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Abstract—FASILL introduces “Fuzzy Aggregators and Similar-
ity Into a Logic Language”. In its symbolic extension, called
sFASILL, some truth degrees, similarity annotations and fuzzy
connectives can be left unknown, so that the user can easily figure
out the impact of their possible values at execution time. In this
paper, we firstly adapt to this last setting a similarity-based,
symbolic variant of unfolding rule (very well known in most
declarative frameworks), which is based on the application of
computational steps on the bodies of program rules for improving
efficiency. Next, we combine it with previous tuning techniques
intended to transform a symbolic sFASILL program into the
concrete customized FASILL one that best satisfies the user’s
preferences. The improved methods have been implemented in a
freely available online tool, which has served us to develop several
experiments and benchmarks evidencing the good performance
of the resulting system. To the best of our knowledge, our analysis
is the first one combining unfolding and tuning techniques in a
fully integrated fuzzy logic programming setting.

Index Terms—Fuzzy Logic Programming; Similarity; Symbolic
Unfolding; Tuning.

I. INTRODUCTION

This paper extends our initial approach described in [1]
(presented at the 2024 IARIA Annual Congress on Fron-
tiers in Science, Technology, Services, and Applications –
IARIA Congress 2024), by combining and enriching the fuzzy
capabilities of a highly flexible programming environment
developed in our research group. During the last four decades,
the research field of Fuzzy Logic Programming has promoted
the introduction of Fuzzy Logic [2] concepts into Logic Pro-
gramming [3] in order to deal with vagueness in a natural
way [4]. It has provided an extensive variety of logic pro-
gramming dialects promoting the development of flexible real-
world applications in the fields of artificial intelligence, soft-
computing, semantic web, etc. Some interesting approaches
focus on replacing the classic (syntactic) unification algorithm
of Prolog by one based on the use of similarity/proximity
relations [5][6], such as Likelog [7] and Bousi∼Prolog [8].
Similarity/proximity relations connect the elements of a set
with a certain approximation degree and serve for weaken-
ing the notion of equality and, hence, to deal with vague
information [9]. Other approaches modify the operational
principle of pure logic programming to replace it by inference
mechanisms based on fuzzy logic, which allow a wide variety
of connectives and the use of a gradation of truth degrees
(beyond the traditional values of true and false). Most of these
systems implement the fuzzy resolution principle introduced
by Lee in [10], such as Prolog-Elf [11], F-Prolog [12],

generalized annotated logic programming [13], (S-)QLP [15],
Fril [14], Fuzzy-Prolog [16], RFuzzy [17] and MALP [18].

Since the logic language Prolog has been fuzzified by
embedding similarity relations or using fuzzy connectives for
dealing with truth degrees beyond {true, false}, respectively,
we have recently combined both approaches in the design
of FASILL [19], whose symbolic extension (inspired by our
initial experiences with MALP [20]) is called sFASILL [21].
This last symbolic language is useful for flexibly tuning
(according to users preferences) the fuzzy components of
fuzzy logic programs. A tuning problem is a pair composed
by a symbolic program plus a set of test cases where users
express their wishes about the expected behaviour of the final,
customized program. As a very simple example, consider just
one symbolic program rule like p← @aver(#sc, 0.8), where
@aver refers to the average connective and #sc is a symbolic
constant representing an unknown truth degree, together with
only a test case of the form 0.6 → p, where a user indicates
that (s)he wants to obtain 0.6 when evaluating p. Although this
tuning problem has the trivial solution of replacing #sc by
0.4, in the general case, it is not easy to reach good (usually
approximate) solutions when the number of program rules,
symbolic constants and test cases grow more and more.

In this paper, we will collect from [21][22] two tuning
strategies showing that by “partially” executing symbolic
sFASILL programs and then replacing the unknown values
and connectives (on their program rules and associated simi-
larity relations) by concrete ones, gives the same result than
replacing these values and connectives in the original sFASILL
program and, then, fully executing the resulting FASILL
program. So, sFASILL programs can be used to automatically
tune and synthesize a FASILL program w.r.t. a given set of
test cases, thus easing what is considered the most difficult
part of the process: the specification of the truth/similarity
degrees and connectives in the program. Although there exist
other approaches, which are able to tune fuzzy truth degrees
and connectives [23][24][25], none of them manage similarity
relations as the tuning technique we describe in [21] does. Let
us mention that we have used sFASILL and its tuning engine
for developing two real world applications in the fields of the
semantic web [26] and neural networks [27].

Besides this, unfolding is a well-known and widely used
semantics-preserving program transformation rule, which is
able to improve programs, generating more efficient code. The
unfolding transformation traditionally considered in pure logic
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programming consists in the replacement of a program clause
C by the set of clauses obtained after applying a computation
step in all its possible forms on the body of C [28][29].

In order to briefly illustrate the essence and benefits of
the transformation, consider a very simple Prolog program
containing a clause, say p(X):-q(X), and a fact, say q(a), for
defining two (crisp, not fuzzy) predicates, p and q. It is easy
to see that both rules must be used in two computational steps
for successfully executing a goal like p(a). Alternatively, we
can unfold the first clause by applying a computational step
on its body q(X) (using the fact q(a)) and next instantiating
the head with the achieved substitution {X/a}. Then, the
new unfolded rule is just the simple fact p(a), which must
be used in only one computational step (instead of two, as
before) to solve goal p(a). This very simple example reveals
that all computational steps applied at unfolding time remain
compiled on unfolded rules forever, and hence, those steps
have no longer to be repeated in all subsequent executions
of the transformed programs. This justifies why unfolding is
able to improve the efficiency of transformed programs by
accelerating their computational behaviour.

