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Abstract - We consider a two-player zero-sum game with
random linear chance constraints whose distributions are known
to belong to moments based uncertainty sets or statistical distance
based uncertainty sets. The game with chance constraints can be
used in various applications, e.g., risk constraints in portfolio
optimization, resource constraints in stochastic shortest path
problem, renewable energy aggregators in the local market.
We propose a reformulation of the chance constraints using
distributionally chance-constrained optimization framework. We
show that there exists a saddle point equilibrium of the game,
which is the optimal solution of a primal-dual pair of second-
order cone programs. As an application, we present a competition
of two firms in financial market to simulate our theoretical
results.

Keywords-Distributionally robust chance constraints; Zero-sum
game; Saddle point equilibrium; Second-order cone program.

I. INTRODUCTION

This paper is an extended version of [1], presented at
the Seventeenth International Conference on Internet and Web
Applications and Services (ICIW), from June 26 to June 30,
2022 in Porto, Portugal.

Equilibrium is an important notion in game theory, in which
there is no incentive for any player to deviate unilaterally.
The researches in the literature usually focus on sufficient
conditions for the existence of an equilibrium point and its
characterization. The first notion of equilibrium was intro-
duced in the book Researches into the Mathematical Principles
of the Theory of Wealth by Cournot in 1838 [2]. In 1951,
Nash [3] showed that there exists an equilibrium point in a
finite strategic game, which is known as a Nash equilibrium
nowadays. The theory of Nash equilibrium is especially hard
when it deals with practical applications with random payoffs
and strategy sets. In order to deal with random payoffs, the
most common way is using the expectation function, which
is equivalent to study deterministic payoffs. In many real life
applications, the strategy sets are restricted by random linear
constraints, which are called chance constraints. The distribu-
tion of random factors in chance constraints can be known

exactly or unknown, which leads to different approaches to
define a game. In known distribution case, the true distribu-
tion of random factors is usually assumed to be elliptically
distributed, which includes many known distributions, e.g.,
Gaussian distribution, Laplace distribution, Kotz distribution
or Pearson distribution. Otherwise, in unknown distribution
case, the true distribution of random factors is assumed to
belong to an uncertainty set, where only a partial information
of the distribution is known due to historical data and we
call these games as distributionally robust chance-constrained
games. A two-player zero-sum game is modeled using contin-
uous strategy sets, where the sum of two players’ payoffs is
zero. Consequently, it is defined using a single payoff function,
where one player plays the role of maximizer and another
player plays the role of minimizer. More commonly, a zero-
sum game is introduced with a payoff matrix, where the rows
and the columns are the actions of player 1 and player 2,
respectively. A Saddle Point Equilibrium (SPE) is the solution
concept to study the zero-sum games and it exists in the mixed
strategies [4].

In the conference paper [1], we considered a two player
zero-sum game with continuous strategy set, where the payoff
function has a special form and the strategies of each player are
modeled using random linear constraints reformulated as dis-
tributionally robust chance constraints. We proposed an SOCP
reformulation of distributionally robust chance constraints
under two uncertainty sets based on the partial information
about the mean vectors and covariance matrices of the random
constraint vectors. We showed the existence of an SPE and
characterized it as the optimal solution of a primal-dual pair
of SOCPs. The conference paper has some shortcomings, e.g.,
the payoff function has a quadratic form, the uncertainty sets
are mainly constructed based on moments from historical data
and it lacks of numerical results which allow us to compare
different uncertainty sets. As an extended version of [1], our
contribution of this paper is as follows:
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• We study a more general framework as compared to
[1] by considering two types of uncertainty sets based
on either the partial information on the mean vectors
and covariance matrices of the random constraint vec-
tors (moments based uncertainty sets) or the statistical
distance between their true distribution and a nominal
distribution (statistical based uncertainty sets). We show
that in both cases, there exists an SPE of the game and
an SPE problem is equivalent to a primal-dual pair of
SOCPs.

• As an application, we present a competition problem of
two firms in financial market and we show our numerical
results using randomly generated data to compare differ-
ent uncertainty sets considered in the paper.

We keep the same form of payoff function as considered in
the conference paper, since we need a different game model
for different form of payoff function, which would break the
uniformity of our paper. We might consider this point in future
works.

The rest of the paper is organized as follows. We present
related works in Section II. The definition of a distributionally
robust zero-sum game is given in Section III. Section IV
presents the reformulation of distributionally robust chance
constraints as second order cone constraints under different
uncertainty sets. Section V outlines a primal-dual pair of
SOCPs whose optimal solutions constitute an SPE of the
game. Section VI presents a competition of two firms in
financial market as and shows numerical results. Conclusion
and future works are given in Section VII.

II. RELATED WORK

In this section, we introduce previous studies on chance-
constrained games. Dantzig and later Adler showed the equiv-
alence between linear programming problems and two-player
zero-sum games [5] [6]. Charnes [7] generalized the
zero-sum game considered in [4] by introducing linear
inequality constraints on the mixed strategies of both the
players and called it a constrained zero-sum game. An SPE
of a constrained zero-sum game can be obtained from the
optimal solutions of a primal-dual pair of linear programs
[7]. Singh and Lisser [8] considered a stochastic version
of constrained zero-sum game considered by Charnes [7],
where the mixed strategies of each player are restricted by
random linear inequality constraints, which are modelled using
chance constraints. When the random constraint vectors follow
a multivariate elliptically symmetric distribution, the zero-sum
game problem is equivalent to a primal-dual pair of Second-
Order Cone Programs (SOCPs) [8]. Nash equilibrium is the
generalization of SPE and it is used as a solution concept for
the general-sum games [3] [9]. Under certain conditions on
payoff functions and strategy sets, there always exists a Nash
equilibrium [10]. The general-sum games under uncertainties
are considered in the literature [11]–[15], which capture
both risk neutral and risk averse situations. To the best of
our knowledge, the distributionally robust chance-constrained
approach has been widely studied in the literature but still not

completed in game setup. In this paper, we want to apply
different approaches in the literature to define uncertainty
sets in a distributionally robust chance-constrained game and
compare the performance of these approaches by simulation
using randomly generated data models.

III. THE MODEL

We consider a two player zero-sum game, where each player
has continuous strategy set. Let C1 ∈ RK1×m, C2 ∈ RK2×n,
d1 ∈ RK1 and d2 ∈ RK2 . We consider X = {x ∈ Rm |
C1x = d1, x ≥ 0} and Y = {y ∈ Rn | C2y = d2, y ≥ 0}
as the strategy sets of player 1 and player 2, respectively.
We assume that X and Y are compact sets. Let u : X ×
Y → R be a payoff function associated to the zero-sum game
and we assume that player 1 (resp. player 2) is interested in
maximizing (resp. minimizing) u(x, y) for a fixed strategy y
(resp. x) of player 2 (resp. player 1). For a given strategy pair
(x, y) ∈ X × Y , the payoff function u(x, y) is given by

u(x, y) = xTGy + gTx+ hTy, (1)

where G ∈ Rm×n, g ∈ Rm and h ∈ Rn. The first term of (1)
results from the interaction between both the players whereas
the second and third term represents the individual impact of
player 1 and player 2 on the game, respectively. The strategy
sets are often restricted by random linear constraints, which
are modeled using chance constraints. The chance constraint
based strategy sets appear in many practical problems, e.g.,
risk constraints in portfolio optimization [16]. In this paper,
we consider the case, where the strategies of player 1 satisfy
the following random linear constraints,

(a1k)
Tx ≤ b1k, k = 1, 2, . . . , p, (2)

whilst the strategies of player 2 satisfy the following random
linear constraints

(a2l )
Ty ≥ b2l , l = 1, 2, . . . , q. (3)

Let I1 = {1, 2, . . . , p} and I2 = {1, 2, . . . , q} be the index
sets for the constraints of player 1 and player 2, respectively.
For each k ∈ I1 and l ∈ I2, the vectors a1k and a2l are
random vectors defined on a probability space (Ω,F ,P). We
consider the case, where the only information we have about
the distributions of a1k and a2l is that they belong to some
uncertainty sets D1

k and D2
l , respectively. The uncertainty sets

D1
k and D2

l , are constructed based on the partially available
information on the distributions of a1k and a2l , respectively.
Using the worst case approach, the random linear constraints
(2) and (3) can be formulated as distributionally robust chance
constraints given by

inf
F 1

k∈D1
k

P
(
(a1k)

Tx ≤ b1k
)
≥ α1

k, ∀ k ∈ I1, (4)

and
inf

F 2
l ∈D2

l

P
(
(−a2l )

Ty ≤ −b2l
)
≥ α2

l , ∀ l ∈ I2, (5)

where α1
k and α2

l are the confidence levels of player 1 and
player 2 for kth and lth constraints, respectively. Therefore,
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for a given α1 = (α1
k)k∈I1

and α2 = (α2
l )l∈I2

, the feasible
strategy sets of player 1 and player 2 are given by

S1
α1 =

{
x ∈ X| inf

F 1
k∈D1

k

P{(a1k)Tx ≤ b1k} ≥ α1
k, ∀ k ∈ I1

}
,

(6)

and

S2
α2 =

{
y ∈ Y | inf

F 2
l ∈D2

l

P{(−a2l )
Ty ≤ −b2l } ≥ α2

l , ∀ l ∈ I2
}
.

