stage-wise manner using gradient
descent in the function space [35]. ¢ is predicted by (8):

N
§=> 7ifi(x) ®)
i=1

where ~; is the learning rate that controls the contribution for
each learner, f;(x) is the prediction of the i** decision tree for
the new data point x and NV is the total number of decision
trees in the Gradient Boosting model.

H. eXtreme Gradient Boosting Regression

XGBoost is a highly efficient gradient boosting implemen-
tation that integrates advanced regularization techniques and
parallel processing to enhance computational performance [36].
The prediction ¢ is given by:

k
§=>_ frlx), )
k=1

where £ is the number of trees, fj, represents the k-th tree.
The objective function to be minimized is:

L= Zl(ym@i) + ZQ(fk)7
i k

where [ is a differentiable convex loss function and (2 is the
regularization term.

(10)

1. Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is a fully connected feed-
forward neural network that approximates complex functions
through layered processing and non-linear transformations [37].
For a MLP with L layers, the prediction ¢ is calculated as:

:‘j = fL(WL . fL—l(WL—l . --~f1(W1 X+ bl) + bL—l) + bL),

(11)
where W; and b; are the weight matrix and bias vector for
layer [ respectively, and f; is the activation function for layer
. Common choices for f; include ReLU, sigmoid, and tanh
functions.
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J. Performance Metrics

Four commonly used performance metrics are employed
in this work. They are Mean Absolute Error (MAE), Sum
of Squared Errors (SSE), Coefficient of Determination (R-
squared, R?), and Adjusted R2. MAE measures the average
absolute difference between the predicted values and the actual
values; SSE measures the total squared difference between the
predicted values and the actual values; R? can be interpreted as
the percentage of the variance in the dependent variable that is
explained by the independent variables; Adjusted R? provides
a more accurate assessment, which penalizes the addition of
unnecessary variables to the regression model [39].

1 < A
MAE = ;;\yi—yil (12)
SSE =" (i — ii)” (13)
=1
n ~A\2
RZ—1_ Zi:l (yz - yz) (14)

S (i —9)°
(1-F) (-1
n—k—1

These performance measures aid in evaluating the quality
of fit and accuracy of regression models, facilitating the

comparison and assessment of various models and their capacity
for prediction.

Adjusted R =1 —

15)

III. CASE STUDY

Predicting the Energy Star Score follows the standard
machine learning workflow, which consists of four stages:
data collection, data preprocessing, model training, and model
testing, as shown in Figure 1 [11]. Data collection gathers
crucial building and energy consumption data. Data preprocess-
ing involves cleaning and preparing data for analysis. Model
training consists of selecting algorithms, setting parameters,
and training the models. Finally, in the model testing stage, it
examines the models’ ability to predict the Energy Star Score.

o 2

3 4

- Model Testing

Data
Preprocessing

Inputs & Sources: Data Pr ing: Model Training: Model Testing:

« Collect historical + Datacleaning « Data Splitting + Evaluation
data + Dataintegration +  Model Selection « Interpretation

+  Collect outdoor * Data * Hyperparameter * Refinement

+ weather data transformation Tuning

+  Collect electricity « Data reduction « Training

consumption data

Figure 1. Workflow of predicting building Energy Star Score.

Data used for the regression prediction corresponds to the
energy and water data disclosed for Local Law 84 of the New
York City in the calendar year 2021 [40]. It encompasses a
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diverse range of building types, including residential buildings,
educational buildings, commercial buildings, lodging buildings,
factories, cultural institutions, and various other structures.
In this study, we concentrated on four specific building types:
multifamily residential buildings, K-12 schools, office buildings,
and hotels. We chose these categories because they have
significantly more available data compared to other types of
buildings. A richer data set is advantageous in constructing a
more robust predictive model and mitigating the uncertainty
caused by limited data. After cleaning the dataset by removing
rows with missing values and outliers, we extracted a total of
13,871 records from the original 22,479 rows, focusing on our
four selected building types. This cleaned dataset comprises
10,802 records for multifamily residential buildings, 1,564
records for K-12 schools, 1,112 records for office buildings,
and 393 records for hotel buildings. This substantial sample,
representing about 62% of the original data, provides a robust
foundation for our predictive models across these key urban
building categories.