In [30][31], we successfully adapted such operation to fuzzy
logic programs dealing with lattices of truth degrees and sim-
ilarity relations, but this type of unfolding was not symbolic
yet. On the contrary, in [32][33] we defined a symbolic version
of the transformation but in absence of similarities. Inspired by
both works, in [1] we have recently fused both approaches in
the definition of a similarity-based symbolic transformation.
Now, we extend such work by using this transformation as
a pre-process of our tuning engines in order to improve the
performance of the resulting system. In this paper we describe
and use a freely available online tool ([34]) for developing
some revealing experiments, benchmarks and analisys of our
approach.

The structure of this paper is as follows. After summarizing,
in Section II, the syntax of FASILL and sFASILL, in Section
III we detail how to execute and unfold such programs.
Next, Section IV summarizes two tuning engines, which
are combined with unfolding in Section V, also analyzing
its performance and practicability. Finally, we conclude and
propose future work in Section VI.

II. THE FASILL LANGUAGE AND ITS SYMBOLIC
EXTENSION

In this work, given a complete lattice L, we consider a first
order language LL built upon a signature ΣL, that contains the
elements of a countably infinite set of variables V , function
and predicate symbols (denoted by F and Π, respectively)
with an associated arity—usually expressed as pairs f/n or
p/n, respectively, where n represents its arity—, and the truth
degree literals ΣT

L and connectives ΣC
L from L. Therefore, a

well-formed formula in LL can be either:

• A value v ∈ ΣT
L , which will be interpreted as itself, i.e.,

as the truth degree v ∈ L.

• p(t1, . . . , tn), if t1, . . . , tn are terms over V ∪F and p/n
is an n-ary predicate. This formula is called atomic (atom,
for short).

• ς(e1, . . . , en), if e1, . . . , en are well-formed formulas and
ς is an n-ary connective with truth function [[ς]] : Ln 7→ L.

Definition 1 (Complete Lattice). A complete lattice is a
partially ordered set (L,≤) such that every subset S of L
has infimum and supremum elements. Then, it is a bounded
lattice, i.e., it has bottom and top elements, denoted by ⊥ and
⊤, respectively.

Example 1. In this paper, we use the lattice ([0, 1],≤), where
≤ is the usual ordering relation on real numbers, and three sets
of conjunctions/disjunctions corresponding to the fuzzy logics
of Gödel, Łukasiewicz and Product (with different capabilities
for modelling pessimistic, optimistic and realistic scenarios),
defined in Figure 1. It is possible to also include other fuzzy
connectives (aggregators) like the arithmetical and geometrical
averages, say @aver(x, y) ≜ (x+y)/2 and @geom(x, y) ≜

√
xy,

or the linguistic modifier @very(x) ≜ x2.

Definition 2 (Similarity Relation). Given a domain U and a
lattice L with a fixed t-norm ∧, a similarity relation R is a
fuzzy binary relation on U , that is, a fuzzy subset on U × U
(namely, a mapping R : U × U → L) fulfilling the following
properties: reflexive ∀x ∈ U ,R(x, x) = ⊤, symmetric ∀x, y ∈
U ,R(x, y) = R(y, x), and transitive ∀x, y, z ∈ U ,R(x, z) ≥
R(x, y) ∧R(y, z).

The fuzzy logic language FASILL relies on complete lattices
and similarity relations [19]. We are now ready for summariz-
ing its symbolic extension where, in essence, we allow some
undefined values (truth degrees) and connectives in program
rules as well as in the associated similarity relation, so that
these elements can be systematically computed afterwards.
The symbolic extension of FASILL we initially presented in
[21] is called sFASILL.

Given a complete lattice L, we consider an augmented
signature Σ#

L producing an augmented language L#
L ⊇ LL,

which may also include a number of symbolic values and
symbolic connectives, which do not belong to L. Symbolic
objects are usually denoted as o# with a superscript # and,
in our tool, their identifiers always start with #. An L#-
expression is now a well-formed formula of L#

L , which is
composed by values and connectives from L as well as by
symbolic values and connectives. We let exp#L denote the
set of all L#-expressions in L#

L . Given a L#-expression E,
[[E]] refers to the new L#-expression obtained after evaluating
as much as possible the connectives in E. Particularly, if
E does not contain any symbolic value or connective, then
[[E]] = v ∈ L.

In the following, we consider symbolic substitutions that are
mappings from symbolic values and connectives to expressions
over ΣT

L ∪ ΣC
L . We let sym(o#) denote the symbolic values

and connectives in o#. Given a symbolic substitution Θ for
sym(o#), we denote by o#Θ the object that results from o#

by replacing every symbolic symbol e# by e#Θ.
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&prod(x, y) ≜ x ∗ y |prod(x, y) ≜ x+ y − xy Product logic
&godel(x, y) ≜ min(x, y) |godel(x, y) ≜ max(x, y) Gödel logic
&luka(x, y) ≜ max(0, x+ y − 1) |luka(x, y) ≜ min(x+ y, 1) Łukasiewicz logic

Fig. 1. Conjunctions and disjunctions of three different fuzzy logics over ([0, 1],≤).

Definition 3 (Symbolic Similarity Relation). Given a domain
U and a lattice L with a fixed —possibly symbolic— t-norm
∧ , a symbolic similarity relation is a mapping R# : U×U →
exp#L such that, for any symbolic substitution Θ for sym(R#),
the result of fully evaluating all L-expressions in R#Θ, say
[[R#Θ]], is a similarity relation.

Definition 4 (Symbolic Rule and Symbolic Program). Let L
be a complete lattice. A symbolic rule over L is a formula
A← B, where the following conditions hold:

• A is an atomic formula of LL (the head of the rule);
• ← is an implication from L or a symbolic implication;
• B (the body of the rule) is a symbolic goal, i.e., a well-

formed formula of L#
L ;

A sFASILL program is a tuple P# = ⟨Π#,R#, L⟩ where
Π# is a set of symbolic rules, R# is a symbolic similarity
relation between the elements of the signature Σ of Π#, and
L is a complete lattice.

