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Abstract—Alkaline methanol oxidation is an important electro-
chemical process in the design of efficient fuel cells. Typically, a
system of ordinary differential equations is used to model the
kinetics of this process. The fitting of the parameters of the
underlying mathematical model is performed on the basis of
different types of experiments, characterizing the fuel cell. In this
paper, we describe generic methods for creation of a mathematical
model of electrochemical kinetics from a given reaction network,
as well as for identification of parameters of this model. We also
describe methods for model reduction, based on a combination
of steady-state and dynamical descriptions of the process. The
methods are tested on a range of experiments, including different
concentrations of the reagents and different voltage range.

Keywords–modeling of complex systems; observational data and
simulations; advanced applications; mathematical chemistry.

I. INTRODUCTION

This work extends our conference paper [1], where the
methods for model reduction in electrochemical kinetics of
alkaline methanol fuel cells have been introduced. Here we
present more details on different types of experiments, char-
acterizing the fuel cell behavior, as well as the methods for
automatic generation of a mathematical model from chemical
reaction description, the methods of parameter identification,
and more testing results for these methods.

Galvanic cell is a chemical source of electric current based
on interaction of two metals in electrolyte. Fuel cells are
similar to galvanic cell but the reagents can be refilled multiple
times. A special class of the fuel cells are direct fuel cells, in
which formation of hydrogen is avoided, providing more safety
for the usage. Renewable sources of energy are provided by
alcohols, most commonly used are methanol and ethanol. In
fuel cells, the chemical reaction of oxidation, the burning of
the alcohols, is directly transferred to the electric energy.

The methods of parameter identification in electrochemical
kinetics have been presented in our papers [2–4]. They include
three types of experiments, measuring stationary state of the
cell for a given voltage, small harmonic oscillations near this
state and the response of the cell to a large amplitude variation
of the voltage. The theoretical basis for these experiments can
be found in the works [5–9]. Our purpose is the application
of these general methods to a particular system, describing
electrooxidation of the methanol in alkaline medium.

In Section II we describe the experiments, characterizing
the fuel cell of alkaline methanol type. In Section III the
methods of model generation and parameter identification are
presented. Further improvements of the methods by model re-
duction and the results of their application to the experimental
data are given in Section IV.

II. THE EXPERIMENT

The experimental setup is shown on Figure 1. It is ef-
ficiently designed to avoid external influence and minimize
processes, which could violate the results of modeling. The
cell itself (1) is made of teflon to provide maximal tightness
of the parts. The working electrode (2) is a disk coated with
a platinum catalyst. The disk is rapidly rotated to suppress
diffusion effects. There is a counter electrode (3) made of a
platinum wire and a reference electrode (4) made of Hg/HgO,
used for recalculation of potentials. The temperature in the
cell is measured by sensor (5). The forming and remaining
environmental CO2 is removed from the cell by permanent
argon blow (6). The setup is put under deep vacuum. During
the experiments, the voltage in the cell is set and the current is
measured. Inbetween the experiments, high amplitude voltage
variations are used for electrochemical cleaning of the elec-
trode.

Three types of experiments are performed, see Figure 2.
Polarization Curve (PC) represents the stationary state of the
cell. For this purpose the voltage is changed very slowly in
equidistant steps, on each step the stabilized current is mea-
sured. Electro-Impedance Spectrometry (EIS) probes the cell
with harmonic oscillations of small amplitude in the vicinity
of the stationary state, with the frequency varied in a large
range. A linearized behavior of the system is characterized by
complex-valued resistance, an impedance of the cell, which
is computed and displayed on Nyquist plot diagrams. Cyclic
Voltammetry (CV) probes the cell with a periodic saw-like
voltage profile of high amplitude and measures the correspond-
ing volt-ampere dynamical characteristics. The corresponding
plot contains non-split stationary PC-part and a hysteresis loop,
representing non-stationary, dynamical effects.



95

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. On the left: the experimental setup, consisting of a teflon cell (1) under deep vacuum, the rotating working electrode (2), the counter electrode (3),
the reference electrode (4), the temperature sensor (5) and argon blow supply (6). On the right: a general view with service equipment.

Figure 2. Three types of experiments (PC, EIS, CV), characterizing the cell.
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Figure 3. The chemical reactions network, the orange boxes show the reactions potentially responsible for the hysteresis effect on the CV plot.

Figure 4. Typical shapes of EIS diagrams. Image from [4].
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Figure 5. Nyquist plot (on the left) and reconstructed poles and zeros (on the right). Image from [4].