(7)
We call the zero-sum game with the strategy set S1

α1 for player
1 and the strategy set S2

α2 for player 2 as a distributionally
robust zero-sum game. We denote this game by Zα. A strategy
pair (x∗, y∗) ∈ S1

α1 × S2
α2 is called an SPE of the game Zα

at α = (α1, α2) ∈ [0, 1]p × [0, 1]q , if

u(x, y∗) ≤ u(x∗, y∗) ≤ u(x∗, y), ∀ x ∈ S1
α1 , y ∈ S2

α2 . (8)

IV. REFORMULATION OF DISTRIBUTIONALLY ROBUST
CHANCE CONSTRAINTS

We consider five different uncertainty sets based on the
partial information about the mean vectors and covariance
matrices of the random constraint vectors aik, i = 1, 2,
k ∈ Ii and four different uncertainty sets based on the
statistical distance between the distribution of aik and a nom-
inal distribution. For each uncertainty set, the distributionally
robust chance constraints (4) and (5) are reformulated as
second-order cone (SOC) constraints.

A. Moments Based Uncertainty Sets

We consider five moments based uncertainty sets defined as
follows.

1) Uncertainty set with known mean and known covariance
matrix: In some situations, we do not know exactly the
true distribution of the random constraint vectors aik, for all
k ∈ Ii, i = 1, 2. We can only obtain some information of the
underlying distribution from historical data. For example, by
observing a sufficiently large number of data, we deduce the
values of mean vector and covariance matrix of aik approx-
imated by the sample mean µi

k and the sample covariance
matrix Σi

k. We consider an uncertainty set, which includes all
distributions F i

k with mean vector µi
k and covariance matrix

Σi
k defined as follows

D1,i
k

(
µi
k,Σ

i
k

)
=

F i
k

∣∣∣∣∣∣
The distribution of x is F i

k

E [x] = µi
k

Cov[x] = Σi
k

 ,

(9)
We assume that for each i = 1, 2 and k ∈ Ii, the true
distribution of aik belongs to the uncertainty set D1,i

k

(
µi
k,Σ

i
k

)
and the matrix Σi

k is a postive definite matrix. This uncertainty
set has been widely considered in the literature, e.g., [17].
We present an SOC reformulation of the constraints (4) and
(5) by the following lemma.

Lemma 1. The constraints (4) and (5) are equivalent to (10)
and (11), respectively, given by

(µ1
k)

Tx+

√
α1
k

1− α1
k

||(Σ1
k)

1
2x||2 ≤ b1k,

∀ k ∈ I1, (10)

− (µ2
k)

Ty +

√
α2
k

1− α2
k

||(Σ2
k)

1
2 y||2 ≤ −b2k,

∀ k ∈ I2. (11)

Remark 1. An SOC constraint is the set of points x ∈ Rn

such that the following inequality holds

∥Ax+ b∥2 ≤ cTx+ d,

where A ∈ Rm×n is an m × n real matrix, b ∈ Rm is an
m× 1 real vector, c ∈ Rn is an n× 1 real vector and d ∈ R
is a real number, ∥·∥2 denotes the Euclidean norm. It is clear
that (10) and (11) are equivalent to SOC constraints. An SOC
reformulation is useful since optimization problems with SOC
constraints can be solved efficiently by known algorithms in
polynomial time.

Proof. Using the one-sided Chebyshev inequality, we have

inf
F 1

k∈D1,i
k (µ,Σ)

P
{
(a1k)

Tx ≤ b1k
}
=



1− 1

1+
((µ1

k
)Tx−b1

k
)2

(xTΣ1
k
x)

,

if (µ1
k)

Tx ≤ b1k,

0, otherwise.

The bound of one-sided Chebyshev inequality can be achieved
by a two-point distribution given by equation (2) of [18]. For
the case (µ1

k)
Tx > b1k,

inf
F 1

k∈D1,i
k (µ,Σ)

P
{
a1kx ≤ b1k

}
= 0,

which makes constraint (4) infeasible for any α1 > 0.
Therefore, for x ∈ S1

α1
, the condition (µ1

k)
Tx ≤ b1k always

holds and the constraint (4) is equivalent to

1− 1

1 + ((µ1
k)

Tx− b1k)
2/(xTΣ1

kx)
≥ α1

k.

The above inequality can be reformulated as (10). Similarly,
we can show that (5) is equivalent to (11).

2) Uncertainty set with known mean and unknown covari-
ance matrix: For all i = 1, 2 and k ∈ Ii, we consider
the case, where the mean vector of the random vector aik is
known exactly (approximated by the sample mean µi

k) but
the covariance matrix is unknown due to several reasons, e.g.,
the lack of data. We assume that it is only known to belong
to a positive semidefinite cone defined with a linear matrix
inequality as follows

Cov[aik] ⪯ γi
kΣ

i
k,
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where γi
k > 0 is a strictly positive real number, Σi

k is a positive
definite matrix, for the given matrices B1 and B2, B1 ⪯ B2

implies that B2 − B1 is a positive semidefinite matrix. In
practical applications, we usually approximate the matrix Σi

k

by the sample covariance matrix. The parameter γi
k is used in

controlling the uncertainty level, i.e., high value of γi
k implies

a large number of distributions in the uncertainty set, which
deals uncertain factors in a more secure way. We consider un
uncertainty set, which includes all distributions F i

k with mean
vector µi

k and covariance matrix satisfied the above constraint
as follows

D2,i
k

(
µi
k,Σ

i
k

)
=

F i
k

∣∣∣∣∣∣
The distribution of x is F i

k

E [x] = µi
k

Cov[x] ⪯ γi
kΣ

i
k

 .

(12)
This uncertainty set is considered in [19]. We assume that for
each i = 1, 2 and k ∈ Ii, the true distribution of aik belongs
to the uncertainty set D2,i

k

(
µi
k,Σ

i
k

)
. We present an SOC

reformulation of the constraints (4) and (5) by the following
lemma.

Lemma 2. The constraints (4) and (5) are equivalent to (13)
and (14), respectively, given by

(µ1
k)

Tx+
√
γ1
k

√
α1
k

1− α1
k

||(Σ1
k)

1
2x||2 ≤ b1k,

∀ k ∈ I1, (13)

− (µ2
k)

Ty +
√
γ2
k

√
α2
k

1− α2
k

||(Σ2
k)

1
2 y||2 ≤ −b2k,

∀ k ∈ I2. (14)

Proof. Based on the structure of uncertainty set (12), the
constraint (4) can be written as

inf
(µ,Σ)∈U1

k

inf
F 1

k∈D1,i
k (µ,Σ)

P
{
(a1k)

Tx ≤ b1k
}
≥ α1

k,

where

U1
k =

{
(µ,Σ)

∣∣µ = µ1
k,Σ ⪯ γi

kΣ
i
k

}
.

Here, the inner infimum is taken over all distributions with
same value of mean vector and covariance matrix. The outer
infimum is taken over all couples (µ,Σ) satisfying the condi-
tions in (12). Using the similar arguments as in the Lemma 1,
the constraint (4) is equivalent to

b1k − (µ1
k)

Tx

max
Σ⪯γ1

kΣ
1
k

√
xTΣx

≥

√
α1
k

1− α1
k

. (15)

The above inequality (15) can be reformulated as (13). Simi-
larly, we can show that (5) is equivalent to (14).