Example 2. Consider a symbolic sFASILL program P# =
⟨Π#,R#, L⟩ based on lattice L = ([0, 1],≤), where Π# is
the following set of symbolic rules:

Π# =



R1 : vanguardist(rizt)← 0.9

R2 : elegant(hydropolis)← s#3

R3 : close(hydropolis, taxi)← 0.7

R4 : good hotel(x)←
@#

s4(elegant(x),@very(close(x,metro)))

Note here that we leave unknown the level in which the
hotel hydropolis is more or less elegant (see the symbolic
constant s#3 in the second fact) as well as which should be
the most appropriate connective for combining two features
required on good hotels (see the symbolic constant @#

s4 in the
body of the fourth rule).

The symbolic similarity relation R# on U =
{vanguardist, elegant,modern,metro, taxi, bus}, is
represented by the graph shown in Figure 2 (a matrix can be
also used to represent this concept).

This symbolic similarity relation R# has been obtained
after applying the closure algorithm we initially introduced
in [21], which is inspired by [35][36][37] and, in essence,
is an adaptation of the classical Warshall’s algorithm for
computing transitive closures. In this particular example, we
have selected the symbolic t-norm &#

s2 and the following
set of similarity equations: elegant ∼ modern = s#0 ,
modern ∼ vanguardist = 0.9, metro ∼ bus = 0.5 and
bus ∼ taxi = s#1 .

In what follows, we plan to introduce and combine the
unfolding and tuning techniques we have developed in the
last years for reinforcing their power in this novel, symbolic
plus similarity-based fuzzy logic setting.

III. RUNNING AND UNFOLDING sFASILL PROGRAMS

As a logic language, sFASILL inherits the concepts of
substitution, unifier and most general unifier (mgu) from pure
logic programming, but extending some of them in order to
cope with similarities, as Bousi∼Prolog [8] does, where the
concept of most general unifier is replaced by the one of
weak most general unifier (w.m.g.u.). One step beyond, in [21]
we extended again this notion by referring to symbolic weak
most general unifiers (s.w.m.g.u.) and a symbolic weak uni-
fication algorithm was introduced to compute them. Roughly
speaking, the symbolic weak unification algorithm states that
two expressions (i.e., terms or atomic formulas) f(t1, . . . , tn)
and g(s1, . . . , sn) weakly unify if the root symbols f and g
are close with a certain —possibly symbolic— degree (i.e.,
R#(f, g) = r ̸= ⊥) and each of their arguments ti and si
weakly unify. Therefore, there is a symbolic weak unifier for
two expressions even if the symbols at their roots are not
syntactically equal (f ̸≡ g).

More technically, the symbolic weak unification algorithm
can be seen as an reformulation/extension of the ones appear-
ing in [6] (since now we manage arbitrary complete lattices)
and [19][8] (because now we deal with symbolic similarity
relations). In essence, the symbolic weak most general unifier
of two expressions E1 and E2, say wmgu#(E1, E2) = ⟨σ,E⟩,
is the simplest symbolic substitution σ of E1 and E2 together
with its symbolic unification degree E verifying that E =
R̂(E1σ,E2σ).

Example 3. Given the complete lattice L = ([0, 1],≤)
of Example 1 and the symbolic similarity relation R# of
Example 2, we can use the symbolic t-norm &#

s2 for computing
the following two symbolic symbolic weak most general
unifiers: wmgu#(modern(taxi), vanguardist(bus)) =
⟨{}, 0.9 &#

s2 s#1 ⟩ and wmgu#(close to(X, taxi),
close to(ritz, bus)) = ⟨{X/ritz}, s#1 ⟩

In order to describe the procedural semantics of the
sFASILL language, in the following, we denote by C[A]
a formula where A is a sub-expression (usually an atom),
which occurs in the –possibly empty– context C[] whereas
C[A/A′] means the replacement of A by A′ in the context
C[]. Moreover, Var(s) denotes the set of distinct variables
occurring in the syntactic object s and θ[Var(s)] refers to
the substitution obtained from θ by restricting its domain to
Var(s). In the next definition, we always consider that A is the
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metro

taxi

bus

0.5 &#
s2 s#1 s#1

sup{0.5, s#1 &#
s2 (s#1 &#

s2 0.5)}

elegant

vanguardist

modern
sup{s#0 , (s

#
0 &#

s2 0.9) &#
s2 0.9}

0.9s#0 &#
s2 0.9

Fig. 2. Example of symbolic similarity relation R#.

selected atom in a goal Q, L is the complete lattice associated
to Π# and, as usual, rules are renamed apart:

Definition 5 (Computational Step). Let Q be a goal and σ
a substitution. The pair ⟨Q;σ⟩ is a state. Given a symbolic
program ⟨Π#,R#, L⟩ and a (possibly symbolic) t-norm ∧ in
L, a computation is formalized as a state transition system,
whose transition relation ⇝ is the smallest relation satisfying
these rules:
1) Successful step (denoted as SS

⇝ ):

⟨Q[A], σ⟩
A′ ← B ∈ Π# wmgu#(A,A′) = ⟨θ,E⟩ E ̸= ⊥

⟨Q[A/E ∧ B]θ, σθ⟩
SS

2) Failure step (denoted as FS
⇝ ):

⟨Q[A], σ⟩ ∄A′ ← B ∈ Π# : wmgu#(A,A′) = ⟨θ, E⟩
⟨Q[A/⊥], σ⟩

FS

3) Interpretive step (denoted as IS
⇝ ):

⟨Q;σ⟩ where Q is a L#-expression
⟨[[Q]];σ⟩

IS

Definition 6 (Derivation and Symbolic Fuzzy Computed
Answer). A derivation is a sequence of arbitrary length
⟨Q; id⟩ ⇝∗⟨Q′;σ⟩. When Q′ is an L#-expression that cannot
be further reduced, ⟨Q′;σ′⟩, where σ′ = σ[Var(Q)], is called
a symbolic fuzzy computed answer (sfca). Also, if Q′ is a
concrete value of L, we say that ⟨Q′;σ′⟩ is a fuzzy computed
answer (fca).