Figure 6. Interactive tool for parameter space exploration (in Mathematica v11).

III. THE MODEL

The chemistry of the cell is described by the network of
reactions, shown on Figure 3 and Table I. It includes the
chain of the oxidation of carbon containing reagents, starting
from methanol CH3OH in the solution (subscript sol) and up
to carbon dioxide CO2, finally removed from the system. In
parallel, the process of transformation of hydroxyl ion OH−

is present. All processes start from adsorption of fuel and
hydroxyl on the platinum catalyst (subscript ad). Some of the
reactions are reversible, so that the direct and reverse chemical
processes are shown by two oppositely directed arrows. Our
previous investigation [3] allows to exclude some originally

postulated reactions from the model, due to their vanishingly
small influence on the result. On Figure 3, these reactions
are grayed out and in the mathematical model they can be
omitted by setting the corresponding reaction constants to
zero. Also in our study [2], [3] we have identified reactions,
related with weakly coupled intermediates, which could serve
as a source for the hysteresis and other dynamical effects. On
the reaction scheme, they are highlighted by orange bubbles.
Most of important among them is a reaction r12, describing
formation of platinum monoxide PtO.

Proceeding to the mathematical description of electrochem-
ical kinetics, we note that the reaction network on Figure 3
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can be represented as a hypergraph, a generalization of graph
where an edge can join any number of vertices. It can be
described by an incidence matrix aij , for ending vertices (j)
entering in an edge (i). We use an approach, initially developed
for transport network problems in our paper [10], where the
mathematical modeling of network problems can be repre-
sented as a translation between two domain specific languages
(DSL1,2). One is a network description language (NET),
used in the corresponding discipline (e.g., electrochemistry,
gas transport, water supply, etc.), another one is a problem
description language (PRO), understood by generic non-linear
solvers (e.g., IPOPT, Mathematica, Matlab, etc.). The generic
algorithm (Universal Translation, UT) uses a configurable set
of translation rules (Translation Matrix, TM) for translating
the network from one representation to another:

NET × TM → PRO. (1)

In application to chemical kinetics, the reaction hypergraph
from Table I is recorded in a symbolic form (NET):

reactioni =
∑
j

aLijgj − aRijgj , (2)

where gj are the reagents (e.g., OH−, CH3OH), aLij , a
R
ij

are the incidence matrices of the hypergraph multiplied to
stoichiometric coefficients. These integer-valued coefficients
indicate how many molecules are spent or produced, for the left
and right hand side of the reaction. The translation matrix (TM)
defines the rules of translation, enlisting the reagents, variables,
constants, parameters, an excerpt is shown in Table II. The
hypergraph is then translated to the reaction rates

ri = kLi
∏
j

(cj)
aLij − kRi

∏
j

(cj)
aRij , (3)

indicating how many reactions per second are happening.
The rates are defined by a probability of the reagents to
meet each other for the reaction, proportional to the product
of concentrations cj (that can be molar, volumetric, surface,
etc.), in the corresponding integer powers. E.g., the reaction
r5 in Table I requires one molecule COad (reagent 4, see
Table II) to meet two molecules of OHad (reagent 1), and the
corresponding reaction rate will be proportional to c4c

2
1. The

proportionality coefficients ki are important model parameters,
which should be reconstructed from the experiments. Further,
the reaction rates are assembled to molar balance description:

Fj = −
∑
i

ri(a
L
ij − aRij), (4)

indicating how many molecules (or, in appropriate normaliza-
tion, moles) of the reagents are spent or produced per second.
Then ordinary differential equations (ODEs) governing the
chemical kinetics are formed:

dνi/dt = Fi, (5)

where νi is a molar amount for the i-th reagent.
In particular applications, these generic formulae can be

modified by different normalizations, e.g., some of the reagents
can be adsorbed on the electrode and are represented by di-
mensionless surface coverage ratios, with the range θi ∈ [0, 1].
Also, a peculiarity of electrochemistry is that the electrons also

belong to the reagents and their flow (electrons per second)
defines the cell current measured in the experiments.

