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Abstract - More and more of Artificial Intelligence (AI) systems 

have been adopted by Information and Communication 

Technology (ICT) solutions to make effective digital 

transformation. In recent years environmental impact of AI 

systems has been investigated and methodologies have been 

developed to calculate their cost. In this paper, we survey, 

analyze, and evaluate three types of tools for counting the 

energy consumption/CO2 emission (CO2e) of AI systems. By 

verifying them in sets of experiments, including centralized 

and distributed on devices architecture, we compare ease of 

use of tools, simulation result vs real measurement and finally 

bring advice to help AI developers to take into account 

environmental cost of AI models with measurement tools. 

Finally, we developed a measurement tool for AI model 

environment impact based-on our experiments on the power 

consumption of AI models and applied our tool on AI model to 

verify optimization results.  

Keywords - AI Environmental Impact; CO2e; FLoating point 

of OPerations (FLOPs); Power Usage Effectiveness (PUE); 

Pragmatic Scaling Factor (PSF); Thermal Design Power (TDP); 

Multiple Object Tracking Accuracy (MOTA). 

I.  INTRODUCTION 

This paper extends our earlier work [1] presented at The 
Fourteenth International Conference on Computational 
Logics, Algebras, Programming, Tools, and Benchmarking 
(COMPUTATION TOOLS 2023). 

The global average temperature in the past decades has 
increased more than 1°C compared to the pre-industrial 
baseline (1850-1900) [2]. Such climate change has caused 
more extreme weather events, rising seas, reduction of 
biodiversity, and negative impact to global health and safety.  
The global warming is a critical issue facing all mankind. 
Paris agreement sets a global objective for the temperature 
increase below 2°C. Many nations, regions, industries, 
companies, and individuals have put in place climate actions 
on their agendas. The current rise is more rapid primarily as 
the result of greenhouse gas emissions by burning fossil fuels 
for energy used in industry, transport, building, etc., which 
took 73.2% of global greenhouse gas emissions according to 
the data obtained in the year 2016 [3].  

Using Communication Technology (ICT) solutions in 
these sectors can have a calculated potential to reduce 
greenhouse gas emissions by up to 15% [4]. However, their 
own contribution to greenhouse gas emissions should not be 
ignored, for example, it accounted for around 700 MtCO2e 
in 2020, equivalent to around 1.4% of global GHG emissions 

[5]. Our focus is on Artificial Intelligence (AI) as more and 
more of them have been adopted by ICT solutions to make 
the effective digital transformation. It is expected that the 
Artificial Intelligence industry will be worth $190 billion by 
2025, with global spending in AI systems reaching $57 
billion by 2021 already [6]. The demand for computing these 
AI systems is growing exponentially. The intensive 
computation nowadays not only takes place in datacenters 
but also in a huge amount of edge devices closed to 
consumers and enterprises to support AI applications to 
process big data with low latency and large bandwidth 
requirements.  

Scientists and researchers have started to investigate the 
environmental impact of AI systems in recent years and have 
developed methodologies to calculate their costs. For 
example, Schwartz and Doge et al. [7] refer to the AI 
systems that focus on accuracy without any estimation on the 
economic, environmental, or social cost of reaching the 
claimed accuracy as Red AI. They have proposed a 
simplified estimation of the cost of an AI which grows 
linearly with the cost of processing a single example, the size 
of the training dataset, and the number of hyperparameter 
experiments. OpenAI [8] has pointed out that among the 
three factors driving the advance of AI: algorithmic 
innovation, data, and the amount of computing available for 
training, computing is unusually quantifiable. The number of 
FLOPs (adds and multiplies) in the described architecture per 
training example can be counted. If there is not enough 
information to directly count FLOPs, Graphics Processing 
Unit (GPU) training time, how many GPUs used and a 
reasonable guess at GPU utilization can be used to estimate 
the number of operations performed. Strubell et al. [9] have 
quantified the computational and environmental cost of 
training several popular Natural Language Processing (NLP) 
models. The total power required at a given instance during 
training is related to the average PUE for datacenter 
multiplying the sum of average power draw from all Central 
Processing Unit (CPU) sockets, average power draw from all 
Dynamic Random Access Memory (DRAM) (main memory) 
sockets, and average power draw of a GPU during training 
multiplied by the number of GPU. The greenhouse gas 
emission equivalent per kilowatt-hour is then calculated 
based on data provided by the U.S. Environmental Protection 
Agency (EPA). Google research team R. So et al. [10] have 
evaluated Large Transformer models, which have been 
central to recent advances in NLP and have developed a 
more efficient variant with a smaller training cost than the 
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original transformer and other variants for auto-regressive 
language modelling. Patterson et al. [11] have calculated the 
energy use and carbon footprint of several recent large 
models and found that large but sparsely activated Deep 
Neural Networks (DNNs) can consume less energy than the 
large, dense DNNs without sacrificing accuracy despite 
using as many or even more parameters. The geographic 
location and specific data center infrastructure matters to 
reduce the greenhouse gas emission equivalent of Machine 
Learning (ML) workload. Patterson et al. [12] have shared 
interesting information that the inference represents about 
3/5 of total ML usage at Google across three years, due to 
the many billion-user services that use ML. The combined 
emissions of training and serving need to be minimized. 
Lacoste et al. [13] have developed a tool called “Machine 
Learning Emissions Calculator” for ML community to 
approximate the environmental impact of training ML 
models. Ligozat and Luccioni [14] have proposed a practical 
guide to quantifying carbon emissions for ML researchers 
and practitioners. To analyse the carbon impact of ML, 
besides the ML model emissions of greenhouse gas due to 
the power consumption incurred by the equipment at the 
running time, other dimensions of model impact should be 
considered such as model preparation overhead at 
deployment stage, static consumption of the equipment, 
infrastructure, as well as the overall life cycle analysis of the 
equipment. The authors also have suggested the most 
important steps to take for practitioners and institutions for 
example, as an institution, deploying computation in low-
carbon regions, providing institutional tools for tracking 
emissions, capping computational usage, carrying out 
awareness campaigns, and facilitating institutional offsets. 
Recent work has also tried to apply the life cycle analysis of 
the entire ML development and deployment cycle and 
consider the complexity involved in deploying, scaling, and 
maintaining ML models in practice and in real-time [15].  