The following example illustrates the operational semantics
of sFASILL.

Example 4. Let P# = ⟨Π#,R#, L⟩ be the program from
Example 2. It is possible to perform the following derivation
for P# and goal Q = good hotel(x) obtaining the sfca

⟨Q1;σ1⟩ = ⟨@#
s4(&

#
s2(&

#
s2(s

#
0 , 0.9), 0.9), 0.0); {x/ritz}⟩:

⟨good hotel(x), id⟩ SS
⇝

R4

⟨@#
s4(elegant(x1),@very(close(x1,metro))), {x/x1}⟩

SS
⇝

R1

⟨@#
s4(&

#
s2(&

#
s2(s

#
0 , 0.9), 0.9),

@very(close(ritz,metro))), {x/ritz}⟩ FS
⇝

⟨@#
s4(&

#
s2(&

#
s2(s

#
0 , 0.9), 0.9),@very(0.0)), {x/ritz}⟩

IS
⇝

⟨@#
s4(&

#
s2(&

#
s2(s

#
0 , 0.9), 0.9), 0.0), {x/ritz}⟩

Apart from this derivation, there exists a second
one ending with the alternative sfca ⟨Q2;σ2⟩ =
⟨@#

s4(s
#
3 ,@very(&

#
s2(&

#
s2(0.5, s

#
1 ), 0.7))); {x/hydropolis}⟩

associated to the same goal. Both derivations are included in
the tree shown in Figure 3. Observe the presence of symbolic
constants coming from the symbolic similarity relation, which
contrast with our precedent work [20].

Now, let Θ = {s#0 /0.8, s
#
1 /0.8,&

#
s2/&luka, s

#
3 /1.0,

@#
s4/@aver} be a symbolic substitution that can be used

for instantiating the previous sFASILL program in order to
obtain a non-symbolic, fully executable FASILL program.
This substitution can be automatically obtained by the tuning
engines we will describe in Section IV ([21]) after introducing
a couple of test cases (i.e., 0.4−> good hotel(hydropolis)
and 0.6−> good hotel(ritz)), which represent the desired
degrees for two goals accordingly to the user preferences.

Now we are ready to introduce the similarity-based sym-
bolic unfolding transformations relying on the operational
semantics described so far.

Definition 7 (Symbolic Unfolding). Let P# = ⟨Π#,R#, L⟩
be a sFASILL program and R : (H ← B) ∈ Π# be a
rule (with non-empty body B). Then, the symbolic unfolding
of rule R in program P# is the new sFASILL program
P ′# = ⟨Π′#,R#, L⟩, where Π′# = (Π# − {R}) ∪ {Hσ ←
B′ | ⟨B; id⟩ ⇝ ⟨B′;σ⟩}.
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Fig. 3. Screenshot of the FASILL online tool depicting a symbolic derivation tree.

Example 5. Let us built a transformation sequence where
each sFASILL program in the sequence is obtained from the
immediately preceding one by applying symbolic unfolding,
except the initial one P#

0 = ⟨Π#
0 ,R#, L⟩, which, in our case,

is the one illustrated in Example 2, that is:

Π#
0 =



R1 : vanguardist(rizt)← 0.9

R2 : elegant(hydropolis)← s#3

R3 : close(hydropolis, taxi)← 0.7

R4 : good hotel(x)←
@#

s4(elegant(x),@very(close(x,metro)))

Program P#
1 = ⟨Π#

1 ,R#, L⟩ is obtained after unfolding
rule R4 (with selected atom elegant(x)) by applying a SS

⇝
step with rules R1 and R2:

Π#
1 =



R1 : vanguardist(rizt)← 0.9

R2 : elegant(hydropolis)← s#3

R3 : close(hydropolis, taxi)← 0.7

R41 : good hotel(ritz)← @#
s4(

&#
s2(&

#
s2(s

#
0 , 0.9), 0.9),

@very(close(ritz,metro)))

R42 : good hotel(hydropolis)←
@#

s4(s
#
3 ,@very(close(hydropolis,metro)))

After unfolding rule R41 (with selected atom
close(ritz,metro)) by applying a FS

⇝ step, we obtain
program P#

2 = ⟨Π#
2 ,R#, L⟩:

Π#
2 =



R1 : vanguardist(rizt)← 0.9

R2 : elegant(hydropolis)← s#3

R3 : close(hydropolis, taxi)← 0.7

R41F : good hotel(ritz)←
@#

s4(&
#
s2(&

#
s2(s

#
0 , 0.9), 0.9),@very(0.0))

R42 : good hotel(hydropolis)←
@#

s4(s
#
3 ,@very(close(hydropolis,metro)))

When unfolding rule R42 (with selected atom
close(hydropolis,metro)) by applying a SS

⇝ step with rule
R3, we reach the program P#

3 = ⟨Π#
3 ,R#, L⟩:

Π#
3 =



R1 : vanguardist(rizt)← 0.9

R2 : elegant(hydropolis)← s#3

R3 : close(hydropolis, taxi)← 0.7

R41F : good hotel(ritz)←
@#

s4(&
#
s2(&

#
s2(s

#
0 , 0.9), 0.9),@very(0.0))

R423 : good hotel(hydropolis)←
@#

s4(s
#
3 ,@very(&

#
s2(&

#
s2(0.5, s

#
1 ), 0.7)))
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(a) Original sFASILL program before being transformed.

(b) sFASILL program obtained after unfolding the last program rule.

Fig. 4. The FASILL online tool unfolding a symbolic program.