Applying these translation rules to our reaction network,
we obtain [3]:

r1 = k1c1θ0 − k−1θ1,
r2 = k2c2θ0 − k−2θ2,
r3 = k3θ2θ

3
1 − k−3θ3c33, (6)

r4 = k4θ3θ1, r5 = k5θ4θ
2
1,

r7 = k7θ3θ
2
1, r8 = k8θ5,

r9 = k9θ4θ1, r10 = k10θ5θ1,

r12 = k12c1θ1 − k−12c3θ6,

where θ0 = 1 −
∑6
i=1 θi is a part the surface of platinum

catalyst, not covered by any reagent, θ0 ∈ [0, 1]. For the
reactions, involving electrons, the Tafel equation is used:

k1 = k01 exp(αβη),

k−1 = k0−1 exp(−(1− α)βη),
k8 = k08 exp(−(1− α)βη), (7)
k12 = k012 exp(αβη),

k−12 = k0−12 exp(−(1− α)βη),
β = F/(RT ),

where T is the absolute temperature and other constants are
given in Table II,

F1 = (r1 − 3r3 − r4 − 2r5 − 2r7 − r9 − r10 − r12)/Cact,
F2 = (r2 − r3)/Cact,
F3 = (r3 − r4 − r7)/Cact, (8)
F4 = (r4 − r5 − r9)/Cact,
F5 = (r7 − r8 + r9 − r10)/Cact,
F6 = r12/Cact,

F7 = (−r1 + r8 − r12) · FA/Cdl,

here the constants Cact, Cdl, A are also given in Table II, these
3 constants depend on the experimental setup and recalibrated
each time when it is changed. The resulting ODE system looks
like:

dθi/dt = Fi(θ, η), i = 1 ... 6, (9)
dη/dt = F7(θ, η) + Icell/Cdl,

where η is the cell voltage and Icell is the cell current. The
model is fitted to the experiment using L2-norm of variation

L2 =

(∑
i

(Icell,i − Iexpcell,i)
2

)1/2

, (10)

with the reaction constants k0i ≥ 0 in (7) and ki ≥ 0 for all
others used as fitting parameters. The details of fitting depend
on the selected experimental method.

PC method: sets all time derivatives to zero, to define
a stationary point

0 = Fi(θ
∗, η∗), i = 1 ... 6, (11)

0 = F7(θ
∗, η∗) + I∗cell/Cdl,

for fixed η∗, stepwise scanned in the range [ηmin, ηmax], the
obtained 7x7 polynomial system is solved with respect to
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TABLE I. The reaction list.

r1: OH− + Pt ↔ OHad + e−

r2: CH3OH + Pt ↔ CH3OHad

r3: CH3OHad + 3OHad ↔ CHOad + 3H2O

r4: CHOad + OHad → COad + H2O

r5: COad + 2OHad → CO2 + H2O + 2Pt

r7: CHOad + 2OHad → COOHad + H2O + Pt

r8: COOHad + e− → HCOO− + Pt

r9: COad + OHad → COOHad + Pt

r10: COOHad + OHad → CO2 + H2O + 2Pt

r12: OH− + OHad ↔ PtO + H2O + e−

TABLE II. Numeration and values for the model variables and constants.

Variables Concentrations Constants Names Values

θ1 OHad F Faraday constant 9.649 · 104 C/mol

θ2 CH3OHad c1 OH− R universal gas constant 8.314 J/(K mol)

θ3 CHOad c2 CH3OH α charge transfer coefficient 0.5

θ4 COad c3 H2O Cdl capacitance 1.899 · 10−4 F

θ5 COOHad Cact activity constant 8.523 · 10−5 mol/m2

θ6 PtO A electrode area 2.376 · 10−5 m2

(θ∗1−6, I
∗
cell) by Mathematica NSolve algorithm. Only real

roots with θ∗0−6 ∈ [0, 1] are selected. There are always 2 such
roots, one is trivial: θ∗4 = 1, other θ∗i = 0, I∗cell = 0 (electrode
is completely blocked by COad), another is non-trivial: all
θ∗i > 0, I∗cell > 0. Only non-trivial root is selected and used
for minimization of L2-norm (10).

EIS method: linearizes the system near the stationary
point

dv/dt = Jv + b, Jij = ∂Fi/∂xj , (12)

with n×n Jacobi matrix J , n-dimensional vector of variables
x = (θ1, ..., θn−1, η)

T (in our case n = 7) and variations of
vectors v = δx, b = (0, ..., 0, δIcell/Cdl)

T . In more details
we have considered this system in our previous paper [4].
The equations describe the linearized evolution around the
stationary point, when the voltage is varied along the given
profile. In our case, harmonic oscillations of small amplitude
are considered, in complex denotation: δη = η0 exp(iωt),
δIcell = I0 exp(iωt). Their ratio gives the complex resistance,
or impedance Z = η0/I0 of the cell. After harmonic substitu-
tion v = v0 exp(iωt), b = b0 exp(iωt) we have

(iω − J)v0 = b0 (13)

and finally

CdlZ(ω) = ((iω − J)−1)nn. (14)

It can be rewritten in one of the equivalent forms:

CdlZ(ω) = Qn−1(iω)/Qn(iω), (15)

where Qk are polynomials of k-th order,

CdlZ(ω) =

n−1∏
j=1

(iω − qj)/
n∏
j=1

(iω − pj), (16)

with poles pj and zeros qj of Z,

CdlZ(ω) =

n∑
j=1

rj/(iω − pj), (17)

with residues rj at the corresponding poles pj . Note that pj
are eigenvalues of Jacobi matrix J , while qj are eigenvalues
of its left-upper (n− 1)× (n− 1) submatrix.