3) Uncertainty set with unknown mean and unknown co-
variance matrix: For all i = 1, 2 and k ∈ Ii, we consider the
case, where both mean vector and covariance matrix of aik are
unknown. From historical data, we obtain the sample mean µi

k

and the sample covariance matrix Σi
k. We deal the uncertainty

level in a secure way by assuming that the mean vector and
the covariance matrix of aik are not exactly the same as its
sample mean and sample covariance matrix. The mean vector
lies in an ellipsoid of size γi

k1 ≥ 0 centered at µi
k defined by

the following constraint(
E[aik]− µi

k

)⊤ (
Σi

k

)−1 (E[aik]− µi
k

)
≤ γi

k1,

and the covariance matrix of aik lies in a positive semidefinite
cone defined as follows

Cov[aik] ⪯ γi
k2Σ

i
k.

where γi
k2 > 0 and Σi

k is a positive definite matrix. The
parameters γi

k1 and γi
k2 are used in controlling the uncertainty

level. If γi
k1 = 0, the mean vector is exactly the same as its

sample mean. We consider un uncertainty set, which includes
all distributions F i

k with mean vector and covariance matrix
satisfied the above constraints as follows

D3,i
k (µi

k,Σ
i
k) =


F i
k

∣∣∣∣∣∣∣∣∣∣∣∣

The distribution of x is F i
k(

E[x]− µi
k

)⊤ (
Σi

k

)−1

×
(
E[x]− µi

k

)
≤ γi

k1,

Cov[x] ⪯ γi
k2Σ

i
k


,

(16)
The uncertainty set (16) is considered in [20]. We assume
that for each i = 1, 2 and k ∈ Ii, the true distribution of
aik belongs to the uncertainty set D3,i

k

(
µi
k,Σ

i
k

)
. We present

an SOC reformulation of the constraints (4) and (5) by the
following lemma.

Lemma 3. The constraints (4) and (5) are equivalent to (17)
and (18), respectively, given by

(µ1
k)

Tx+

(√
α1
k

1− α1
k

√
γ1
k2 +

√
γ1
k1

)∥∥∥(Σ1
k

) 1
2 x
∥∥∥
2
≤ b1k,

∀ k ∈ I1, (17)

− (µ2
k)

Ty +

(√
α2
k

1− α2
k

√
γ2
k2 +

√
γ2
k1

)∥∥∥(Σ2
k

) 1
2 y
∥∥∥
2
≤ −b2k,

∀ k ∈ I2. (18)

Proof. Based on the structure of the uncertainty set (16), the
constraint (4) can be written as

inf
(µ,Σ)∈Ũ1

k

inf
F 1

k∈D1,i
k (µ,Σ)

P
{
a1kx ≤ b1k

}
≥ α1

k,

where

Ũ1
k =

{
(µ,Σ)

∣∣∣∣ (µ− µ1
k

)⊤ (
Σ1

k

)−1 (
µ− µ1

k

)
≤ γ1

k1,
Σ ⪯ γ1

k2Σ
1
k.

}
.
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Using the similar arguments as in the Lemma 1, the constraint
(4) is equivalent to

b1k + v1(x)√
v2(x)

≥

√
α1
k

1− α1
k

, (19)

where

v1(x) =

min
µ

−µTx

s.t.
(
µ− µ1

k

)⊤ (
Σ1

k

)−1 (
µ− µ1

k

)
≤ γ1

k1,
(20)

v2(x) =

{
max
Σ

xTΣx

s.t. Σ ⪯ γ1
k2Σ

1
k.

Let β ≥ 0 be a Lagrange multiplier associated with the
constraint of optimization problem (20). By applying the
KKT conditions, the optimal solution of (20) is given by

µ = µ1
k +

√
γ1
k1Σ

1
kx√

xTΣ1
kx

and the associated Lagrange multiplier

is given by β =

√
xTΣ1

kx

4γ1
k1

. Therefore, the corresponding

optimal value v1(x) = −(µ1
k)

Tx −
√

γ1
k1

√
xTΣ1

kx. Since,
uTΣu ≤ uTγ1

k2Σ
1
ku, then, v2(x) = γ1

k2x
TΣ1

kx. Therefore,
using (19), (4) is equivalent to (17). Similarly, we can show
that (5) is equivalent to (18).

4) Polytopic uncertainty set: For all i = 1, 2 and k ∈ Ii,
we consider the case, where both mean vector and covari-
ance matrix of the random vector aik are unknown. From
historical data, we consider M samples i.i.d of the ran-
dom vector aik. We obtain M sample means µi

k1, . . . , µ
i
kM

and M sample covariance matrix Σi
k1, . . . ,Σ

i
kM , where Σi

kj

is positive definite, for any j = 1, . . . ,M . We consider
polytopes Uµi

k
= Conv(µi

k1, µ
i
k2, . . . , µ

i
kM ) and UΣi

k
=

Conv(Σi
k1,Σ

i
k2, . . . ,Σ

i
kM ), where Conv denotes the convex

hull. We assume that the mean vector and the covariance
matrix of aik are known to belong to polytopes Uµi

k
and UΣi

k
,

respectively. We consider an uncertainty set, which includes
all distributions F i

k defined as follows

D4,i
k

(
µi
k,Σ

i
k

)
=

F i
k

∣∣∣∣∣∣
The distribution of x is F i

k

E [x] ∈ Uµi
k

Cov[x] ∈ UΣi
k

 .

(21)
The uncertainty set (21) is considered in [17]. We assume
that for each i = 1, 2 and k ∈ Ii, the true distribution of
aik belongs to the uncertainty set D4,i

k

(
µi
k,Σ

i
k

)
. We present

an SOC reformulation of the constraints (4) and (5) by the
following lemma.

Lemma 4. The constraints (4) and (5) are equivalent to (22)
and (23), respectively, given by

(µ1
kj)

Tx+

√
α1
k

1− α1
k

||(Σ1
kw)

1
2x||2 ≤ b1k,

∀ j = 1, . . . ,M, w = 1, . . . ,M, k ∈ I1, (22)

− (µ2
kj)

Ty +

√
α2
k

1− α2
k

||(Σ2
kw)

1
2 y||2 ≤ −b2k,

∀ j = 1, . . . ,M, w = 1, . . . ,M, k ∈ I2. (23)

Remark 2. Lemma 4 shows that the constraint (4) (resp. (5))
is equivalent to a system of M2 constraints in (22) (resp. (23)).

Proof. Based on the structure of uncertainty set (21), the
constraint (4) can be written as

inf
(µ,Σ)∈Û1

k

inf
F 1

k∈D1,i
k (µ,Σ)

P
{
(a1k)

Tx ≤ b1k
}
≥ α1

k,

where
Û1
k =

{
(µ,Σ)

∣∣∣µ ∈ Uµ1
k
,Σ ∈ UΣ1

k

}
.

Using the similar arguments as in the Lemma 1, the constraint
(4) can be reformulated as

min
µ∈U

µ1
k

(
b1k − µTx

)
max

Σ∈U
Σ1
k

√
xTΣx

≥

√
α1
k

1− α1
k

. (24)

The above inequality (24) can be reformulated as

b1k − (µ1
kj)

Tx√
xTΣ1

kwx
≥

√
α1
k

1− α1
k

,

∀ j = 1, . . . ,M, w = 1, . . . ,M, k ∈ I1,

which is equivalent to (22). Similarly, we can show that (5) is
equivalent to (23).

5) Uncertainty set with componentwise bounds on mean
vector and covariance matrix: For all i = 1, 2 and k ∈ Ii, we
consider the case, where the mean vector and the covariance
matrix of aik are unknown. We obtain from historical data, a
sample mean vector µi

k and a sample covariance matrix Σi
k.

We do not approximate the mean vector and the covariance
matrix of aik by its sample mean vector and sample covariance
matrix, but we deal the uncertainty level by a more secure way.
For each j = 1, . . . ,m, we assume that the jth-component of
the mean vector of aik lies in a ball of radius ϵiµ,k(j) ≥ 0,
centered at the jth-component of the sample mean vector µi

k,
which can be reformulated as follows

µi
k − ϵiµ,k ≤ E[aik] ≤ µi

k + ϵiµ,k,

where ϵiµ,k =
(
ϵiµ,k(1), . . . , ϵ

i
µ,k(m)

)
is an m × 1 vector

and the above inequalities are understood componentwise.
Similarly, for each j = 1, . . . ,m and w = 1, . . . ,m, we
assume that the (j, w)− entry of the covariance matrix of
aik lies in a ball of radius ϵiΣ,k(j, w) ≥ 0, centered at the
(j, w)− entry of the sample covariance matrix Σi

k, which can
be reformulated as follows

Σi
k − ϵiΣ,k ≤ Cov[aik] ≤ µi

k + ϵiΣ,k,

where ϵiΣ,k = ϵiΣ,k(j, w)1≤j,w≤m is an m × m matrix. Let
µi
k− = µi

k − ϵiµ,k,µi
k+ = µi

k + ϵiµ,k, Σi
k− = Σi

k − ϵiΣ,k,
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and Σi
k+ = Σi

k + ϵiΣ,k. We consider an uncertainty set, which
includes all distributions F i

k defined as follows

D5,i
k (µi

k,Σ
i
k) =

F i
k

∣∣∣∣∣∣
The distribution of x is F i

k

µi
k− ≤ E[x] ≤ µi

k+,
Σi

k− ≤ Cov[x] ≤ Σi
k+

 ,

(25)
Since Σi

k is a positive definite matrix, we can take ϵiΣ,k > 0
such that for any matrix H , if Σi

k− ≤ H ≤ Σi
k+, then H is

a positive definite matrix. We define a set of vectors S1
k as

follows

S1
k =

{
µ ∈ Rm |µ(j) = µ1

k−(j) orµ1
k+(j), ∀ j = 1, . . . ,m

}
,

where µ(j) is the jth− component of µ, µ1
k−(j) is the jth−

component of µ1
k−, and µ1

k+(j) is the jth− component of µ1
k+.