Finally, by unfolding rule R41F (with selected expression
@very(0.0)) after applying a IS

⇝ step, we obtain the final
program P#

4 = ⟨Π#
4 ,R#, L⟩:

Π#
4 =



R1 : vanguardist(rizt)← 0.9

R2 : elegant(hydropolis)← s#3

R3 : close(hydropolis, taxi)← 0.7

R41FI : good hotel(ritz)←
@#

s4(&
#
s2(&

#
s2(s

#
0 , 0.9), 0.9), 0.0)

R423 : good hotel(hydropolis)←
@#

s4(s
#
3 ,@very(&

#
s2(&

#
s2(0.5, s

#
1 ), 0.7)))

In the previous example, it is easy to see that each program
in the sequence produces the same set of sfca’s for a given
goal but reducing the length of derivations. For instance, the

derivation performed w.r.t. the original program P#
0 illustrated

in Example 4, can be emulated in the final program P#
4 with

just one computational step (instead of four) as:

⟨good hotel(x); id⟩ SS
⇝

R41FI

⟨@#
s4(&

#
s2(&

#
s2(s

#
0 , 0.9), 0.9), 0.0); {x/ritz}⟩.

IV. TUNING TECHNIQUES FOR sFASILL PROGRAMS

We start this section by summarizing the automated tech-
nique for tuning sFASILL programs that we initially presented
in [21][22].

Typically, a programmer has a model in mind where some
parameters have a clear value. For instance, the truth value of
a rule might be statistically determined and, thus, its value can
be easily obtained. In other cases, though, the most appropriate
values and/or connectives depend on subjective notions and,
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thus, programmers do not know how to obtain these values.
In a typical scenario, we have an extensive set of expected
computed answers (i.e., test cases), so the programmer can
follow a “try and test” strategy. Unfortunately, this is a tedious
and time consuming operation. Actually, it might even be
impractical when the program should correctly model a large
number of test cases.

The first action for initializing the tuning process in the
FASILL online tool obviously consists in introducing a set
of test cases. The tune area of our online tool is shown in
Figure 5a. Each test case appears in a different line with
syntax: r −> Q, where r is the desired truth degree for the
fca associated to query Q (which obviously does not contain
symbolic constants). For instance, in our running example we
can introduce the following three test cases:

0.60 -> modern(hydropolis).
0.45 -> good_hotel(ritz).
0.38 -> good_hotel(hydropolis).

Then, users need to select a tuning method and click
on the Tune program button to proceed with the tuning
process. The precision of the technique depends on the set
of symbolic substitutions considered at tuning time. So, for
assigning values to the symbolic constants, our tool takes into
account all the truth values defined on a members/1 predicate
(which in our case is declared as members([0.0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1])) as well as the set of connectives
defined in the lattice associated to the program, which in
our running example coincides with the three conjunction
and disjunction connectives based on the so-called Product,
Gödel and Łukasiewicz logics, as shown in Figure 1, and the
arithmetic/geometric average aggregators defined in Example
1. Obviously, the larger the domain of values and connectives
is, the more precise the results are (but the algorithm is more
expensive, of course).

As we have seen in this work, symbolic programs can be
seen as partial specifications of fuzzy programs, where some
elements on program rules have not been clearly identified
yet. Here, we assume that test cases are provided a priori
by users in order to establish well known information about
a particular domain and, for this reason, they will usually
be expressed as ground atoms with associated (desired) truth
degrees. It is easy to think that the three test cases used in our
running example (see Figure 5a) refers to user’s preferences
that could be collected, for instance, by means of satisfaction
questionnaires or any other alternative kind of statistically-
based analysis. However, our system admits test cases non
necessarily based on ground atoms,

For tuning an sFASILL program, we have implemented sev-
eral methods in previous works, including some very efficient
versions based on SAT/SMT solvers [38], which are out of
the scope of this paper since they only work with connectives
whose truth functions are linear. In this work, we focus on the
two more general methods described in [21], which exhibit
different run-times depending on when and where symbolic
substitutions are applied (to symbolic programs or to sfca’s):

• Basic: The basic method is based on applying each
symbolic substitution to the original sFASILL program
and then fully executing the resulting instantiated FASILL
programs. This method is represented by Algorithm 1.

• Symbolic: In this version, symbolic substitutions are
directly applied to sfca’s and thus, only interpretive (but
neither successful nor failure) steps are repeatedly exe-
cuted on the instantiated fca’s. This method is represented
by Algorithm 2.

Both algorithms use thresholding techniques for prema-
turely disregarding computations leading to non significant
solutions. In [19], [39], [40], [41] we document some inter-
esting results achieved in our research group when designing
sophisticated tools for manipulating fuzzy logic programs
and, now, we apply the same techniques for improving the
efficiency of the basic and symbolic tuning methods under
comparison in this section.

Algorithm 1: Basic Tuning for FASILL programs.

Data: A symbolic program P# and a set of test cases
{⟨G1, v1⟩, . . . , ⟨Gk, vk⟩}.

Result: A symbolic substitution Θ.
Consider a finite number of symbolic substitutions
Θ1, . . . ,Θn for sym(P#) ∪

⋃k
i=1 sym(Gi);

τ ← +∞;
foreach i ∈ {1, . . . , n} do
Pi ← P#Θi;
ϵ← 0;
foreach j ∈ {1, . . . , k} do

Compute the fca ⟨GjΘi; id⟩ ⇝∗⟨vi,j ; θi,j⟩ in
Pi;
ϵ← ϵ+ d(vi,j , vj);
if ϵ ≥ τ then

break;
end

end
if ϵ < τ then

τ ← ϵ;
Θ← Θi;

end
end
return Θ;

In a the symbolic algorithm and, as we detected in [21],
we must take care when attaching concrete values to the
symbolic constants appearing in the symbolic similarity re-
lations. Beyond the simpler case of assigning the ⊥ truth
degree to at least a symbolic constant, it is also possible
to conceive other non safe symbolic substitutions linking
symbolic constant to values bigger than ⊥. For instance, this
is the case of Θ = {s#1 /0.4,&

#
s2/&luka, . . .} in our running

example, because if, in particular, we apply this symbolic
substitution to R#(taxi,metro) = 0.5 &#

s2 s#1 we have that
[[R#(taxi,metro)Θ]] = 0.5 &luka 0.4 = max(0, 0.5 + 0.4−
1) = max(0,−0.1) = 0, which implies that Θ is not a
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Algorithm 2: Symbolic Tuning for FASILL programs.