The original dataset comprises 249 columns, with the Energy
Star Score column serving as the target variable for prediction.
The score quantifies the property’s performance relative to
similar ones, rated on a scale of 1 to 100, where 1 denotes
the poorest-performing buildings, and 100 indicates the best-
performing ones. The remaining columns are considered as
variables constituting the potential features in the regression
model. A comprehensive explanation for each column can be
found in the data dictionary [40].

Given that these four building types belong to distinct cate-
gories with varying energy consumption patterns, occupancy
behaviors, and building functions, developing a single model to
predict Energy Star Scores across all categories could lead to
underfitting. The significant differences in sample sizes among
the categories further complicate this issue. To address these
challenges and to better capture the unique energy consumption
characteristics of each building type, we opted to develop
separate regression models for each category, which helps to
maximize prediction accuracy by tailoring each model to the
specific features and patterns of its respective building type.

A. Feature Statistics

Prior to constructing the predictive model for residential
energy consumption, it is imperative to thoroughly explore the
features within the original dataset. As it is known, each feature
holds varying degrees of importance, with the Energy Star Score
column being the most crucial as it serves as the target variable
for prediction. Therefore, we first use a histogram to represent
the distributions of this target variable, as shown in Figure 2.

Figure 2 illustrates the distribution of Energy Star Scores
across four different building types: multifamily housing, K-12
schools, offices, and hotels. Each subfigure corresponds to one
type separately. Notably, none of these distributions conform to
either a uniform or a normal distribution. Multifamily housing
in Figure 2(a) shows high frequencies at both ends with
lower, uneven distribution in the middle. Both K-12 schools
in Figure 2(b) and office buildings in Figure 2(c) exhibit
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Figure 2. Distribution of Energy Star Score across four types of buildings.

similar patterns that can be described as slightly right-skewed
bimodal distributions. They show a small peak in the lower
score range (around 0-20), with scores gradually increasing
towards the higher end, reaching a maximum peak near 100.
This suggests that while a significant portion of these buildings
achieve high energy efficiency, there’s also a smaller group
with lower efficiency. Hotels in Figure 2(d) present the most
irregular pattern, with scores scattered across the range and
multiple local peaks. These diverse, non-standard distributions
across all building types underscore the complexity of energy
performance in different sectors and highlight the necessity for
advanced regression techniques rather than traditional statistical
methods for accurate modeling and prediction of Energy Star
Scores.

Next, we need to screen out the more important variables
to the target variable for modeling from the 248 features, a
step commonly known as feature selection. This process stands
as one of the pivotal stages in the entire machine learning

workflow. The efficacy of a machine learning model heavily
relies on the predictive capability of the selected features.
Even a simple linear model can showcase commendable
performance if these features exhibit strong predictability.
Conversely, the modeling process should exclude features
with weaker predictive power. Their inclusion would not only
increase model complexity but also compromise prediction
accuracy.

In this study, we employ a non-parametric statistical
technique, Kernel Density Estimation (KDE), to assess the
effect of various variables on the distribution of the target
variable. Variables demonstrating substantial fluctuations in the
distribution of energy scores across different values are deemed
significant, whereas those exhibiting minimal variation are
deemed inconsequential. For example, we explore the impact
of districts on the distribution of the Energy Star Score, as
illustrated in Figure 3. We first categorize the datasets into
different groups based on five districts in New York: Bronx,
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Figure 3. Distribution of Energy Star Score in different districts.

Manhattan, Brooklyn, Queens, and Staten Island, then we
employ the Gaussian Kernel function to smooth the probability
density estimation of different groups.