For example, if µ1
k− = (1, 2)T,µ1

k+ = (5, 6)T, then S1
k is a set

of 4 vectors
{
(1, 5)T, (1, 6)T, (2, 5)T, (2, 6)T

}
. We define a set

of covariance matrix T 1
k as follows

T 1
k =

{
Σ |Σ(j, w) = Σ1

k−(j, w) orΣ1
k+(j, w), 1 ≤ j, w ≤ m

}
,

Similarly, we define a set of vectors S2
k and a set of covariance

matrix T 2
k . The uncertainty set (25) is considered in [17]. We

assume that for each i = 1, 2 and k ∈ Ii, the true distribution
of aik belongs to the uncertainty set D5,i

k

(
µi
k,Σ

i
k

)
. We present

an SOC reformulation of the constraints (4) and (5) by the
following lemma.

Lemma 5. The constraints (4) and (5) are equivalent to (26)
and (27), respectively, given by

(µ1)Tx+

√
α1
k

1− α1
k

||(Σ1)
1
2x||2 ≤ b1k,

∀ µ1 ∈ S1
k, Σ1 ∈ T 1

k , k ∈ I1, (26)

− (µ2)Ty +

√
α2
k

1− α2
k

||(Σ2)
1
2 y||2 ≤ −b2k,

∀ µ2 ∈ S2
k, Σ2 ∈ T 2

k , k ∈ I2. (27)

Remark 3. Note that S1
k is a set of 2m vectors and T 1

k is a
set of 2m

2

matrix. Then, Lemma 5 shows that the constraint
(4) is equivalent to a system of 2m × 2m

2

constraints in (26),
for any k ∈ I1 and the constraint (5) is equivalent to a system
of 2n × 2n

2

constraints in (27), for any k ∈ I2.

Proof. Based on the structure of the uncertainty set (25), the
constraint (4) can be written as

inf
(µ,Σ)∈Ū1

k

inf
F 1

k∈D1,i
k (µ,Σ)

P
{
a1kx ≤ b1k

}
≥ α1

k,

where
Ū1
k =

{
(µ,Σ)

∣∣∣∣ µ1
k− ≤ µ ≤ µ1

k+,
Σ1

k− ≤ µ ≤ Σi
k+.

}
.

Using the similar arguments as in the Lemma 1, the constraint
(4) is equivalent to

b1k + v1(x)√
v2(x)

≥

√
α1
k

1− α1
k

, (28)

where

v1(x) =

{
min
µ

−µTx

s.t. µ1
k− ≤ µ ≤ µ1

k+,

v2(x) =

{
max
Σ

xTΣx

s.t. Σ1
k− ≤ Σ ≤ Σi

k+.

Note that the objective functions −µTx and xTΣx are linear
functions w.r.t µ (resp. Σ). Then, it is clear that the optimal
values v1(x) and v2(x) hold only when µ ∈ S1

k and Σ ∈ T 1
k .

Then, the constraint (4) can be reformulated as (26). Similarly,
we can show that (5) is equivalent to (27).

B. Statistical Distance Based Uncertainty Sets

In this section, we define uncertainty sets using a metric
called ϕ−divergence. For any i = 1, 2 and k ∈ Ii, the decision
makers (the two players in the game) believe that the true
distribution of aik oscillates around a Normal distribution of
mean vector µi

k and covariance matrix Σi
k, where µi

k and Σi
k

are sample mean vector and sample covariance matrix obtained
from historical data. We assume that the true distribution of aik
lies in a ball of radius θik, centered at a nominal distribution νik
and the distance between these two distributions is given by
ϕ−divergence metric. The nominal distribution νik is assumed
to be Normal distributed of mean vector µi

k and covariance
matrix Σi

k.

Definition 1. The ϕ−divergence distance between two mea-
sures µ and ν with densities fµ and fν , respectively, with
support in Rri is defined as follows:

Iϕ(µ, ν) =

∫
Rri

ϕ

(
fµ(ξ)

fν(ξ)

)
fν(ξ)dξ.

where r1 = m and r2 = n.

There are different types of ϕ−divergences distance, we
refer to [21] and [22] for different choices of function ϕ.
We consider an uncertainty set Dϕ,i

k defined as follows

Dϕ,i
k =

{
F i
k ∈ M+ | Iϕ(F i

k, ν
i
k) ≤ θik

}
, (29)

where Mi+ is the set of all probability measures on Rri ,
with r1 = m, r2 = n, and θik > 0. This uncertainty set is
considered in [23]. We assume that for each i = 1, 2 and
k ∈ Ii, the true distribution of aik belongs to the uncertainty
set Dϕ,i

k

(
µi
k,Σ

i
k

)
.

Definition 2. The conjugate of the function ϕ is a function
ϕ∗ : R → R ∪+∞ such that

ϕ∗(s) = sup
t≥0

{st− ϕ(t)} .

We study some special cases of ϕ−divergences, which are
summarized in Table I. The data of Table I are taken from
[21]. The following lemma provides the first reformulation of
the constraints (4) and (5).
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TABLE I
LIST OF SELECTED ϕ−DIVERGENCES WITH THEIR CONJUGATE

RESPECTIVELY

Divergence ϕ(t), t ≥ 0 ϕ∗(s)
Kullback-Leibler t log(t)− t+ 1. es − 1

Variation distance |t− 1|.
−1, s ≤ −1,

s, −1 ≤ s ≤ 1,
+∞, s > 1.

Modified χ2 - distance (t− 1)2.
−1, s ≤ −2,

s+ s2

4
, s > −2.

Hellinger distance (
√
t− 1)2.

s
1−s

, s < 1,
+∞, s ≥ 1.

Lemma 6. The constraint (4) is equivalent to

sup
λ>0,β∈R

{
f1
k (λ, β)

}
≥ α1

k, (30)

where f1
k (λ, β) = β − λθ1k − λϕ∗

(
−1+β

λ

)
Pν1

k
(M1

k ) −

λϕ∗
(

β
λ

) [
1− Pν1

k
(M1

k )
]
, and M1

k =
{
ξ ∈ Rm | ξTx ≤ b1k

}
.

The constraint (5) is equivalent to

sup
λ>0,β∈R

{
f2
k (λ, β)

}
≥ α2

k,

where f2
k (λ, β) = β − λθ2k − λϕ∗

(
−1+β

λ

)
Pν2

k
(M2

k ) −

λϕ∗
(

β
λ

) [
1− Pν2

k
(M2

k )
]
, and M2

k =
{
ξ ∈ Rn | ξTx ≤ b2k

}
.

Proof. For k ∈ I1, consider the following optimization prob-
lem

vP
k = inf

F 1
k∈Dϕ,1

k

P
(
(a1k)

Tx ≤ b1k
)
.

The above problem is rewritten as

vkP = inf
F≥0

∫
Rm

1M1
k
(ξ)F (ξ)dξ

s.t. (i)

∫
Rm

fν1
k
(ξ)ϕ

(
F (ξ)

fν1
k
(ξ)

)
dξ ≤ θ1k,

(ii)

∫
Rm

F (ξ)dξ = 1, (31)

where the infimum value is taken over all positive measures
on Rm. The Lagrangian dual of (31) can be written as follows

vkD = sup
λ≥0,β∈R

{
β − λθ1k + inf

F (ξ)≥0

∫
Rm

g1k(λ, β)

}
,

where g1k(λ, β) = 1M1
k
(ξ)F (ξ) − βF (ξ) +

λfν1
k
(ξ)ϕ

(
F (ξ)
f
ν1
k
(ξ)

)
dξ, λ is the dual variable of the

constraint (i) and β is the dual variable of the constraint (ii).
Since θ1k > 0, the Slater’s condition holds, then the strong
duality holds, i.e., vkP = vkD. The rest of the proof follows
from Theorem 1 [23].