The fitting involves a solution of Non-Linear Program
(NLP) of the form

find min
x
f(x), such that g(x) = 0 and h(x) ≥ 0, (18)

where the equality conditions g include the equations for
stationary point (11), the definition of Jacobi matrix in (12)
and the definition of poles and zeros

Qn−1(qj) = 0, Qn(pj) = 0, (19)

the inequality conditions h include the already mentioned

kr ≥ 0, θ∗i ≥ 0, θ∗0 = 1−
∑

θ∗i ≥ 0. (20)

In the case, if the obtained system becomes overdetermined,
some of the equations can be moved to the target function,
e.g.,

f(x) : L2 =
∑
j |Qn−1(qj)|2 +

∑
j |Qn(pj)|2. (21)

The solution is performed by Mathematica NMinimize
algorithm. The typical model shapes on the Nyquist plot
corresponding to a different number and types of poles and
zeros are shown on Figure 4. One of these forms has been
used on Figure 5 for testing of the reconstruction algorithm.
The paper [4] provides further details on the structure of
solution. In particular, if some poles and zeros come too close
to each other, they should be mutually cancelled to increase
stability of the reconstruction. The stability condition has a
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form Nexp(Np + Nz + 1) ≥ Nk, where Nexp is the number
of experiments, Np,z is the number of reconstructed poles and
zeros per experiment, Nk is the number of reaction constants.
The errors of the reconstructed Nyquist plot can be controlled
by the formula

δZ(ω)/Z(ω) = −
∑
δqj/(iω − qj) (22)

+
∑
δpj/(iω − pj).

CV method: considers the original ODE system (9).
We solve this system directly via numerical integration by
Mathematica NDSolve algorithm. The starting point of the
integration should be selected to provide cyclicity of solution
θ(Tp) = θ(0), Tp is a period. Alternatively, the system should
be integrated during several (3-5) “warming up” periods till
the cycle becomes reproduced. The resulting Icell is used
for fitting of L2-norm (10) by Mathematica NMinimize
algorithm. The main problem is a determination of a region
in multi-dimensional (dim = 14 in our case) space of the
fitting parameters, the reaction coefficients k

(0)
i , where the

starting point for fitting procedure is located, close enough to
the minimum searched. We solved this problem in [2] by an
iterative direct search Monte Carlo method in a combination
with interactive visualization. Figure 6 shows the visualization
tool, implemented by means of Mathematica Manipulate
algorithm. The user can interactively change the reaction con-
stants and see the obtained integrated evolution in comparison
with the experimental data.

The first interesting observation, obtained by the described
method, is that CV diagrams at low voltages contain a PC
part, where the shapes for increasing and decreasing voltage
coincide and the time derivatives in (9) can be omitted. These
parts, displayed on Figure 7 for the experiments with different
volumetric concentrations of the reagents, can be fitted by the
stationary curves from the above described PC method. Al-
though this method does not require computationally expensive
numerical integration and is very fast, its disadvantage is that
only the ratios of reaction coefficients can be reconstructed.
Indeed, for the absent time derivatives in (11), every equation
can be divided to one of the reaction constants, preserving its
validity.

At larger voltages, a hysteresis effect appears, see Figure 8.
It is purely dynamic effect, related with the presence of time
derivative in (9), which after time-reflection reverses its sign.
As a result, the shapes of volt-ampere characteristics for
increasing and decreasing voltage do not coincide. Our analysis
in [2], [3] shows that the hysteresis effect appears when some
intermediates in the reaction network are weakly coupled. In
this case the corresponding θ evolution becomes retarded with
respect to the voltage variation. We have tried to decouple
several intermediates, indicated by orange bubbles in Figure 3,
by strongly reducing their reaction constants. The best results
are obtained with decoupling of the 6th reagent, PtO.