Standardizations have begun to tackle the subject, and for 
example, a new work item proposal has been under 
discussion in the Joint Technical Committee on Artificial 
Intelligence (JTC 21) of European Committee for 
Standardization (CEN) and European Committee for 
Electrotechnical Standardization (CENELEC). The new 
work item is about “Green and sustainable AI”, which will 
establish a framework for quantification of the 
environmental impact of AI and its long-term sustainability 
and encourage AI developers and users to improve the 
efficiency of AI use [16]. The “CEN/CENELEC 
standardization landscape for energy management and 
environmental viability of green datacenters [17]” defines 
Key Performance Indicators (KPIs) that address energy and 
environmental control. However, these KPIs are focused on 
datacenters and currently do not address the distributed or 
IoT energy and environmental control. In Dec. 2023, 
AFNOR(French Standardization Association) published 
ISO/IEC 42001, which specifies the requirements and 
provides guidance for establishing, implementing, 
maintaining and continually improving AI management 
system within the context of an organization. This document 
is intended to help the organization develop, provide, or use 

AI systems responsibly [18]. And more frugal AI initiatives 
are advocated.   

As discussed before, quantifying greenhouse emissions 
for any AI system is very important and several simplified 
and applicable methods have been developed in recent 
studies. Some open-source tools are available applying and 
integrating these methods. These tools have been classified 
into three major categories: priori measurement tools, which 
usually calculate operational points in training and inference; 
on-the-fly measurement tools, which measure power 
consumption, etc., when an AI system is running on 
hardware; posteriori measurement tools refer to these tools to 
approximate greenhouse gas emissions for a given 
computation. In our experiments, we deep dive into 
PowerAPI [19], PyJoules [20], and other open-source tools, 
such as Keras-flops [21], Torchstat [22], torchsummaryX 
[23], Flops-counter [24], JouleHunter [25], Jtop [26], 
CarbonAI [27], MLCO2 [13] and Green Algorithm [28], in 
order to have first-hand experience and to understand their 
capabilities and limitations.  

Most of the recent research work focuses on the 
environmental impact of ML models at the training stage. As 
[10] mentioned, the energy consumed at the inference stage 
was more than the energy consumed at training for a given 
few years. So our idea is to set up a framework to evaluate 
the AI systems at both the training and inference stages. 
Considering large scale of AI systems is running on the edge 
side, we set up a heterogenous edge platform with various 
device types where we can use the proper orchestration tool 
that we have evaluated to deploy ML model on these 
different edge devices, which somehow can simulate 
distributed AI applications deployed in real scenarios. Both 
X86-based and ARM-based hardware are used in the 
platform. We have designed methodologies to perform sets 
of experiments to measure the power consumption of the ML 
model incurred on hardware for the training stage and 
inference stage. Unlike a data center, the power consumed by 
these edge devices is mainly coming from CPU/GPU 
computation and memory usage with very limited overhead 
for cooling components if they have any. Even so, we have 
measured the static power consumption of edge devices to 
get a more precise measurement of AI model power 
consumption by subtracting the static power consumption. 
We also select various types of ML models for one AI use 
case and compare the power consumption of these ML 
models when they are running on edge devices in addition to 
their performance.  

Our objectives for the studies are to verify the 
measurement tools and improve them; to obtain greenhouse 
gas emissions of various ML models; to benchmark 
performance vs environmental impact; and to develop 
greener ML models. These experimental results can provide 
useful information and recommendations for organizations to 
build an institutional toolbox to track greenhouse gas 
emissions of AI systems and offer responsible AI 
applications to our customers. The scope and key point of 
our analysis are the comparison of training and inference 
energy/CO2 consumptions among different AI models 
solving the same problem, not aiming to compare their 
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environmental impacts when running on centralized server 
and running on edge devices.  

Green House Gas (GHG) Protocol is an international 
standard for corporate accounting and reporting emissions, 
categorizing greenhouse gasses into Scope 1, 2 and 3 based 
on the source [29]. This paper mainly focuses on scope 2. 

The organization of this paper is as follows. Sections II to 
IV analyze the three categories of measurement tools 
respectively; Section V provides our experiments and results 
analysis, Section VI introduces our measurement tool, and 
Section VII gives the conclusion. 

II. PRIORI MEASUREMENT TOOLS ANALYSIS 

To evaluate the ML model’s power consumption by 
comparing the model’s calculation amount, the priori 
measurement tools are employed. They are used to evaluate 
AI models and algorithms through computing the flops/mult-
adds/other parameters.  

There are two usages of priori measurement tools:  

• as an inline module to measure the AI model, for 
example, first install as a python module, and then 
call some tools’ functions in the model source 
program to get the model’s related computing 
information.    

• as a Command Line Interface (CLI) tool to handle 
the model’s source program, for example, first install 
the tool, and execute the tool to process the model 
source program to get the model’s related computing 
information. 

Because priori measurement tools handle the source code 
of AI programs, they always process one specific framework 
and support a subset of types of layers. 