Data: A symbolic program P# and a set of test cases
{⟨G1, v1⟩, . . . , ⟨Gk, vk⟩}.

Result: A symbolic substitution Θ.
foreach i ∈ {1, . . . , k} do

Compute the sfca ⟨Gi, id⟩ ⇝∗⟨G′i, θi⟩ in P#;
end
Consider a finite number of symbolic substitutions
Θ1, . . . ,Θn for

⋃k
i=1 sym(G′i);

τ ← +∞;
foreach i ∈ {1, . . . , n} do

if Θi is R-safe then
ϵ← 0;
foreach j ∈ {1, . . . , k} do

Compute the fca ⟨G′jΘi; θj⟩
IS
⇝

∗
⟨vi,j ; θj⟩

in P#;
ϵ← ϵ+ d(vi,j , vj);
if ϵ ≥ τ then

break;
end

end
if ϵ < τ then

τ ← ϵ;
Θ← Θi;

end
end

end
return Θ;

safe symbolic substitution w.r.t. R#. This example justifies
why, in Algorithm 2, we the use the concept of safe symbolic
substitution introduced in [21] (Definition 7). In essence, given
a symbolic similarity relation R# on a domain U and a
symbolic substitution Θ, we say that Θ is a safe symbolic
substitution w.r.t. R# if, for all x, y ∈ U such that R#(x, y)
is an L#-expression containing at least a symbolic constant,
then [[R#(x, y)Θ]] ̸= ⊥.

As seen in Figure 5b, the system reports the best
symbolic substitution obtained after performing the
tuning process, as well as its associated deviation.
In our case, the best symbolic substitution is
Θ = {s#0 /0.9, s

#
1 /0.4,&

#
s2/&godel, s

#
3 /0.6,@

#
s4/@aver},

which has no deviation w.r.t. the three test cases (although
this is not always the general case) and hence, once Θ is
applied to the original sFASILL program and, after executing
a goal like good hotel(X) w.r.t. the final, tuned FASILL
program, we obtain the fca’s <0.45, {X/ritz}> and
<0.38, {X/hydropolis}>, while the execution of goal
modern(hydropolis) returns <0.60, {}>, which coincide
with the preferences expressed in the three test cases, as
wanted.

Let us finish this section by mentioning that the solutions
achieved by both the basic and symbolic algorithms is always

the same for all programs described in the previous section (it
doesn’t matter if they have been more or less unfolded), but
the time required to reach the best symbolic substitutions can
drastically change, as we are going to compare and explain in
the following section.

V. COMBINING UNFOLDING AND TUNING TECHNIQUES.
PERFORMANCE, EVALUATION AND DISCUSSION

Observe in Figure 5b that the FASILL online tool also
reports the time required to find the solution of a tuning
program, which in our running example is close to 3.7 seconds
when applying the symbolic tuning algorithm, but this time
almost doubles when selecting the basic method. Let us start
this section by explaining the tuning session sketched in Table
I, where each row refers to a different symbolic substitution
fully checked at tuning time and the first five columns indicate
the concrete values and connectives linked to the five symbolic
constants in our running example. Columns labelled with ti
and ϵi, 1 ≤ i ≤ 3, indicate the achieved truth degree and
partial deviation, respectively, associated to the evaluation of
each one of the three test cases, being the last column ϵ
the global deviation produced by the corresponding symbolic
substitution.

Since there are two possible aggregators to select for @#
s4,

three conjunctions for mapping &#
s2 and eleven numeric values

as choices for s#0 , s#1 and s#3 , the system considers 7986
symbolic substitution as candidates. Obviously, we can not
display so many rows in the table but, fortunately, there is no
need to do so thanks to the benefits introduced by thresholding
when evaluating the test cases. In fact, the small subset of
rows in the table is sufficient to illustrate our technique, since
only these symbolic substitutions are the only ones that both
tuning algorithms (basic and symbolic) apply to all test cases
for fully evaluating them (any other candidate is abruptly ruled
out as soon as possible). Technically, observe in both tuning
algorithms that threshold τ (whose initial value is +∞), is
dynamically updated in sentence “if (ϵ < τ ) . . . ” whenever
the systems reaches a symbolic substitution Θi whose global
deviation is better than the one of the previously proposed as
solution Θ, and also τ is used in sentence “if (ϵ ≥ τ ) . . . ”
for prematurely disregarding a concrete symbolic substitution
without evaluating all test cases whenever the deviation ac-
cumulated by some of them is excessive. So, since the table
only displays symbolic substitutions improving the deviation
achieved by previous candidates, observe, for instance, that all
intermediate candidates between Θ923 and Θ1043 are omitted
because their accumulated deviations (without the mandatory
need of evaluating all test cases) are bigger than the one
of Θ923, and this last one is also bigger than the deviation
associated to Θ1043.

Until now, we have considered unfolding and tuning oper-
ations as independent techniques with clearly different objec-
tives: the first one to improve the efficiency of programs, and
the second one to calibrate their rules. However, the unfolding
transformation can also be used to improve the tuning process,
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(a) Screenshot of the online tool for starting a tuning process.

(b) Screenshot of the online tool after ending a tuning process.

Fig. 5. The FASILL online tool tuning a symbolic program.

in order to approximate the run-time of the basic method to
the symbolic one.