We present an SOC reformulation of the constraints (4) and
(5) by the following lemma.

Lemma 7. The constraints (4) and (5) are equivalent to (32)
and (33), respectively, given by:

(µ1
k)

Tx+Φ(−1)
[
H(θ1k, 1− α1

k)
] ∥∥∥(Σ1

k

) 1
2 x
∥∥∥
2
≤ b1k,

∀ k ∈ I1, (32)

− (µ2
k)

Ty +Φ(−1)
[
H(θ2k, 1− α2

k)
] ∥∥∥(Σ2

k

) 1
2 y
∥∥∥
2
≤ −b2k,

∀ k ∈ I2. (33)

where Φ(−1) is the quantile of the standard Normal distribu-
tion and H is a function whose value is given in Table II.

TABLE II
LIST OF SELECTED ϕ−DIVERGENCES WITH THE FUNCTION f

RESPECTIVELY

Divergence H(θ, ϵ) = θ, ϵ

Kullback-Leibler infx∈(0,1)
e−θx1−ϵ−1

x−1

θ > 0
0 < ϵ < 1

Variation distance 1− ϵ+ θ
2

θ > 0
0 < ϵ < 1

Modified χ2 - distance 1− ϵ+

√
θ2+4θ(ϵ−ϵ2)−(1−2ϵ)θ

2θ+2
,

θ > 0
0 < ϵ < 1

2

Hellinger distance

−B+
√

∆
2

,

where B = −(2− (2− θ)2)ϵ− (2−θ)2

2
,

C =
(

(2−θ)2

4
− ϵ

)2

,

∆ = B2 − 4C = (2− θ)2
[
4− (2− θ)2

]
ϵ(1− ϵ),

0 < θ < 2−
√
2

0 < ϵ < 1

Proof. Using Lemma 6, we prove that the constraint (4) is
equivalent to

Pν1
k
(M1

k ) ≥ H(θ1k, 1− α1
k). (34)

Since ν1k follows a Normal distribution with mean vector
µ1
k and covariance matrix Σ1

k, it is well known that (34) is
equivalent to the SOC constraint (32). We refer to Propositions
2, 3, and 4, [23] for the proof of the cases Kullback-Leibler,
Variation distance and Modified χ2 - distance. The proof of
the case Hellinger distance is given in Appendix A.

C. Second Order Cone Reformulation

In this section, we summarize our SOC reformulation results
from Lemmas 1, 2, 3, 4, 5, and 7. They show that in all cases
of uncertainty sets defined in Sections IV-A and IV-B, the
feasible strategy sets (6) and (7) can be written as

S1
α1 =

{
x ∈ X | (µ1

kj)
Tx+ κα1

k
||(Σ1

kw)
1
2x||2 ≤ b1k,

∀ j = 1, 2, . . . , N1, w = 1, 2, . . . , P1, k ∈ I1
}
, (35)

and

S2
α2 =

{
y ∈ Y | −(µ2

lj)
Ty + κα2

l
||(Σ2

lw)
1
2 y||2 ≤ −b2l ,

∀ j = 1, 2, . . . , N2, w = 1, 2, . . . , P2, l ∈ I2.
}
. (36)

• If the uncertainty set is defined by (9), then καi
k

=√
αi

k

1−αi
k

and N1 = P1 = N2 = P2 = 1, for all i = 1, 2,

k ∈ Ii.
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• If the uncertainty set is defined by (12), then καi
k

=√
αi

k

1−αi
k

√
γi
k and N1 = P1 = N2 = P2 = 1, for all

i = 1, 2, k ∈ Ii.
• If the uncertainty set is defined by (16), then καi

k
=(√

αi
k

1−αi
k

√
γi
k2 +

√
γi
k1

)
and N1 = P1 = N2 = P2 =

1, for all i = 1, 2, k ∈ Ii.
• If the uncertainty set is defined by (21), then καi

k
=√

αi
k

1−αi
k

and N1 = P1 = N2 = P2 = M , for all i = 1, 2,

k ∈ Ii.
• If the uncertainty set is defined by (25), then καi

k
=√

αi
k

1−αi
k

and N1 = 2m;P1 = 2(m
2), N2 = 2n, P2 =

2(n
2), for all i = 1, 2, k ∈ Ii.

• If the uncertainty set is defined by (29), then καi
k

=

Φ(−1)
[
H(θik, 1− αi

k)
]

and N1 = P1 = N2 = P2 = 1,
where H and Φ(−1) are defined in Lemma 7.

We assume that the strategy sets (35) and (36) satisfy the strict
feasibility condition given by Assumption 1.

Assumption 1. 1) There exists an x ∈ S1
α1 such that the

inequality constraints of S1
α1 defined by (35) are strictly

satisfied.
2) There exists an y ∈ S2

α2 such that the inequality
constraints of S2

α2 defined by (36) are strictly satisfied.

The conditions given in Assumption 1 are Slater’s condition,
which are sufficient for strong duality in a convex optimization
problem. We use these conditions in order to derive equivalent
SOCPs for the zero-sum game Zα.

V. EXISTENCE AND CHARACTERIZATION OF SADDLE
POINT EQUILIBRIUM

In this section, we show that there exists an SPE of the
game Zα if the distributions of the random constraint vectors
of both the players belong to the uncertainty sets defined in
Sections IV-A and IV-B. We further propose a primal-dual pair
of SOCPs whose optimal solutions constitute an SPE of the
game Zα.

Theorem 1. Consider the game Zα, where the distributions of
the random constraint vectors aik, k ∈ Ii, i = 1, 2, belong to
the uncertainty sets described in Sections IV-A and IV-B. Then,
there exists an SPE of the game for all α ∈ (0, 1)p × (0, 1)q .

Proof. Let α ∈ (0, 1)p×(0, 1)q . For uncertainty sets described
in Sections IV-A and IV-B, the strategy sets S1

α1 and S2
α2 are

given by (35) and (36), respectively. It is easy to see that S1
α1

and S2
α2 are convex and compact sets. The function u(x, y)

is a bilinear and continuous function. Hence, there exists an
SPE from the minimax theorem [4].

A. Equivalent Primal-Dual Pair of Second-Order Cone Pro-
grams

From the minimax theorem [4], (x∗, y∗) is an SPE for the
game Zα if and only if

x∗ ∈ argmax
x∈S1

α1

min
y∈S2

α2

u(x, y), (37)

y∗ ∈ argmin
y∈S2

α2

max
x∈S1

α1

u(x, y). (38)

We start with the optimization problem

min
y∈S2

α2

max
x∈S1

α1

u(x, y).

By introducing auxiliary variables t1kjw, the inner optimization
problem maxx∈S1

α1
u(x, y) can be equivalently written as

max
x, t1kjw

xTGy + gTx+ hTy

s.t.

(i) − xTµ1
kj − κα1

k

∥∥t1kjw∥∥2 + b1k ≥ 0,

∀ j = 1, 2 . . . , N1, w = 1, 2 . . . , P1, k ∈ I1,

(ii) t1kjw −
(
Σ1

kw

) 1
2 x = 0,

∀ j = 1, 2 . . . , N1, w = 1, 2 . . . , P1, k ∈ I1,
(iii) C1x = d1, xr ≥ 0, ∀ r = 1, 2, . . . ,m. (39)

Let λ1 =
(
λ1
kjw

)
, δ1kjw, and ν1 be the Lagrange multi-

pliers of constraints (i), (ii), and equality constraints given
in the constraint (iii) of (39), respectively. Here, for any
j = 1, . . . , N1,w = 1, . . . , P1, k ∈ I1, λ1

kjw is a real number,
δ1kjw is an m× 1 real vector, and ν1 is a K1 × 1 real vector.
Then, the Lagrangian dual problem of the SOCP (39) can be
written as

min
λ1≥0, δ1kjw, ν1

max
x≥0, t1kjw

{
xTGy + gTx+ hTy

+
∑
k∈I1

N1∑
j=1

P1∑
w=1

[
λ1
kjw

(
− xTµ1

kj − κα1
k

∥∥t1kjw∥∥2 + b1k
)

+ (δ1kjw)
T
(
t1kjw −

(
Σ1

kw

) 1
2 x
)]

+ (ν1)T(d1 − C1x)
}
.