The KDE analysis across the four types reveals that the
distribution of Energy Star Scores is generally consistent
across the five districts, as shown in Figure 3. For all building
types, the score distributions show similar patterns, with peaks
around the same ranges. The analysis reveals that within
each building category (multifamily, office, educational, and
lodging), the Energy Star Score distributions show similar
patterns across all five districts of New York City. This suggests
that a building’s geographical location within the city does not
significantly influence its energy performance when compared
to other buildings of the same type. Therefore, the district
variable was not included as a predictor in our final models.
Although Staten Island displays a somewhat distinct pattern
for hotel buildings in Figure 3(d), this deviation is attributed
to the fact that there are only three samples from this district,

which is statistically insufficient to accurately represent the
true distribution. Consequently, the district variable is not
recommended for inclusion in the modeling process due to its
limited contribution to predictive accuracy. This insight can
help streamline future models and focus attention on variables
that demonstrate greater discriminative power in the context
of building energy efficiency.

Subsequently, we conduct correlation analysis to detect
multicollinearity in two or more independent variables that
are highly correlated with each other, possibly resulting in
instability and inflated standard errors in regression models.
By identifying and removing highly correlated variables, we
can mitigate multicollinearity and improve the stability and
interpretability of the model.

Figure 4 demonstrates the correlation analysis result of
“Site EUI” and “Weather Normalized Site EUI” in the scatter
diagram for four building types. EUI refers to the Energy
Use Intensity, which measures the ratio of actual energy
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Figure 4. Distribution of correlation between “Site EUI (kBtu/ft?)” and “Weather Normalized Site EUI (kBtu/ft?)”.

consumption of a building or site to its area. Across all
categories, an exceptionally strong positive linear relationship
is observed, with correlation coefficients approaching 1. This
near-perfect correlation is evident in the tight clustering of
data points along the diagonal in each scatter plot. After
checking the data dictionary, we find that “Site EUI" refers
to the site energy use divided by the property square foot;
the “Weather Normalized Site EUI" refers to the energy use
one property would have consumed during 30-year average
weather conditions [40]. Since the “Weather Normalized Site
EUI" is calculated based on the “Site EUI", there is no
doubt that there is such a high correlation between these two
features. This high multicollinearity suggests that including
both variables in predictive models would be redundant and
potentially destabilizing. Therefore, only one of the features
needs to be retained in the later modeling process. Given its
more straightforward interpretation and direct measurement,
we opt for keeping the “Site EUI" feature.

B. Feature Selection and Feature Engineering

Due to data measurement and collection challenges, we
addressed missing data and potential multicollinearity by
implementing a rigorous feature selection process. We removed
features with substantial missing data and applied a correlation
threshold of 0.7 to filter out highly correlated variables. This
careful selection process yielded distinct sets of numeric
features for each building type: 7 for multifamily housing, 8
for K-12 schools, 7 for offices, and 5 for hotel buildings. These
selected features exhibit correlations below 0.7 with each other,
as depicted in Figure 5, ensuring a balanced representation of
predictors while minimizing redundancy.

During the feature selection stage, we also engage in feature
engineering. Feature engineering entails the extraction or
creation of new features from raw data, often involving the
transformation of certain raw variables. This may include
applying natural logarithm transformations to non-normally
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Figure 5. Correlation matrix of selected features.

distributed data or encoding categorical variables with one-hot
codes to facilitate their inclusion in model training.

First, we apply the logarithms to the numeric features and
add them to the original data. As we all know, most original
data are not normally distributed. If we include this kind of
data in the model directly, it might arise bias due to the skewed
distribution of data. In Figure 5, the features starting with “log_"
are the ones transformed by the logarithm functions.

Next, we apply the Min-Max normalization to the numerical
features. Scaling these features to a comparable range helps
mitigate bias toward features with larger scales, thereby
fostering more accurate predictions and enhancing stability.
With this step completed, our dataset is now fully prepared for
the modeling phase.