Coming back again to our tuning example, when tuning
both the original and unfolded programs of examples 2 and
5, we obviously obtain the same symbolic substitution, apart
from the fact that the unfolded program will always run
faster that the original one. Moreover, the tuning-time of the
basic method is considerably reduced when applied to the
transformed program. This is due to the fact that, instead of
using several successful/failure step w.r.t. the original program,
after unfolding it, the basic method only needs to apply just
one SS/FS

⇝ step to get the fca of each test case after applying
each symbolic substitution to the entire program.

Anyway, the basic method is still slightly slower than the
symbolic one, even with the unfolded version of the program.
That is because the basic method have to perform a SS/FS

⇝ step
for each symbolic substitution, while the symbolic method
calculates the sfca’s (also in one SS/FS

⇝ step) only once and
stores them. So, if we consider n symbolic substitutions and
k test cases for the tuning process, the basic method (with
the unfolded program) should compute (n − 1) ∗ k more
admissible steps than the symbolic method. All in all, both tun-
ing algorithms preceded by the unfolding pre-process require

approximately the same time than the symbolic algorithm in
isolation (the basic alone doubles such time, as commented
before) in our running example. But in order to confirm this
property in a more complex situation, we have prepared the
following benchmarks.

Tables II and III summarize the results of an experimental
evaluation (each cell refers to the average of 10 executions
using a desktop computer equipped with 4,00 GB RAM and
i3-2310M CPU @ 2.10 GHz.) of the tuning techniques pre-
ceded by several unfolding iterations. Here, the same sFASILL
program is tuned with both basic and symbolic algorithms,
varying the numbers of unfolding operations and explored
symbolic substitutions. To do this, we consider a general rule
of the form p ← q ∧ · · · ∧ q ∧ s# (containing 100 instances
of atom q and only a symbolic constant s#), along with a
fact q ← ⊤; and we introduce a single test case: ⊤ → p.
Furthermore, in all executions, the only symbolic substitution
that produces a deviation of 0 is considered the last one in the
search space to ensure that both methods explore exactly the
maximum number of symbolic substitutions.

Focusing on the first row in both tables, referred to the
tuning time associated to the manipulation of the original
program when considering from 10 to 1000 different symbolic
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TABLE I. Search for the best symbolic substitution by the FASILL system, where ti and ϵi denote the truth degree and deviation for the i-th test case. Only
symbolic substitutions that improve the error made by previous substitutions in the search process are shown.

Θ @#
s4 &#

s2 s#0 s#1 s#3 t1 ϵ1 t2 ϵ2 t3 ϵ3 ϵtotal
Θ309 @aver &luka 0.2 0.6 0.0 0.0 0.6 0.0 0.45 0.0 0.38 1.4300
Θ310 @aver &luka 0.2 0.6 0.1 0.0 0.6 0.0 0.45 0.05 0.33 1.3800
Θ311 @aver &luka 0.2 0.6 0.2 0.0 0.6 0.0 0.45 0.1 0.28 1.3300
Θ312 @aver &luka 0.2 0.6 0.3 0.0 0.6 0.0 0.45 0.15 0.23 1.2800
Θ313 @aver &luka 0.2 0.6 0.4 0.0 0.6 0.0 0.45 0.2 0.18 1.2300
Θ314 @aver &luka 0.2 0.6 0.5 0.0 0.6 0.0 0.45 0.25 0.13 1.1800
Θ315 @aver &luka 0.2 0.6 0.6 0.0 0.6 0.0 0.45 0.3 0.08 1.1300
Θ316 @aver &luka 0.2 0.6 0.7 0.0 0.6 0.0 0.45 0.35 0.03 1.0800
Θ317 @aver &luka 0.2 0.6 0.8 0.0 0.6 0.0 0.45 0.4 0.02 1.0700
Θ318 @aver &luka 0.2 0.6 0.9 0.1 0.5 0.0 0.45 0.45 0.07 1.0200
Θ319 @aver &luka 0.2 0.6 1.0 0.2 0.4 0.0 0.45 0.5 0.12 0.9700
Θ438 @aver &luka 0.3 0.6 0.8 0.1 0.5 0.05 0.4 0.4 0.02 0.9200
Θ439 @aver &luka 0.3 0.6 0.9 0.2 0.4 0.05 0.4 0.45 0.07 0.8700
Θ440 @aver &luka 0.3 0.6 1.0 0.3 0.3 0.05 0.4 0.5 0.12 0.8200
Θ559 @aver &luka 0.4 0.6 0.8 0.2 0.4 0.1 0.35 0.4 0.02 0.7700
Θ560 @aver &luka 0.4 0.6 0.9 0.3 0.3 0.1 0.35 0.45 0.07 0.7200
Θ561 @aver &luka 0.4 0.6 1.0 0.4 0.2 0.1 0.35 0.5 0.12 0.6700
Θ680 @aver &luka 0.5 0.6 0.8 0.3 0.3 0.15 0.3 0.4 0.02 0.6200
Θ681 @aver &luka 0.5 0.6 0.9 0.4 0.2 0.15 0.3 0.45 0.07 0.5700
Θ682 @aver &luka 0.5 0.6 1.0 0.5 0.1 0.15 0.3 0.5 0.12 0.5200
Θ801 @aver &luka 0.6 0.6 0.8 0.4 0.2 0.2 0.25 0.4 0.02 0.4700
Θ802 @aver &luka 0.6 0.6 0.9 0.5 0.1 0.2 0.25 0.45 0.07 0.4200
Θ803 @aver &luka 0.6 0.6 1.0 0.6 0.0 0.2 0.25 0.5 0.12 0.3700
Θ922 @aver &luka 0.7 0.6 0.8 0.5 0.1 0.25 0.2 0.4 0.02 0.3200
Θ923 @aver &luka 0.7 0.6 0.9 0.6 0.0 0.25 0.2 0.45 0.07 0.2700
Θ1043 @aver &luka 0.8 0.6 0.8 0.6 0.0 0.3 0.15 0.4 0.02 0.1700
Θ1163 @aver &luka 0.9 0.6 0.7 0.6 0.0 0.35 0.1 0.35 0.03 0.1300
Θ1196 @aver &luka 0.9 0.9 0.7 0.6 0.0 0.35 0.1 0.355 0.025 0.1250
Θ1207 @aver &luka 0.9 1.0 0.7 0.6 0.0 0.35 0.1 0.37 0.01 0.1100
Θ2603 @aver &prod 1.0 0.5 0.6 0.6 0.0 0.405 0.045 0.3153 0.0647 0.1097
Θ2614 @aver &prod 1.0 0.6 0.6 0.6 0.0 0.405 0.045 0.322 0.058 0.1029
Θ2625 @aver &prod 1.0 0.7 0.6 0.6 0.0 0.405 0.045 0.33 0.05 0.0950
Θ2636 @aver &prod 1.0 0.8 0.6 0.6 0.0 0.405 0.045 0.3392 0.0408 0.0858
Θ2647 @aver &prod 1.0 0.9 0.6 0.6 0.0 0.405 0.045 0.3496 0.0304 0.0754
Θ2658 @aver &prod 1.0 1.0 0.6 0.6 0.0 0.405 0.045 0.3612 0.0188 0.0638
Θ3681 @aver &godel 0.8 0.4 0.6 0.6 0.0 0.4 0.05 0.38 0.0 0.0500
Θ3791 @aver &godel 0.9 0.3 0.6 0.6 0.0 0.45 0.0 0.345 0.035 0.0350
Θ3802 @aver &godel 0.9 0.4 0.6 0.6 0.0 0.45 0.0 0.38 0.0 0.0000