For testing priori measurement tools, a test environment 
was built, and related AI frameworks and some candidate 
priori measurement tools were installed first; then, 
constructed some demo AI models with/without special 
layers based on relevant frameworks; finally, computed and 
compared these demo AI models’ Flops/Mult-Adds and 
other related measurements using candidate priori 
measurement tools and evaluated them through these 
computed results. 

We launched five tests for four priori measurement tools: 
keras-flops, torchstat, torchsummaryX and flops-counter.  

Keras-flops as a python module can calculate the FLOPs 
of neural network architecture written in Tensorflow. Test1 
verifies keras-flops’ support for Conv2dTranspose layer. In 
this test, we constructed a model including 
Conv2dTranspose layer to test this tool’s capability with two 
python programs (with/without Conv2dTranspose Layer). 
The difference value of flops means that Conv2dTranspose 
layer is supported by keras-flops. Test2 verifies keras-flops’ 
support for Conv3dTranspose layer. According to the 
supporting table, Conv3dTranspose layer is not supported by 
keras-flops. In this test, we constructed a model including 
Conv3dTranspose layer and test the tool’s capability with 
two python programs (with/without Conv3dTranspose 
layer). The same value of flops means that Conv3dTranspose 
layer is not supported by keras-flops. 

 

TABLE I.  SUMMARY OF FOUR PRIORI MEASUREMENT TOOLS 

priori 

measurement 

tools 

support 

framework 

outputs 

keras-flops Tensorflow FLOPs 

torchsummaryX PyTorch FLOPs, Multi-Add, memory, 
total params 

torchstat PyTorch Multi-Add, total params 

flops-counter PyTorch Multi-Add, total params 

 
Torchstat is a lightweight neural network analyzer based 

on PyTorch. Its usage is as a python module to measure an 
AI model or as a CLI tool to handle a python program 
including an AI model. Test3 verifies Torchstat’s support for 
Conv2d layer and ConvTranspose2d layer. In this test, we 
constructed Convolutional Neural Network (CNN) models 
including Conv2d layer and ConvTranspose2d layer to test 
the tool’s capability.   

TorchsummaryX is also a tool based on the Pytorch 
framework. This tool can handle Recurrent Neural Network 
(RNN), Recursive Neural Network, or models with multiple 
inputs. In the test4, we constructed two models with Conv2d 
layer and ConvTranspose2d layer respectively. We can find 
Mult-Adds remains unchanged. It means that 
Convtranspose2d layer is supported for Mult-Adds by 
torchsummaryX.  

Flops-counter is based on the PyTorch framework and 
designed to compute the theoretical number of multiply-add 
operations in CNNs. It can also compute the number of 
parameters and print the per-layer computational cost of a 
given network. In the test5, we constructed two models with 
Conv2d layer and ConvTranspose2d layer respectively. We 
can find the computational complexity (i.e., number of 
multiply-add operations) remains unchanged. It means that 
Convtranspose2d layer is supported for Mult-Adds by 
torchsummaryX.  

Torchstat, torchsymmaryX, and flops-counter are all 
based on the PyTorch framework, but their outputs are 
different. Torchstat outputs numbers of parameters, amount 
of Multiply+Adds, number of flops, and memory usage. 
torchsummaryX and flops-counter just provide numbers of 
parameters and amount of multiply+adds. According to some 
feedback from github [30], the results of torchstat’s MAdd 
and FLOPs are wrong, which should be swapped. The 
summary of the four tools is shown in the following Table I. 

Through our five tests, we can find that the effectiveness 
of priori measurement tools relies on their detailed 
implementation. The application of priori measurement tools 
is limited. The tools we tested just support one special 
framework (TensorFlow or PyTorch) and a subset of types of 
model layers. In practice, most AI models usually include 
some specific layers (e.g., 3D ConvTranspose layer), which 
cannot be calculated by our tested priori measuring tools. 

III. ON-THE-FLY MEASUREMENT TOOLS ANALYSIS 

The most direct and precise way to measure an AI 
program's power consumption is to measure it in real-time 
while the process is going on. We named this type of tool the 
"on-the-fly tool”. For this purpose, we have carried out the 
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research and study of relevant tools and later carried out the 
comparison test and verification of their real use situation.  

After preliminary selection, we chose the following three 
measurement tools as candidates, they are PowerAPI series 
(JouleHunter, PyJoules), CarbonAI, CodeCarbon and Jtop. 
They have their own methods and application scenarios, and 
following their official instructions and guidance documents, 
we conducted a series of tests and applications on them. 

The first one is the PowerAPI, the goal of this project is 
to provide a set of tools to go forward greener computing, the 
idea is to provide software-defined power meters to measure 
the power consumption of the program, the core of this 
project is the PowerAPI toolkit for building such power 
meters [19]. 

PowerAPI is a middleware toolkit for building software-
defined power meters.  Software-defined power meters are 
configurable software libraries that can estimate the power 
consumption of software in real-time. A power meter built 
on PowerAPI normally has two components -- the sensor and 
the formula. The sensor is also a software, which worked like 
the physical world sensor, queries the hardware’s (host 
machine) data, and collects raw data correlated with the 
power consumption of the software. All data will be stored in 
an external database to make the data available to the 
formula. For the other component, the formula is a 
computational module that uses the collected data to 
determine power consumption. Both are connected by a 
database that is used to transfer information. The global 
architecture of a power meter is represented in Figure 1 
below [31]. 

For convenience and quick use, PowerAPI has provided 
several useful components. As Hwps-Sensor (Hardware 
Performance Counter), is a tool using the Running Average 
Power Limit (RAPL) technology to monitor the Intel CPU 
performance counter and power consumption of the CPU. 
Also, some matched formulas like “SmartWatts Formula” 
used for physical Linux machine, “VirtualWatts” used for a 
virtue machine, etc.  