C. Test Bench

Our primary objective is to determine the model which best
predicts the Energy Star Score of residential buildings. To
achieve this goal, we split the dataset into two parts, 70% for
training and 30% for testing. We enumerate a combination of
different parameters and perform a 4-folds cross-validation to
optimize each training model. The training model with the best
performance under certain configuration will be used for the
testing dataset. The entire experiment is repeated five times,
and the average score and standard deviation are reported as
the final results. Here, we list the parameters used for each
model in the optimization process in Python 3.8.5:

o k-Nearest Neighbor Regression:
— n_neighbors: [5, 10, 15, 20],
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TABLE I
SUMMARY OF RESULTS OF THE CASE STUDY.

Building Type Regressor MAE R-squared Adjusted R-squared SSE
KNN 12.05£0.70  0.6718+0.0281 0.6655+0.0284 609722.05+£52117.79
Linear 10.96+£0.24  0.6528+0.0638 0.6510£0.0642 955467.21+168765.45
Ridge 11.494£0.33  0.6584+0.0478 0.6566+0.0480 940514.86+124643.94
DT 1.41+0.05 0.9923+0.0011 0.9923+0.0011 21124.00+£2978.79
Multifamily Housing ~ RF 2.49+2.07 0.9739+0.0276 0.9722+0.0282 48549.10£51378.32
SV 6.73+1.82 0.8320+0.0354 0.8288+0.0360 312705.89+68675.44
GB 0.89+0.08 0.9967+0.0004 0.9966+0.0004 6199.90+806.99
XGB 1.16+0.04 0.9961+0.0006 0.9961+0.0006 10615.36£1691.00
MLP 1.16+0.48 0.9937+0.0033 0.9937+0.0033 17512.53£9576.36
KNN 11.62+£0.21  0.6450%0.0282 0.6308+0.0293 110224.45+8782.34
Linear 6.46+0.14 0.8814+0.0125 0.8767+0.0130 36829.02+4025.72
Ridge 7.16+0.16 0.8705+0.0092 0.8654+0.0095 40199.84+2926.95
DT 2.75+0.20 0.9683+0.0078 0.9671+0.0082 9814.60+2335.98
K-12 School RF 1.82+0.08 0.9891+0.0010 0.9887+0.0010 3385.71+303.33
SVR 17.31£0.27  0.2683+0.0240 0.2391+0.0249 227165.67+7852.88
GB 1.44+0.11 0.9909+0.0014 0.9906+0.0014 2812.97+436.87
XGB 1.76+0.08 0.9889+0.0014 0.9884+0.0014 3452.75+423.18
MLP 3.40+£0.26 0.9615+0.0063 0.9599+0.0065 11958.46+£1934.40
KNN 13.17£0.69  0.4940+0.0462 0.4668+0.0487 103329.18+9109.76
Linear 7.00+0.26 0.7791£0.0587 0.7672+0.0619 45638.35+14317.48
Ridge 7.97+0.49 0.7781£0.0260 0.7661£0.0274 45655.37+7580.89
DT 2.99+0.16 0.9630+0.0053 0.9610+0.0056 7574.80+1146.03
Office RF 1.69+0.14 0.9854+0.0022 0.9847+0.0023 2984.32+491.18
SVR 16.65+£0.66  0.1861+0.0508 0.142340.0535 166443.00+£12696.20
GB 1.72+0.15 0.9894+0.0021 0.9888+0.0022 2169.33+408.58
XGB 1.90+0.16 0.9852+0.0042 0.9845+0.0044 2998.26+789.87
MLP 6.99+0.78 0.8110+0.0437 0.8009+0.0461 39047.51£10999.97
KNN 18.08+£1.45  0.4294+0.0794 0.3455+0.0910 56948.41£9831.27
Linear 10.18+£0.54  0.6932+0.0959 0.6481+0.1100 30186.06+£8709.30
Ridge 12.8240.96  0.6482+0.0618 0.5965+0.0709 34813.92+5025.98
DT 6.86+0.31 0.8733+0.0154 0.8547+0.0177 12622.80+1825.87
Hotel RF 4.96+0.46 0.9337+0.0189 0.9239+0.0216 6596.78+1943.27
SVR 23.65+£1.03  0.0729+0.0330 -0.0634+0.0378 92344.71£7476.52
GB 4.22+0.35 0.9483+0.0162 0.9407+0.0185 5150.55+1687.13
XGB 4.44+0.33 0.9398+0.0257 0.9309+0.0295 5978.02+2633.96
MLP 15.62+1.15  0.5626+0.0335 0.4982+0.0384 43513.61+£3876.85
— weights: [‘uniform’, ‘distance’], « Random Forest Regression:
— algorithm: [‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’], - n_estimators: [100, 500, 900, 1100, 1500],
— leaf_size: [30, 40, 50] — max_depth: [None, 2, 5, 10, 15],