By reformulating the objective function of the above opti-
mization problem as the sum of two functions such that one
depends on x and other depends on t1kjw, we have

min
λ1≥0,δ1kjw,ν1

max
x≥0

〈
xT
[
Gy − (C1)Tν1 + g

−
∑
k∈I1

N1∑
j=1

P1∑
w=1

(
λ1
kjwµ

1
kj +

(
Σ1

kw

) 1
2 δ1kjw

)]

+max
t1kjw

∑
k∈I1

N1∑
j=1

P1∑
w=1

[
(δ1kjw)

Tt1kjw − κα1
k
λ1
kjw

∥∥t1kjw∥∥2 ]

+ hTy + (ν1)Td1 +
∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1
kjwb

1
k

〉
.
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The first term of the objective function is a function of x

xT
[
Gy − (C1)Tν1 + g

−
∑
k∈I1

N1∑
j=1

P1∑
w=1

(
λ1
kjwµ

1
kj +

(
Σ1

kw

) 1
2 δ1kjw

)]
. (40)

The above term is unbounded on the domaine x ≥ 0, unless
the following condition holds

Gy −
∑
k∈I1

N1∑
j=1

P1∑
w=1

(
λ1
kjwµ

1
kj +

(
Σ1

kw

) 1
2 δ1kjw

)
− (C1)Tν1 + g ≤ 0.

When the above condition holds, it is clear that the maximum
value of (40) is zero and it holds at x = 0. The second term
of the objective function is a function of t1kjw

∑
k∈I1

N1∑
j=1

P1∑
w=1

[
(δ1kjw)

Tt1kjw − κα1
k
λ1
kjw

∥∥t1kjw∥∥2 ]. (41)

The above term is unbounded on the domaine t1kjw ∈ Rm,
unless the following condition holds

||δ1kjw|| ≤ κα1
k
λ1
kjw,

∀ k ∈ I1, j = 1, 2 . . . , N1, w = 1, 2 . . . , P1.

When the above condition holds, it is clear that the maximum
value of (41) is zero and it holds at t1kjw = 0. Then, the
Lagrangian dual problem of the SOCP (39) can be written as

min
λ1≥0,δ1kjw,ν1

(
hTy + (ν1)Td1 +

∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1
kjwb

1
k

)
s.t. (i) Gy −

∑
k∈I1

N1∑
j=1

P1∑
w=1

[
λ1
kjwµ

1
kj +

(
Σ1

kw

) 1
2 δ1kjw

]
− (C1)Tν1 + g ≤ 0,

(ii) ||δ1kjw|| ≤ κα1
k
λ1
kjw,

∀ k ∈ I1, j = 1, 2 . . . , N1, w = 1, 2 . . . , P1.

Under Assumption 1, the Lagrangian dual problem of (39) has
zero duality gap [24], which implies that the above optimiza-
tion problem is equivalent to the problem maxx∈S1

α1
u(x, y).

Hence, the problem miny∈S2
α2

maxx∈S1
α1

u(x, y) is equivalent

to the following SOCP

min
y, ν1, δ1kjw, λ1

kjw≥0
hTy + (ν1)Td1 +

∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1
kjwb

1
k

s.t.

(i) Gy −
∑
k∈I1

N1∑
j=1

P1∑
w=1

[
λ1
kjwµ

1
kj +

(
Σ1

kw

) 1
2 δ1kjw

]
− (C1)Tν1 + g ≤ 0,

(ii) ||δ1kjw|| ≤ κα1
k
λ1
kjw,

∀ k ∈ I1, j = 1, 2 . . . , N1, w = 1, 2 . . . , P1,

(iii) − (µ2
lj)

Ty + κα2
l
||(Σ2

lw)
1
2 y|| ≤ −b2l ,

∀ j = 1, 2, . . . , N2, w = 1, 2, . . . , P2, l ∈ I2,
(iv) C2y = d2, ys ≥ 0, ∀ s = 1, 2, . . . , n, (42)

where the constraints (iii) and (iv) are due to the fact that
y ∈ S2

α2 and the representation of S2
α2 in (36). Similarly, prob-

lem maxx∈S1
α1

miny∈S2
α2

u(x, y) is equivalent to the following
SOCP

max
x, ν2, δ2ljw, λ2

ljw≥0
gTx+ (ν2)Td2 −

∑
l∈I2

N2∑
j=1

P2∑
w=1

λ2
ljwb

2
l

s.t.

(i) GTx−
∑
l∈I2

N2∑
j=1

P2∑
w=1

[
− λ2

ljwµ
2
lj +

(
Σ2

lw

) 1
2 δ2ljw

]
− (C2)Tν2 + h ≥ 0,

(ii) ||δ2ljw|| ≤ κα2
l
λ2
ljw, λ2

ljw ≥ 0,

∀ l ∈ I2, j = 1, 2, . . . , N2, w = 1, 2, . . . , P2,

(iii) (µ1
kj)

Tx+ κα1
k
||(Σ1

kw)
1
2x|| ≤ b1k,

∀ j = 1, 2, . . . , N2, w = 1, 2, . . . , P2, k ∈ I1,
(iv) C1x = d1, xr ≥ 0, ∀ r = 1, 2, . . . ,m. (43)

It follows from the duality theory of SOCPs that (42) and (43)
form a primal-dual pair of SOCPs [24]. Next, we show that
the equivalence between the optimal solutions of (42)-(43) and
an SPE of the game Zα.

Theorem 2. Consider the zero-sum game Zα, where the
feasible strategy sets of player 1 and player 2 are given by
(35) and (36), respectively. Let Assumption 1 holds. Then,
for a given α ∈ (0, 1)p × (0, 1)q , (x∗, y∗) is an SPE of the
game Zα if and only if there exists (ν1∗, δ1∗kjw, λ

1∗
kjw ≥ 0)

and (ν2∗, δ2∗ljw, λ
2∗
ljw ≥ 0) such that (y∗, ν1∗, δ1∗kjw, λ

1∗
kjw) and

(x∗, ν2∗, δ2∗ljw, λ
2∗
ljw) are optimal solutions of (42) and (43),

respectively.

Proof. Let (x∗, y∗) be an SPE of the game Zα. Then, x∗ and
y∗ are the solutions of (37) and (38), respectively. Therefore,
there exists (ν1∗, δ1∗kjw, λ

1∗
kjw ≥ 0) and (ν2∗, δ2∗ljw, λ

2∗
ljw ≥

0) such that (y∗, ν1∗, δ1∗kjw, λ
1∗
kjw) and (x∗, ν2∗, δ2∗ljw, λ

2∗
ljw)

are optimal solutions of (42) and (43) respectively. On the
other hand, let (y∗, ν1∗, δ1∗kjw, λ

1∗
kjw) and (x∗, ν2∗, δ2∗ljw, λ

2∗
ljw)

115

International Journal on Advances in Systems and Measurements, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/systems_and_measurements/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



be optimal solutions of (42) and (43), respectively. Under
Assumption 1, (42) and (43) are strictly feasible. Therefore,
strong duality holds for primal-dual pair (42)-(43). Then, we
have

gTx∗ + (ν2∗)Td2 −
∑
l∈I2

N2∑
j=1

P2∑
w=1

λ2∗
ljwb

2
l

= hTy∗ + (ν1∗)Td1 +
∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1∗
kjwb

1
k. (44)

Consider the constraint (i) of (42) at optimal solution
(y∗, ν1∗, δ1∗kjw, λ

1∗
kjw) and multiply it by xT, for any x ∈ S1

α1 ,
we have

xTGy∗ + gTx ≤ xT(C1)Tν1∗

+
∑
k∈I1

N1∑
j=1

P1∑
w=1

[
xTµ1

kjλ
1∗
kjw + xT(Σ1

kw)
1
2 δ1∗kjw

]
. (45)

By using the Cauchy-Schwartz inequality, for any k ∈
I1, j = 1, 2 . . . , N1, w = 1, 2 . . . , P1, we have

xT(Σ1
kw)

1
2 δ1∗kjw ≤ ∥(Σ1

kw)
1
2x∥2∥δ1∗kjw∥2.

Using the constraint (ii) of (43), the above constraint implies
that

(x∗)T(Σ1
kw)

1
2 δ1∗kjw ≤ ∥(Σ1

kw)
1
2x∥2κα1

k
λ1∗
kjw.

Since x ∈ S1
α1 , we have

C1x = d1.

Then, the constraint (45) implies that

xTGy∗ + gTx ≤ (ν1∗)Td1

+
∑
k∈I1

N1∑
j=1

P1∑
w=1

[
xTµ1

kjλ
1∗
kjw + (Σ1

kw)
1
2x∥2κα1

k
λ1∗
kjw

]
,

which in turn implies by using the constraint (iii) of (43) that

xTGy∗ + gTx ≤ (ν1∗)Td1 +
∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1∗
kjwb

1
k.