PowerAPI also packages up (with sensor and formula) a 
set of ready-to-use tools for diverse needs. Here Joule Hunter 
and PyJoules are the two we selected and used for our 
research. 

JouleHunter runs on Linux machines with Intel RAPL 
support.  This technology has been available since the Sandy 
Bridge generation [32].  

 

 

Figure 1.  The global architecture of a power meter 

JouleHunter can show what part of your program code is 
consuming considerable amounts of energy in detail. 
JouleHunter works similarly to pyinstrument [33], as it 
forked the repo and replaced time measuring with energy 
measuring. This tool can be easily installed and used with 
one or two command line(s), two key components of 
hardware the intel CPU and ram’s power consumption can 
be printed out. However, from its official documentation and 
real test we can see that JouleHunter this tool has its 
limitation, such as it only worked with Linux OS and no 
calculation for GPU power consumption.  

Another software toolkit from PowerAPI is the PyJoules, 
which can be used to measure the energy footprint of a host 
machine along with the execution of a piece of Python code. 
Except for Intel CPU socket package and RAM (only for 
Intel server architectures), it also can monitor the energy 
consumed by the GPU of the host machine, supporting both 
for Intel integrated GPU (for client architectures) and Nvidia 
GPU (Uses the Nvidia "Nvidia Management Library" 
technology to measure the power consumption of Nvidia 
devices. The energy measurement Application Programming 
Interface (API) is only available on Nvidia GPU with Volta 
architecture 2018) [34].  PyJoules can only work with AI 
program coding on Python, and it should be installed and 
imported as a function into the target main project python 
file. It will report the total power consumption during the 
code is running. Its results contain not only the target 
project’s power consumption, thus including the OS and 
other applications running at the same time if have. That 
means it calculates the global power consumption of all the 
processes running on the machine during this period. With 
PyJoules, to get the closest measure to the real power 
consumption of the measured program, we need to try to 
eliminate any extra programs (such as graphical interface, 
background running task, etc.) that may alter the power 
consumption of the host machine and keep only the code 
under measurement.  Same as JouleHunter, PyJoules 
currently can only work on GNU/Linux, and does not 
support on Windows and MacOS. 

CodeCarbon and CarbonAI are two other projects, which 
aim to raise AI the developers’ awareness of the AI’s carbon 
footprint. The two have similar methodology and formula, 
while using different data sources (carbon intensity, 
hardware references, etc.). Firstly, like PyJoules they provide 
a python package that allows developer to monitor power 
consumption. Then based on the measurement results, 
CodeCarbon and CarbonAI will do a transition between 
power consumption and CO2 emissions, to provide a more 
intuitive understanding of how much our AI development is 
doing to the environment. For example, training an AI model 
for 100 rounds is the equivalent of driving from Paris to 
Marseille. Also, the power consumption results of 
CodeCarbon or CarbonAI are given as a CSV file, which 
includes most key devices of a host machine, like CPU, 
GPU, and RAM, but also the name of the country where the 
package was used (based on the IP or what the user set). And 
CodeCarbon also provides some information like Cloud 
provides and the region selected for a AI programs running 
on a Cloud server. So, the amount of CO2 emitted by the 

28International Journal on Advances in Systems and Measurements, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/systems_and_measurements/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

usage will be depends on the country and the energy mix 
used by the country to produce electricity. For combability, a 
different form that PyJoules only support Linux OS, 
CodeCarbon and CarbonAI packages are compatible with 
most platforms (Linux, Windows, and MacOS) with the 
varying installation process. 

At present, apart from x86 architecture servers and 
devices, ARM-based devices are also widely used in various 
fields of AI. However previous tree tools only work well on 
x86 hardware platforms, all of them will get several issues or 
bugs. For ARM platforms, Nvidia provides their official tool 
Jtop for the Jetson series, a platform designed for AI 
development and use cases. Jtop is one of jetson-stats, a 
package for monitoring and controlling NVIDIA Jetson 
(Xavier NX, Nano, AGX Xavier, TX1, TX2) Works with all 
NVIDIA Jetson ecosystems. Jtop can be run independently 
and show the real-time usage data of CPU, GPU, and RAM 
and also the actual frequency of the hardware. With its built-
in graph user interface, we can easily read the results, but 
only the immediate frequency, so for the final power 
consumption we need manually calculate the Total power 
consumption using w=p*t, and “t” is the duration of the 
target AI program. Compared to other tools, although the 
result of power consumption cannot be directly obtained, 
Jtop can provide the usage rate of each device.  

All those tools are not very difficult to install and use, 
some of them can be installed with several command lines, 
like JouleHunter, CodeCarbon, CarbonAI, and Jtop; and for 
PyJoules, we can add it into our application code just like a 
function. For compatibility, except CarbonAI supports 
Linux, Windows and MacOS (we only use it on Linux 
machines), other tools currently can only be used on Linux.  
Most tools currently only support Intel CPU and RAM, for 
GPU’s power consumption, we need external components or 
3rd part tools. For the programming language, most tools are 
built up as a python package, so they only worked with AI 
apps coded with python.  

For the usage, the reported power consumption is not 
only the power consumption of the code you are running. 
This includes the global power consumption of all the 
processes running on the machine during this period, thus 
including the OS and other applications. So, we need to 
eliminate any extra programs and get the value of the devices 
when idling as the base level if possible. This will give the 
closest measure to the real power consumption of the 
measured code. 

IV. POSTERIORI MEASUREMENT TOOLS ANALYSIS 

AI researchers also proposed to estimate carbon 
emissions of the AI computation by posteriori tools, i.e., ML 
CO2 Impact and Green Algorithms. The key methodology of 
the tools is to estimate the power consumption after the 
computation process and achieve the carbon emissions from 
power consumption and related carbon intensity.  