min_samples_leaf: [1, 2, 4, 6, 8],
min_samples_split: [2, 4, 6, 10],
max_features: [‘sqrt’, None, 1]

« Ridge Regression:
— alpha: [0.1, 1, 10, 100, 1000],
— solver: [‘auto’, ‘svd’, ‘cholesky’, ‘Isqr’, ‘sparse_cg’],

o Support Vector Regression:
- C: [0.1, 1, 10, 100],
— kernel: [‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’],
— gamma: [‘scale’, ‘auto’]

o Decision Tree Regressor:

criterion: [‘squared_error’, ‘absolute_error’, ‘poisson’],
max_depth: [None, 2, 5, 10, 15],

min_samples_split: [2, 5, 10, 15],

min_samples_leaf: [1, 2, 4, 6],

max_features: [None, ‘sqrt’, ‘log2’]

o Gradient Boosting Regression:

— loss: [‘squared_error’, ‘absolute_error’, ‘huber’],
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Figure 6. Distribution of residuals.

— n_estimators: [100, 500, 900, 1100, 1500],
— max_depth: [None, 2, 5, 10, 15],
— min_samples_leaf: [1, 2, 4, 6, 8],
— min_samples_split: [2, 4, 6, 10],
— max_features: [‘sqrt’, None, 1]
o XGBRegressor:
— n_estimators: [100, 200, 500, 1000],
max_depth: [3, 5, 7, 10],
learning_rate: [0.01, 0.1, 0.2, 0.3],
subsample: [0.8, 0.9, 1.0],
colsample_bytree: [0.8, 0.9, 1.0],
gamma: [0, 0.1, 0.2, 0.5]
o MLPRegression:
hidden_layer_sizes: [(50,), (100,), (100, 50), (100,
100)],
activation: [‘identity’, ‘logistic’, ‘tanh’, ‘relu’],
solver: [‘lbfgs’, ‘sgd’, ‘adam’],
alpha: [0.0001, 0.001, 0.01, 0.1],
learning_rate: [‘constant’, ‘invscaling’, ‘adaptive’],
max_iter: [200, 500, 1000]
Note that, there are no hyperparameters in Linear Regression,
since its model parameters are determined directly by minimiz-
ing the least squares loss function. All machine learning models

were implemented using Python with the Scikit-learn library,
and the development environment was PyCharm Community
Edition. Scikit-learn is a widely-used, open-source machine
learning library that provides simple and efficient tools for data
mining and data analysis. Detailed documentation and source
code can be found on the official website [41].

D. Results

The analysis of Energy Star Score predictions across four
building types in New York City consistently demonstrates
the superiority of Gradient Boosting Regression (GBR), which
achieves the lowest Mean Absolute Error (MAE) and Sum
of Squared Errors (SSE), with R-squared values closest to
1 across all categories. GBR excels in multifamily housing
(MAE: 0.89, R-squared: 0.9967), K-12 schools (MAE: 1.44,
R-squared: 0.9909), offices (MAE: 1.72, R-squared: 0.9894),
and hotels (MAE: 4.22, R-squared: 0.9483). Random Forest
(RF) consistently ranks second, performing strongly in K-12
schools (MAE: 1.82, R-squared: 0.9891) and offices (MAE:
1.69, R-squared: 0.9854), while Extreme Gradient Boosting
(XGB) follows closely. Support Vector Regression (SVR)
shows inconsistent performance, ranging from poor in hotel
(MAE: 23.65, R-squared: 0.0729) to moderate in multifamily
housing (MAE: 6.73, R-squared: 0.8320). Simpler models like
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Figure 7. Distribution of importance ranking for the selected features.