TABLE II. Average runtime (in milliseconds) of the basic tuning method
after 10 executions, based on the number of unfolding steps (k) and the

number of considered symbolic substitutions.

k
Time (ms)
10Θ 50Θ 100Θ 250Θ 500Θ 1000Θ

0 168 781 1359 3515 6946 13772
1 159 693 1372 3453 6768 13578
5 128 672 1356 3681 6593 13059
10 140 634 1265 3334 6368 13006
25 125 562 1140 2825 5640 11425
50 90 428 853 2115 4515 8456
75 75 340 518 1406 2531 5028
100 15 53 106 278 540 1065

substitutions, the basic algorithm ranges from 168 to 13772
milliseconds in Table II, which largely contrasts with the rank
between 56 and 1240 exhibited by the symbolic method in Ta-
ble III. Also, the last column in the basic case presents drastic
time reductions when comparing the tuning time of the original
program with respect to its different unfolded versions, being
this measure dramatically reduced (approximately) thirteen
times when tuning the last transformed program obtained after
unfolding one hundred times the initial one. In contrast to
this, note that the tuning time of the symbolic algorithm is
not especially affected by unfolding transformations, varying

TABLE III. Average runtime (in milliseconds) of symbolic tuning method
after 10 executions, based on the number of unfolding steps (k) and the

number of considered symbolic substitutions.

k
Time (ms)
10Θ 50Θ 100Θ 250Θ 500Θ 1000Θ

0 56 65 115 268 578 1240
1 50 65 115 268 540 1043
5 22 59 115 268 518 1037
10 25 62 97 256 534 1043
25 21 62 115 309 525 1075
50 18 59 112 265 522 1159
75 28 56 109 253 512 1034
100 15 53 106 243 515 1025

from 1240 to 1025 milliseconds in the last column of Table III
and being this last value almost the same (1065) than the one
in the cell at the right-bottom corner of Table II. This effect is
reinforced in Figure 6, which evidences in a more graphical
way that the application of unfolding before tuning a program
is not relevant for the symbolic strategy, but the efficiency
of the basic method notably increases, which confirms our
expectations.
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Fig. 6. Comparison of tuning algorithms based on the number of unfolding steps performed over the program.

VI. CONCLUSION AND FUTURE WORK

Coping with symbolic similarity relations, the symbolic
extension of the FASILL language we introduced in [22], is
the basis of the effective unfolding technique for sFASILL
programs we have very recently presented in [1]. The new
transformation surpasses both the similarity-based (but non-
symbolic) unfolding of [30][31], as well as the symbolic
(but not dealing yet with similarities) operation of [32][33],
thus permitting the optimization of sFASILL programs in an
unified, similarity-based symbolic framework.

The present work also considers tuning techniques for
extending [1], having in mind that sFASILL programs can
be seen as templates to be fulfilled with concrete fuzzy
values/operators for producing tuned FASILL programs which
satisfy users wishes. In this paper, we have firstly collected
from [38][21] two semi-automatic tuning engines (basic and
symbolic) for customizing symbolic programs and then, we
have combined them with the symbolic unfolding technique
of [1]. We have implemented these techniques in a freely avail-
able tool [34], which has been used for developing interesting
benchmarks and analyzing the good performance of the mixed
techniques. Our experiments reveal that, when manipulating
sFASILL programs, the sequence “unfolding plus tuning”
is preferable than the one of “tuning plus unfolding”. To
summarize, the benefits of applying symbolic unfolding on
a sFASILL program before tuning it, are: 1) the basic method
applied on unfolded programs exhibits an efficiency close to
the symbolic algorithm (with or without an unfolding pre-
process) and 2) both the execution and tuning times are
significantly improved for the resulting, unfolded plus tuned,
FASILL program.

Some pending related tasks for the near future consist in
exploring the synergies between our approach and machine
learning strategies (including neural networks, as we managed
in [27]), fuzzy SMT/SAT solvers (see our previous experiences
in [38]), etc. As ongoing work, we are nowadays developing
the formal proofs that reinforce the correctness of symbolic
unfolding under certain safe applicability conditions.
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