As shown in Table II, ML CO2 Impact tool is designed 
to estimate the carbon emissions produced by training ML 
models. The inputs include the geographical zone of the 
server, the type of GPU, and the training time, and the output 
is the approximate amount of CO2e.  

TABLE II.  ML CO2 IMPACT AND GREEN ALGORITHMS 

 ML CO2 Impact Green Algorithms 

Energy 
consump

tion 

runtime * power 
draw for GPU  

runtime * (power draw for cores * 
usage + power draw for memory) * 

PUE * PSF 

Hardwar
e type 

Mainly GPU type GPU, CPU, CPU/GPU co-existing 
case, number of cores, memory 

Usage 

factor 

100% by default 100% by default and configurable  

Other 
factors 

/ Power Usage Effectiveness: the extra 
energy needed to operate the data 

center (cooling, lighting , etc.)  

Pragmatic Scaling Factor: multiple 
identical runs (e.g., for testing or 

optimization) 

 
The inventors collected available public data for the 

computation including the TDP of the hardware, the location 
of the hardware, and the related carbon intensity (CO2e 
emissions per kWh).  

Green Algorithms tool aims to estimate the carbon 
footprint of any computational task. Compared with ML 
CO2 Impact tool, it requires extra inputs of memory size, 
real usage factor of the processing core, PUE, and PSF.    

Different from the on-the-fly measurement tools, the 
power consumption model of both tools uses TDP and 
runtime to achieve the power consumption, which means in 
the calculation the usage of cores is 100% by default. Green 
Algorithms tool allows to configure the real usage of cores 
and takes more quantifiable elements into consideration, i.e., 
memory power, PUE, and PSF, allowing users to estimate 
the power consumption more flexibly. 

Considering carbon intensity, it is known that fossil fuels 
have the highest carbon footprints, for example, coal emits 
820g of CO2e per kWh of electricity produced [35], while 
electricity generated by wind, solar, hydro, or nuclear power 
emits lower amounts of carbon footprints, i.e., 12g CO2e 
/kWh for wind, and 27~48g CO2e /kWh for all types of 
solar. In different countries and regions, even different 
electric power companies, the energy structure differs from 
others, and various energy sources would be used to generate 
electricity. The location matters as all servers are connected 
to local grids and they will have different amounts of CO2e 
emissions when consuming or generating the same amount 
of electricity, for example, 174g CO2e emission per kWh of 
electricity for France and 741g CO2e /kWh for Germany (at 
12:00 PM on December 1, 2022) [36].  

Both tools refer to public data for carbon intensity. They 
provide data reference of data centers including Google 
Cloud Platform, Amazon Web Services, and Azure. 
However, we can see clearly that there is no unified data 
source, location scope, and effective time due to differences 
in the data sources of the two tools. 

From the preliminary analysis of the above two tools, we 
know that when evaluating carbon emission impact, both 
power consumption and carbon intensity should be 
considered. Parameters like hardware type, PUE, the usage 
of the core, and memory will contribute to the energy 
consumption. For carbon intensity, the location matters 
because of the different energy mix in different countries and 
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regions, but there are various data sources that may provide 
quite different location scopes and effective time. Also, we 
notice that the goal of these tools is to make people aware of 
the carbon emission impact, to provide a quick tool to 
evaluate the carbon emission during machine learning work 
and to recommend carbon reduction actions like selecting the 
cloud provider or server location wisely, buying carbon 
offsets, choosing clean energy, and improving AI algorithms 
to be green. 

V. EVALUATION EXPERIMENTS 

Our objectives are to verify the measurement tools and 
have some comments and suggestions proposed for 
measurement tools for AI models through our experiments.  

We have developed a systematic methodology to carry 
out our experiments. First, a cloud-edge platform was set up 
with heterogenous hardware either X86-based, or ARM-
based. These hardware devices have similar levels of 
computation capabilities to commercial end devices such as 
LiveBox, controllers on vehicles, etc. Then, we selected an 
AI application, in our case, we choose Person Re-
Identification (Re-ID), which is the task of associating the 
same person taken from different cameras or from the same 
camera on different occasions [37]. Person Re-ID have wide 
usage in smart building and smart city scenario. Many 
Person Re-ID open-source models are accessible using 
various AI architectures, such as CNN, Transformer, or Long 
Short Term Memory (LSTM). Based on criteria, such as 
performance, release date, accessibility, etc., we have 
selected several Person Re-ID models with different AI 
model architectures. After that, we measured their power 
consumption during the training stage and inference stage 
when they are running on various types of hardware in 
rounds of experiments.  

We selected four different Re-ID models: Fast-ReID 
(CNN), st-ReID (CNN), DeepPerson (LSTM), and Trans-
ReID (Transformer).  

We collected each model’s detail information related 
energy consumption, total energy consumption, epoch times, 
training time, achieved performance, duration time/epoch, 
and energy consumption/epoch. Four models based-on three 
model types are trained and evaluated by balancing 
performance and energy consumption. 

Figure 2 presents the total energy consumption with 
epoch times of 4 models. The orange columns present the 
energy consumption. It is found that the Fast-ReID has the 
lowest energy consumption and the Trans-ReID has the 
most. The st-ReID and deep-person are middle and about the 
same. And the top blue line stands for epoch times.  

 

 

Figure 2.  The comparation of total energy consumption with epoch times 

 

Figure 3.  The comparation of total energy consumption with the training 

time 

 

 

Figure 4.  The comparation of energy consumption per epoch with the 

training time/epoch 

 
Figure 3 presents the total energy consumption with the 

total training time of 4 models. The orange columns present 
the energy consumption as Figure 1. And the bottom blue 
line stands for the minimal training time to achieve the best 
performance. The change of training time is same as the 
change of total energy consumption. 