Then, for any x ∈ S1
α1 , we have

xTGy∗ + gTx+ hTy∗ ≤ hTy∗ + (ν1∗)Td1

+
∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1∗
kjwb

1
k. (46)

Similarly, for any y ∈ S2
α2 , we have

(x∗)TGy + gTx∗ + hTy ≥ gTx∗

+ (ν2∗)Td2 +
∑
l∈I2

N2∑
j=1

P2∑
w=1

λ2∗
ljwb

2
l . (47)

Take x = x∗ and y = y∗ in (46) and (47), then from (44), we
get

u(x∗, y∗) = hTy∗ + (ν1∗)Td1 +
∑
k∈I1

N1∑
j=1

P1∑
w=1

λ1∗
kjwb

1
k

= gTx∗ + (ν2∗)Td2 +
∑
l∈I2

N2∑
j=1

P2∑
w=1

λ2∗
ljwb

2
l . (48)

It follows from (46), (47), and (48) that

u(x, y∗) ≤ u(x∗, y∗) ≤ u(x∗, y), ∀x ∈ S1
α1 , y ∈ S2

α2 ,

which in turn implies that (x∗, y∗) is an SPE of the game
Zα.

VI. NUMERICAL RESULTS

A. Competition in Financial Market

In this section, we consider a competition of two firms in
financial market. They invest in the same set of portfolios. Let
P = {1, 2, . . . , NP } be the set of portfolios. Let Aj be the set
of assets in the portfolio j. Assume that the sets Aj and Ak are
disjoint, for any j ̸= k. Let xk = (xkj)j∈Ak

be the investment
vector of firm 1 in portfolio k and yk = (ykj)j∈Ak

be the
investment vector of firm 2 in portfolio k. Let x = (xk)k∈P

and y = (yk)k∈P be the investment vector of firm 1 (resp. firm
2). The set of investments X of firm 1 is defined as follows

X =

x
∣∣∣ ∑
j∈Ak

xkj = W 1
k , ∀j ∈ Ak, k ∈ P

 ,

and the set of investments Y of firm 2 is defined as follows

Y =

y
∣∣∣ ∑
j∈Ak

ykj = W 2
k , ∀j ∈ Ak, k ∈ P

 ,

where W i
k is the total investment of firm i in portfolio k, for

any i = 1, 2 and k ∈ P . Let Li
k = (Li

kj)j∈Ak
be a random loss

vector of firm i from portfolio k. Then, for a given investment
vector xk and yk, the total loss of firm 1 (resp. firm 2) caused
by portfolio k is defined as (L1

k)
Txk (resp. (L1

k)
Tyk). Each firm

wants to make sure that their random loss is below a maximal
allowable loss level with high probability. This condition is
modeled by the following inequality

P
{
(L1

k)
Txk ≤ b1k

}
≥ α1

k, (49)

and

P
{
(L2

l )
Tyl ≤ b2l

}
≥ α2

l , (50)

where bik are deterministic vectors and αi
k are confidence

levels, i = 1, 2, k ∈ P . We assume that the true distribution
of random loss vectors is unknown, but only known to belong
to some uncertainty set Di

k defined in Section IV. Then, the
feasible strategy sets of two firms are given by

inf
F 1

k∈D1
k

P
{
(L1

k)
Txk ≤ b1k

}
≥ α1

k, ∀ k ∈ P,
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and
inf

F 2
l ∈D2

l

P
{
(L2

l )
Tyl ≤ b2l

}
≥ α2

l , ∀ l ∈ P.

We assume that the total profit of both firm is zero, i.e., for
each profile of strategies (x, y) ∈ X × Y , if firm 1 gains
a profit u(x, y), then firm 2 gains a profit −u(x, y). Firm 1
wants to maximize u w.r.t x, for y ∈ S2

α2 and firm 2 wants
to minimize u w.r.t y, for x ∈ S1

α1 . We assume that u has
the form (1), i.e., u(x, y) = xTGy + gTx+ hTy.

In order to find an SPE of (8), we solve the two SOCP
problems (42) and (43) using coneqp solver in CVXOPT. We
compare the uncertainty sets defined in Section (IV) with the
true model, in which we assume that the true distribution of
random loss vectors is known and follows Gaussian distribu-
tion. In this case, it is well known that the constraints (49) and
(50) are equivalent to SOC constraints [25]. An SPE in true
model can be computed by solving an SOCP reformulation
[8].

B. Case Study

All the numerical results below are performed us-
ing Python 3.8.8 on an Intel Core i5-1135G7, Proces-
sor 2.4 GHz (8M Cache, up to 4.2 GHz), RAM 16G,
512G SSD. We consider two firms investing in a port-
folio consists of four assets, i.e., P = {1} and A1 =
{1, 2, 3, 4}. We generate randomly the vectors g and h in
(1) in [−3, 3]4 by the command ”numpy.random.uniform(-
3,3,size=(4,1))”. The matrix G in (1) is randomly generated
by the command ”numpy.random.uniform(-3,3,size=(4,4))”.
We take the confidence levels of two firms as α1 =
α2 = 0.9, the total investment of two firms in the port-
folio W 1

1 and W 2
1 are randomly generated on [20, 80] by

the command ”numpy.random.uniform(20,80)”. The max-
imal allowable loss levels of two firms b11 and b21
are randomly generated on [100, 500] by the command
”numpy.random.uniform(100,500)”. The probability distribu-
tion of the loss of two firms L1

1 and L2
1 are assumed to

be Normal distributions with mean vector µ1
1 (resp. µ2

1)
and covariance matrix Σ1

1 (resp. Σ2
1). The mean vectors

are randomly generated on [8, 12]4 using the command
”numpy.random.uniform(8,12, size=(4,1))”. The covariance
matrix are defined as follows

Σi
1 =

AAT

4
+ I4, ∀ i = 1, 2,

where A is a 4 × 4 random matrix whose all
entries belong to [0, 1] generated by the command
”A=numpy.random.random(size=(4,4))” and I4 denotes
4 × 4 identity matrix. For any i = 1, 2, we define sample
mean vector µi

sample and Σi
sample by generating randomly a

sample of 100 observations ξi1, . . . , ξ
i
100, which follow Normal

distribution with mean vector µi
1 and covariance matrix Σi

1.
To do that, we generate a standard Gaussian vector by the
command ”x=numpy.random.normal(0,1,4)”. We generate
a Gaussian vector with mean vector µi

1 and Σi
1 by taking

ξij = Bx+ µi
1, where B is the Cholesky factorization of Σi

1.

To get the Cholesky factorization of a matrix, we use the
command ”numpy.linalg.cholesky”. The sample mean vector
µi
sample and the covariance matrix Σi

sample are defined as
follows

µi
sample =

1

100

100∑
j=1

ξij ,

Σi
sample =

1

99

100∑
j=1

(ξij − µi
sample)(ξ

i
j − µi

sample)
T.

Now, we define other parameters for each model. For the
uncertainty set (12), we take γi

1 = 1.1, for any i = 1, 2. For
the uncertainty set (16), we take γi

11 = γi
12 = 1, for any

i = 1, 2. We take the uncertainty set (21) similarly as the
uncertainty set (9) by choosing M = 1. For the uncertainty
set (25), we take the radius vector ϵiµ,1 = (0.1, 0.1, 0.1, 0.1)4

and the radius matrix ϵiΣ,1 = 0.1× I4, for any i = 1, 2, where
I4 is 4 × 4 identity matrix. For the uncertainty set (29), we
take θi1 = 0.05, for any i = 1, 2.

For the above instance, we compute an SPE of the true
model, where the true distribution of random loss vectors L1

1

and L2
1 follow Gaussian distributions with mean vector µ1

1

(resp. µ2
1) and covariance matrix Σ1

1 (resp. Σ2
1). We obtain an

SPE (x∗, y∗) given by

x∗ = (18.91, 19.45, 19.45, 20.22)T,

y∗ = (19.01, 20.15, 20.45, 18.71)T.

The profit of firm 1 for this instance is u(x∗, y∗) = −275.52.
Now, we calculate an SPE of the models defined in Section
(IV). For the uncertainty sets (9), (12), (16), (21) and (25), we
take µi

1 = µi
sample and Σi

1 = Σi
sample, for any i = 1, 2.