KNN, Linear Regression, and Ridge Regression consistently
underperform, with KNN showing particularly high MAEs
across all types, especially in hotels (MAE: 18.08, R-squared:
0.4294). These results indicate the effectiveness of ensemble
and boosting methods in accurately predicting Energy Star
Scores for diverse urban building types while highlighting
the limitations of simpler models in capturing the complex,
non-linear relationships in building energy performance.

Given that the GBR model yielded the best performance
across four types of buildings, we analyzed the residual distri-
butions produced by GBR, as shown in Figure 6. Multifamily
housing, with the largest dataset of 13,871 samples, shows
the best performance with a mean error of -0.0161 and the
lowest standard deviation of 1.5306, indicating highly precise
and unbiased predictions. K-12 schools follow with a mean
error of -0.0373 and a standard deviation of 1.9772. Office
buildings show slightly less precision with a mean error of
-0.2907 and a standard deviation of 2.4375. Hotels, with the
smallest dataset of 393 samples, exhibit the highest variability
with a mean error of 0.3266 and a standard deviation of 5.8314.
The increasing standard deviations from multifamily housing
to hotels directly correspond to the decreasing sample sizes,
ranging from 13,871 to 393. Despite the differences in standard
deviations, all distributions approximately follow a normal
curve centered near zero, indicating that the regression models
provide generally reliable predictions across all building types.

Overall, the predictive performance is satisfactory and can offer
valuable reference information for decision-makers in energy
management and building efficiency across different types.

The feature importance analysis across all four building types
reveals consistent patterns with some notable variations. For
all building categories, “Site EUI" emerges as the most critical
factor, with importance values ranging from approximately
0.5 to 0.7. “National Median Site EUI" consistently ranks
second in importance across all types, though its influence
varies, being particularly strong for offices and hotels. Hotels
demonstrate a unique pattern with “Weather Normalized Site
Electricity Intensity" having a notably higher importance,
ranking third and showing more significance compared to
other building types. For offices, the first two factors, “Site
EUI" and “National Median Site EUI", significantly influence
the model, with other factors showing much less importance.
Multifamily housing shows a more balanced distribution of
importance among secondary factors, with “National Median
Source EUI" ranking fourth and contributing noticeably to the
model. Across all building types, factors related to natural
gas use and emissions generally show lower importance,
though their rankings vary slightly between categories. This
analysis highlights that while energy use intensity metrics
are universally crucial for predicting Energy Star Scores, the
relative importance of secondary factors can differ based on the
specific building type, reflecting the unique energy consumption
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patterns and characteristics of each category.

The importance values below 0.01 for the remaining features
suggest that they have minimal influence on the model’s
predictions and can be considered less critical in explaining
the variability in the Energy Star Score.

IV. CONCLUSION AND FUTURE WORK

Regression methods have been successfully applied to
analyze and model Energy Star Scores across residential, edu-
cational, commercial, and lodging structures in New York City.
Our comprehensive study, employing nine distinct regression
models for these four building types, consistently demonstrates
the superiority of the Gradient Boosting Regression (GBR)
model. GBR outperforms other methods, achieving the best
predictions with minimum errors and variances across all build-
ing types. Furthermore, the analysis highlights the universal
importance of energy use intensity metrics, particularly “Site
EUI" and “National Median Site EUI", while revealing varying
influences of secondary factors specific to each building cate-
gory. Moreover, accurately predicting building energy scores
across various types will provide decision-makers with crucial
information for retrofitting existing buildings and designing
new, energy-efficient structures, ultimately contributing to
reduced energy consumption, lower carbon emissions, and
more sustainable urban development. Notably, our findings
also indicate that the quantity of available data could impact
model’s stability, with larger datasets for multifamily housing
buildings yielding less standard deviations compared to smaller
datasets of hotels. Future research will focus on real-time
energy emissions analysis and detailed energy usage distribution
patterns to further refine energy conservation strategies across
various building types.
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