Next, in Figure 4, the orange columns present the energy 
consumption per epoch and the blue line stands for the 
during time/epoch. An epoch refers to one cycle through the 
full training dataset. The change of during time per epoch is 
same as the change of energy consumption per epoch. The 
st-ReID and trans-ReID are about the same. The Fast-ReID 
is the lowest one. 

After analyzing the information, we collected in the 
training phase, we got some conclusions. Total training 
power consumption is determined by the training algorithm 
and training time. Because GPU consumption is the largest 
part of energy consumption in the training phase and it 
worked at all speed and a constant power, training power 
consumption is in proportion to the training time in general. 
With the measurement tool, it can quantify power 
consumption in order to make more accurate assessment for 
different AI models.  

Regardless of performance, for total power consumption, 
the Trans-ReID has the most one, the Fast-reid has the 
lowest one. The st-ReID and DeepPerson have the middle 
ones and are about the same. If considering the performance, 
First, according to our performance criterion (mAP great 
than or equal to 80% and Rank1 great than or equal to 90%), 
the DeepPerson is dropped. Second, st-ReID and Trans-ReID 
have the similar performance, but Trans-ReID consumed 
twice of energy than st-ReID. For st-ReID and Fast-ReID, st-

30International Journal on Advances in Systems and Measurements, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/systems_and_measurements/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

ReID raised about 2-4% as compared with Fast-ReID, but 
the st-ReID’s energy consumption is 70 percent more than 
Fast-ReID.  

Training power consumption/epoch is in proportion to 
the training time/epoch too. And the Trans-ReID and st-
ReID are about the same and have the most consumptions. 
DeepPerson has the middle one and the Fast-ReID has the 
still lowest consumption.  

Considering to performance and energy saving: 
• The training program runs on GPU generally, and 

in the training phase Fast-ReID is the best choice for a 
balanced requirement of performance and energy saving.  

• Trans-ReID is the newest model probably without 
optimized for energy consumption.  

Evaluating the performance and power consumption for 
inference of different types of AI models, we designed three 
scenarios to compare the performance of the AI model under 
different computing requirements: Single case -- only one 
person in the video; Multi case: there are always more than 
two people in the video and Mixed case: dynamic picture, 
sometimes one person, sometimes many people, and 
sometimes no one. And in terms of the choice of energy 
consumption calculation, we also designed two different 
dimensions: Fixed time scenario -- processing AI application 
for 500s on different devices; Fixed task scenario -- 
processing a same 5mins video as input, stop application 
until all frame finished. In this way, we can get the influence 
results of AI's energy consumption from the two 
perspectives, the host machines, and the model itself. Don’t 
like training part, for KPI of AI model inference performance 
we only take FPS (frames per second) to evaluate the 
processing speed of the AI applications and accuracy to 
evaluate the accuracy of video processing (identifying people 
for our ReID case). 

 

 

Figure 5.  500s fixed time experiment for Fast-ReID inference on tree 

different devices 

 

Figure 6.   5mins fixed task experiment for Fast-ReID inference on tree 

different devices 

 
To minimize the error and contingency of experiment 

results, we carried out the same experiment five times 
separately and took the average value of them (there were no 
abnormal values). Each time, we firstly measured the energy 
consumption of the devices when idling as the base level, 
and then get the values while target AI application is 
running. Results of the AI application power consumption 
we take were the difference between them: Wfinal=Wtotal-
Widling.  

Figure 5 above shows the fast-ReID model inference 
results on tree different host devices: edge server (Intel Xeon 
E5-2678 v3, GeForce GTX 1080 Ti), Intel NUC (Intel 
NUC8i7BEH) and Jetson AGX Xavier, we compared its 
total power consumption and performance using same input 
videos (three 500s videos with one person, more than two 
people and mixed cases).  

From the chart we can see that the energy consumption 
of AI applications is positively correlated with the 
complexity of application scenarios when the hardware 
capability allows. On edge devices with limited computing 
power, AI application energy consumption is relatively 
fixed, close to the maximum energy consumption of the 
device. There is even an overload situation, which leads to 
overheating of the CPU and frequency of CPU will reduce. It 
will cause a lower energy consumption but with a poor 
performance (the FPS, processing speed, no influence for the 
accuracy as it depends on the models themselves). For the 
same architecture x86, although the server has a powerful 
computing capability, but in some cases, if the ability 
requirements and accuracy are not so high, small edge 
devices will be more reasonable.  

Figure 6 shows the results of the fixed task scenario. This 
case, we used fast-ReID to finish processing of a same 5mins 
input video, we find that the energy consumption per unit 
time is indeed consistent with the parameters (CPU, GPU, 
RAM type etc.) of the device itself. But the total power 
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consumption depends on the computing capability of the 
hardware. Because we know that less capable hardware takes 
longer to complete the whole process, the longer AI process 
takes, the more energy consumption goes up. As normal 
sense, more powerful devices with stronger CPU and GPU 
frequencies, which is indicative of higher power 
consumption, but from our measurement results we find, it 
doesn't necessarily mean that their total power consumption 
for processing a same AI task will be higher. The time device 
taking to process the whole AI workflow is also an important 
impact point for the power consumption. For green AI trend, 
choosing the right host machine (the computing power it can 
provide) according to the requirements of the AI application, 
can optimize the energy consumption of AI applications. 