For the uncertainty set (29), we assume that the nominal
distribution νi1 follows a Gaussian distribution with mean
vector µi

sample and covariance matrix Σi
sample. We compare

the optimal profit value of firm 1 in above models with the
optimal profit value of firm 1 in the true model. The results
are given in Table III. We can see that for this instance, the
models defined by ϕ−divergence give better solution than the
models defined by moments since the optimal profit value in
ϕ−divergence uncertainty sets approximates well the optimal
profit value in true model. We also present the time analysis

TABLE III
LIST OF OPTIMAL PROFIT VALUES u(x∗, y∗)

True model Known Mean
Known Covariance

Known Mean
Unknown Covariance

Unknown Mean
Unknown Covariance Polytopic

-257.52 -221.11 -222.5 -224.8 -221.11
Componentwise

Bounds
Kullback
Leibler

Variation
Distance

Modified
χ2 - distance Hellinger Distance

-223.3 -255.1 -256.23 -255.8 -253.9

for a large numbers of assets size model by considering the
number of assets between 100 and 1000. For each case of
number of assets, we randomly generate 10 instances of the
known mean known covariance model, where the parameters
are defined similarly as above and we calculate the average
running time (in seconds) to solve the two optimization
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problems (42) and (43). The results are given in Figure 1.

Fig. 1. CPU time (in seconds) to solve (42) and (43) in known mean known
covariance cases with different number of assets.

It is clear from Figure 1 that our optimization problems can
be solved efficiently in high dimension up to 1000 assets.

VII. CONCLUSION AND FUTURE WORK

We study a more general two player zero-sum game than
the model considered in [1] under various moments based
and statistical based uncertainty sets. We propose a reformu-
lation of the chance constraints using distributionally chance-
constrained optimization framework and show that there exists
a mixed strategy SPE of the game. Under Slater’s condition,
the SPE of the game can be obtained from the optimal
solutions of a primal-dual pair of SOCPs. We present a
competition of two firms in financial market as an application
to figure out out theoretical results. The numerical experiments
are performed using randomly generated data on the game
up to 1000 assets and it is clear from our time analysis
that the SOCPs problems can be computed efficiently. For
our future works, we will study tractable reformulation of
the zero-sum game problem with different payoff structure
in a different game model and apply the game problem in
a different application to the competition in financial market
considered in this paper.
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APPENDICES

APPENDIX A: PROOF OF LEMMA 7 - CASE HELLINGER
DISTANCE

For i = 1, 2 and k ∈ Ii, it suffices to calculate the value
of supλ>0,β∈R

{
f i
k(λ, β)

}
with Hellinger distance divergence.

We consider two cases as follows

• Case 1: β
λ < 1 ⇔ β < λ. We have

ϕ∗
(
β

λ

)
=

β

λ− β
,

ϕ∗
(
β − 1

λ

)
=

β − 1

λ+ 1− β
.

Therefore,

sup
λ>0,β∈R

{
f i
k(λ, β)

}
=

sup
λ>0,β∈R

Pνi
k
(M i

k)
λ2

(λ− β)(λ− β + 1)
+

β2

β − λ
− λθik.

Since λ > 0 and β < λ, let γ = λ− β, we deduce that

sup
λ>0,β∈R

{
f i
k(λ, β)

}
= sup

λ>0,γ>0

{
λ2

(
Pνi

k
(M i

k)

γ(γ + 1)
− 1

γ

)
+ λ(2− θik)− γ

}
.

Let Q(λ, γ) = λ2

(
P
νi
k
(Mi

k)

γ(γ+1) − 1
γ

)
+λ(2− θik)−γ. Note

that 0 ≤ Pνi
k
(M i

k) ≤ 1 and γ > 0. Therefore, Q(λ, γ) is
a second-order polynomial of λ and the coefficient of λ2

is negative. It is well known that the maximum value of
a second order function f(x) = ax2 + bx+ c with a < 0

is c − b2

4a and it holds at x = −b
2a . Hence, the maximum

value of Q(λ, γ) holds at λ∗ =
γ(γ+1)(2−θi

k)

2(1+γ−P
νi
k
(Mi

k))
. Since

θik < 2, it is clear that λ∗ > 0. Then, the optimal value
of supλ>0,β∈R

{
f i
k(λ, β)

}
holds when λ = λ∗ and we

have

sup
λ>0,β∈R

{
f i
k(λ, β)

}
= sup

γ>0

{
−γ +

(2− θik)
2γ(γ + 1)

4(γ + 1− Pνi
k
(M i

k))

}
. (51)

Let u = γ + 1 − Pνi
k
(M i

k), then u > 1 − Pνi
k
(M i

k).
Rewriting (51) as a function of u, we have:

sup
λ>0,β∈R

{
f i
k(λ, β)

}
= sup

u>1−P
νi
k
(Mi

k)

F (u),

= sup
u>1−P

νi
k
(Mi

k)

{
au+

b

u
+ c

}
,

where a =
(

(2−θi
k)

2

4 − 1
)
,

b =
(2−θi

k)
2P

νi
k
(Mi

k)(Pνi
k
(Mi

k)−1)

4 ,

c = 1−Pνi
k
(M i

k)+
(2−θi

k)
2(2P

νi
k
(Mi

k)−1)

4 . Note that a < 0

and b ≤ 0. We have: F
′
(u) = a − b

u2 . Hence, it can be
shown that F is decreasing on (u∗,+∞), increasing on
(−u∗, u∗) and decreasing on (−∞,−u∗), where u∗ =√

b
a . Or,

u∗ =

√
(2− θik)

2

4− (2− θik)
2
Pνi

k
(M i

k)(1− Pνi
k
(M i

k)). (52)
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We have F (u∗) = −2
√
ab + c. We consider 2 cases as

follows
1: u∗ ≤ 1 − Pνi

k
(M i

k). Since F is decreasing on
(u∗,+∞), it is also decreasing on (1− Pνi

k
(M i

k),+∞).
Hence, supu>1−P

νi
k
(Mi

k)
F (u) = 0, where the optimal

value holds when u → 1 − Pνi
k
(M i

k) ⇔ γ → 0, which
violates (30).
2: u∗ > 1 − Pνi

k
(M i

k) > 0. Then, the optimal value of
supu>1−P

νi
k
(Mi

k)
F (u) holds when u = u∗. Therefore,

sup
λ>0,β∈R

{
f i
k(λ, β)

}
= F (u∗) = −2

√
ab+ c.

Then, (30) is equivalent to

− 2

√
(2− θik)

2

4

(
1−

(2− θik)
2

4

)
Pνi

k
(M i

k)(1− Pνi
k
(M i

k))

≥
(
1− (2− θik)

2

2

)
Pνi

k
(M i

k) +
(2− θik)

2

4
− (1− αi

k).

(53)

By taking square on both side of (53), we obtain a second
order inequality of Pν(K) as follows

Pνi
k
(M i

k)
2 +BPνi

k
(M i

k) + C ≥ 0,

where B, C are defined in Table II. By solving the equality
x2 + Bx + C = 0, we have two solutions xmin < xmax

where xmin = −B−
√
∆

2 , xmax = −B+
√
∆

2 . It is clear
that (53) is equivalent to either Pνi

k
(M i

k) ≥ xmax or
Pνi

k
(M i

k) ≤ xmin. Since θik < 2 −
√
2, we deduce that

1− (2−θi
k)

2

2 < 0. Therefore, we have(
1− (2− θik)

2

2

)
xmin +

(2− θik)
2

4
− (1− αi

k)

>

(
1− (2− θik)

2

2

)
xmax +

(2− θik)
2

4
− (1− αi

k).

(54)

On the other hand, we have

− 2

√
(2− θik)

2

4

(
1−

(2− θik)
2

4

)
x(1− x)

= ±
[(

1− (2− θik)
2

2

)
x+

(2− θik)
2

4
− (1− αi

k)

]
,

where x = xmin or x = xmax. Note that

−2

√
(2−θi

k)
2

4

(
1− (2−θi

k)
2

4

)
x(1− x) < 0. Using (54),

we deduce that

− 2

√
(2− θik)

2

4

(
1−

(2− θik)
2

4

)
xmax(1− xmax)

=

[(
1− (2− θik)

2

2

)
xmax +

(2− θik)
2

4
− (1− αi

k)

]
,

and

− 2

√
(2− θik)

2

4

(
1−

(2− θik)
2

4

)
xmin(1− xmin)

= −
[(

1− (2− θik)
2

2

)
xmin +

(2− θik)
2

4
− (1− αi

k)

]
.

or xmax satisfies (53) while xmin does not satisfy (53).
Then, (53) is equivalent to Pνi

k
(M i

k) ≥ xmax.
• Case 2: 1 ≤ β

λ ⇔ λ ≤ β. We have

ϕ∗
(
β

λ

)
= +∞,

which implies that supλ>0,β∈R
{
f i
k(λ, β)

}
= −∞, which

violates (30).
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