Except CNN model fast-ReID, we also do the inference 
experiments of transformer type ReID model, Trans-ReID. 
The two are compared as shown in Figure 7. First, the two 
are close in accuracy, with no significant difference. As 
transformer is the latest model type for ReID use-case, unlike 
the CNN model type, which has been used and promoted for 
a long time. Trans-ReID seams still need some model 
optimization, especially on the edge devices. It’s also cause 
of a more complex network of Transformer model. We can 
see that to process the same task program, Trans-ReID will 
take longer than Fast-ReID model. From the energy 
consumption result of a fixed running time of 500s, Fast-
ReID is slightly lower than Trans-ReID. Which means that 
the energy consumption level per unit time of these two 
model types is very close.  However, in a use-case of a fixed 
task, which is closer to the real AI program usage scene.  
Fast-ReID (CNN) model will have much lower power 
consumption than Trans-ReID, as more time are needed for 
Trans-ReID. Especially for multi person scenario, to finish 
processing a 5mins input video, Trans-ReID will take around 
1700 Wh (out of order and no value in the chat) and the FPS 
of this model in the multi person case is very low, around 
0.2. 

We build a benchmark to compare the results of the on-
the-fly and posteriori measurement tools. In the first 
experiment, the power consumption of Fast-ReID (CNN) 
model is measured by processing AI inference on a 500s 
video of a single person. The results of PyJoules and Jtop 
tools are selected as a baseline of the real-time measured 
power consumption. MLCO2 Impact and Green Algorithms 
tools are used to estimate the power consumption afterward, 
respectively. As is shown in Table III, three types of 
hardware have been evaluated: a server with GeForce GTX 
1080 Ti, Intel Xeon E5-2678 v3 and a memory of 64GB, and 
two edge devices – one with Intel i7-8559U and a memory of 
16GB, and the other with NVIDIA Jetson AGX Xavier, 
ARMv8 Processor rev 0 (v8l) and a memory of 32GB. For 
Green Algorithms tool, there is a default CPU usage of 100% 
and a configurable CPU usage that can be estimated based 
on the observation of the AI processing experiment. The 
PUE used in the calculation is 1 because we use local private 
infrastructure instead of cloud services and ignore the power 
consumption of cooling or lighting. The memory power draw 
only depends on the size of memory available (0.3725 W per 
GB). 

 

Figure 7.   Experiment results comparation of Fast-ReID and Trans-ReID 

on edge server 

 
In the second experiment, as is shown in Table IV, four 

different Re-ID models are evaluated at the training stage. 
Since both GPU and CPU cores will be used in the AI 
training process, power consumption should be considered 
for both. 

With default configuration of 100% usage of cores, the 
results of the two estimation tools are 1~3x of data measured 
by "on the fly" tools. If applying estimated usage of cores 
based on observation in Green Algorithms tool, for example, 
30% for servers and 70% for edge devices in AI inference 
experiment, and 66% for GPU and 10% for CPU in AI 
training experiment, the results are close to real-time 
measured ones.  

In Figure 8 and Figure 9, we can see clearly that for 
servers, in both AI inference and training case, the "green" 
estimated results of Green algorithms tool, are closer to the 
on the fly measured results, due to the use of estimated real 
usage of cores. On the other hand, for resource constrained 
edge devices in AI inference case, all estimated values are 
close to experimental ones, because that the real CPU usage 
tends to be full of use on these edge devices. 

 

 

Figure 8.  Fast-ReID inference Experiment vs. Estimation (Server & Edge 

devices) 
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Figure 9.  Fast-ReID training Experiment vs. Estimation (Server) 

VI. OUR MEASUREMENT TOOL 

Based-on the state of art measurement tools that we 
analyzed and experimented on the power consumption of AI 
models, we developed an integrated measurement tool by 
asking ourselves what kind of tool an AI practitioner or user 
want? We found that they may like real time feedbacks, with 
carbon emission results, with more detailed information, 
more visualized. The tool can work well on different 
hardware, and easy to use, etc. Our proposition is to develop 
a new AI carbon footprint measurement tool that could 
satisfy their needs. 

According to Sections II, III, and IV, these types of tools 
have their own pros and cons. The priori tools, which can be 
used to calculate the model operation in terms of FLOPs, but 
they only support simple models. The second type on-the-
fly, which can measure electricity consumption during 
computation, but they have poor compatibility and 
visualization; the third type--posteriori tool, which can 
estimate CO2 eq for a give computation, but the accuracy is 
based on input parameters, and it is not in real time.  Our tool 
has taken reference from the good elements from these tools 
and provide wider support, good compatibility and real-time 
measurement.  

With our tool, we have verified AI model’s optimization, 
which can reduce the number of operations or the model 
size.    

In our experiment, the Multiple Object Tracking (MOT) 
[38] case was chosen. And we used an optimization method 
named Knowledge Distillation [39] to reduce model size 
without much performance degradation. Knowledge 
Distillation refers to the process of transferring the 
knowledge from a teacher model to a smaller student model. 
Our tool is used to verify the optimization results on the 
aspect of carbon footprint, which are showed in Table V. 
From the results we can find that after model optimization, 
the size of student model is reduced by 75% compared with 
that of teacher model and the power consumption and carbon 
footprint are reduced by 71% at training phase and 60% at 
inference phase with less than 10% loss of model 
performance based-on MOTA. 

VII. CONCLUSION 

We have been carrying out series of experiments to 
verify the measurement tools. For different types of 
measurement tools, we found that:  

The effectiveness of priori measurement tools relies on 
their detailed implementation. The application of priori 
measurement tools is limited. The tools just support one 
special framework and a subset of types of model layers. 

The on-the-fly tools can be used during the processes of 
AI programs; however, they are limited. PyJoules or 
JouleHunter can be used to get power consumption (CPU, 
GPU, RAM) of large AI programs on different x86 
architectures devices, while for architectures ARM devices, 
only Jtop supported. Ideally, it is better to develop and use 
the same cross-platform tool. However, the comparison of 
experimental and estimated results shows that the error of the 
on-the-fly measurement tools is acceptable.  

The posteriori measurement tools can be used for power 
consumption estimation after the AI processing by knowing 
the runtime and the parameters of hardware (CPU, GPU, 
memory, etc.). For resource-constrained edge devices, the 
resources usually tend to be nearly full of use, and the tools 
with a default configuration are able to make a quick 
estimation of the power consumption. For servers that have 
more resources and stronger processing capabilities, if extra 
information can be given, for example, the real usage of the 
cores, the Green Algorithms tool will be optimized to make 
close estimations to real-time measured power consumption. 
Both tools can provide different CO2e emissions due to 
different locations where the AI computation is processed. 
The researchers aim to remind people to carefully select the 
cloud providers and locations for AI services when carbon 
impacts should be taken into consideration. 

We have selected an AI use case: Re-ID, which can be 
realized by various types of AI architecture: CNN, LSTM, 
and Transformer. Once the specific AI model for each type is 
selected, the power consumption of the selected AI models is 
measured during the training and inference stages when they 
are running on different edge devices. The experimental 
results show that the total training power consumption of the 
AI model is determined by the training algorithm and 
training time. Training power consumption is in proportion 
to the training time in general.  With the measurement tool, it 
can quantify the power consumption to make a more 
accurate assessment for different AI models. The power 
consumption of AI applications is positively correlated with 
the complexity of application scenarios when the hardware 
capability allows.  

Finally, we developed our own measurement tool for AI 
model carbon footprint measurement and verify the tool in 
an AI model’s optimization use case. We hope data scientist 
community would propose new optimization techniques to 
evaluate the impact by using such kind of tool. In the future, 
we plan to extend our measurement tool that can be run on 
the cloud.   
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TABLE III.  FAST-REID, SINGLE PERSON, RUNNING TIME = 500S, AI INFERENCE 

Measurement tools GPU/CPU type Power consumption 

 

Carbon 

emissionsa 

CPU (W) Usage Memory (GB) Total (Wh) CO2e(mg) 

1 On the fly – PyJoules Server: 

GPU: GeForce GTX 1080 Ti  
CPU: Intel Xeon E5-2678 v3  

Memory: 64GB 

   7.2  

2 A posteriori - MLCO2 Impact 120 100%  16.67 633.46 

3 A posteriori – Green Algorithms 120 30%/100% 64 8.31/19.98 426.18/ 
1002 

1 On the fly - PyJoules Intel machine II:     4.1  
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2 A posteriori - MLCO2 Impact CPU: Intel i7-8559U  
Memory: 16GB 

28 100%  3.89 147.82 

3 A posteriori – Green Algorithms 28 70%/100% 16 3.55/4.72 182.04/ 

241.86 

1 On the fly - Jtop ARM:  
NVDIA Jetson AGX Xavier  

CPU: ARMv8 Processor rev 0 (v8l)  

Memory: 32GB 

   3.8  

2 A posteriori - MLCO2 Impact 30 100%  4.17 158.46 

3 A posteriori – Green Algorithms 30 70%/100% 32 4.57/5.82 234.45/ 

298.55 
a. The reference location is Europe, France. 

 

TABLE IV.  FAST-REID, ST-REID, DEEPPERSON, AND TRANS-REID, AI TRAINING 

Measurement 

tools  

Test ML model Running time(s) Power consumption 

 

Carbon 

emissionsa 

GPU 

(W) 

Usage CPU 

(W) 

Usage Memory 

(GB) 

Total (Wh) CO2e(g) 

1 On the fly – 

PyJoules 

Fast-ReID, CNN 4625      125.06  

2 A posteriori - 

MLCO2 Impact 

120 100% 45 100%  211.98 8.06 

3 A posteriori – 
Green 

Algorithms 

120 66%/100% 45 10%/100% 64 128.16/242.61 7.08/12.44 

1 On the fly - 
PyJoules 

st-ReID, CNN 7988      212.26  

2 A posteriori - 

MLCO2 Impact 

120 100% 45 100%  366.12 13.91 

3 A posteriori – 
Green 

Algorithms 

120 66%/100% 45 10%/100% 64 238.62/419.01 12.24/21.49 

1 On the fly - 

PyJoules 

DeepPerson, 

LSTM 

8326      201.74  

2 A posteriori - 

MLCO2 Impact 

120 100% 45 100%  381.61 30.35 

3 A posteriori – 

Green 
Algorithms 

120 66%/100% 45 10%/100% 64 248.72/436.74 26.69/46.87 

1 On the fly - 

PyJoules 

Trans-

ReID, Transformer 

17426 

 
 

     451.7  

2 A posteriori - 

MLCO2 Impact 

120 100% 45 100%  798.69 30.35 

3 A posteriori – 

Green 
Algorithms 

120 66%/100% 45 10%/100% 64 520.55/914.09 26.69g/46.87 

a. The reference location is Europe, France. 

 

TABLE V.  MODEL OPTIMAZATION RESULTS WITH OUR MEASUREMENT TOOL 

  

Model size Gflops 
Model performance 

(MOTA) 

Training power consumption (

Wh)/carbon footprint(gCO2e) a 

Inference power consumption (Wh)/carbon footprin

t(gCO2e) (example video: 5460 frames) 

GPU: NVIDIA RTX 3080 GPU: NVIDIA RTX 2080 

Teacher model 750M 793.21 61.80% 
57.43Wh/epoch 12.39Wh 16.34Wh 

4.88gCO2e/epoch 1.05gCO2e 1.38gCO2e 

Student model 190M 207.35 56.20% 
6.48Wh/epoch 5.72Wh 7.02Wh 

0.55gCO2e/epoch 0.48gCO2e 0.59gCO2e 
  a. The reference location is Europe, France. 
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