Next, Figure 9 shows CV plots in experiments with differ-
ent upper voltage ηmax. The data are described in details in
[12], where the focus is on the physical-chemical processes,
while in the current paper we focus on the simulation method-
ology and the parameter identification of the mathematical
model. It is visible in Figure 9, how hysteresis is reduced and
finally disappears, leaving PC behavior only, when ηmax is
decreasing. Again, the hysteresis effect vanishes when ηmax

is shifted below the voltage region, where the production of
PtO happens. Therefore, the PC and EIS methods should be
preferably applied in this low voltage region.

The experimental data on Figures 7 and 8 are well fitted
by the model. This fit is performed individually for every
plot, presenting given values of concentrations, as described
in [3]. An attempt to fit all experiments by a single set of
reaction constants fails, which has been interpreted in [3] as a
dependence of reaction constants on concentrations.

The experimental data on Figure 9 correspond to the
same concentration values and variable ηmax. Three columns
correspond to three isolated optima of the fit, presented on
Figure 10. The best fit is provided by the left column, set 1. It
is visible that the upper increasing curve always has a better
fit than the lower decreasing one. It is also visible that the
shape of the increasing curve is the same for all experiments,
only the upper limit is different. This happens because we
are fitting the first cycle of CV plot. Comparing the plots in
different rows, we can conclude that the system initially “does
not know”, when its η will be reverted, and produces the same
curve upto this moment. We also observe that the decreasing
curve is sensitive to the small values of θ0 in the region of
upper voltage and fluctuates when the model parameters are
slightly changed. More uncertainty is related with the unknown
starting θ-values for the evolution on the first cycle, for which
in our experiments the clean electrode θ0 = 1 was assumed.
There is also a large visible scatter in the data, corresponding
to different cycles of the CV plot. Like it happens with slow
approaching of the equilibrium in PC experiments, here we
observe a slow approaching of the limit cycle in CV plots.

IV. IMPROVEMENTS OF CV METHOD

In this section, we consider a possibility that the ODE
system (9) can be reduced to the system of Differential-
Algebraic Equations (DAE), where some of the equations keep
time derivative terms and the others do not. Let us write the
equations in the form:

αidθi/dt = Fi =
∑
j Cijrj , (23)

where Cij is a structural matrix relating production rates Fi
and reaction rates rj and αi are constant coefficients, for the
case of ODE set to αi = 1 and for the case of DAE to αi = 0.
We have also reassigned normalization factors between Fi and
rj , so that both are measured in the same units (s−1). The
measured quantity is a cell current, given by the expression:

Icell = FACactF7, F7 =
∑
j C7jrj . (24)

Here, we add the 7th row in the structural matrix and omit the
practically vanishing capacitance term Cdldη/dt.

Now, we draw attention to Figure 11, which depicts the
evolution of production and reaction rates. It is visible that
some rj compensate each other, resulting in almost zero Fi.
This common property, also noted in [11], means that some of
the reactions proceed so fast that they are almost permanently
in equilibrium. One production rate is not in equilibrium. It is
also characterized by the presence of only one reaction: F6 =
r12. Thus, in the equations, one can switch off the dynamic
terms for all reagents except for the 6th, so that αi = δi6. As
a result, the ODE system is replaced by an equivalent DAE
system. Mathematica v11 can be used to solve DAE systems
with the same efficiency as ODE.
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Figure 7. PC experiments. From left to right, the concentration of alkaline KOH is set to c1 = {0.1, 0.5, 1.0}M , from bottom to top, the concentration of
methanol CH3OH is set to c2 = {0.5, 0.75, 1.0}M . Horizontal axes represent the voltage in Volts, vertical axes – the cell current in Amperes. Blue points
are experimental data. Red lines show the best fit by the model with reaction constants reconstructed separately for each experiment.
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Figure 8. CV experiments. From left to right, the concentration of alkaline KOH is set to c1 = {0.1, 0.5, 1.0}M , from bottom to top, the concentration of
methanol CH3OH is set to c2 = {0.5, 0.75, 1.0}M . Horizontal axes represent the voltage in Volts, vertical axes – the cell current in Amperes. Blue points
are experimental data. Red lines show the best fit by the model with reaction constants reconstructed separately for each experiment.
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Figure 9. CV experiments, with different upper voltage. Three columns correspond to three isolated optima of the fit. From top to bottom in every column –
upper voltage is reduced. Horizontal axes represent the voltage in Volts, vertical axes – the cell current in Amperes. Blue points are experimental data for all
cycles. Cyan lines are experimental data for the first cycle. Red lines show the best fit of the first cycle by the model. Data from [12].
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Figure 10. Reconstructed reaction constants for the experiments with different upper voltage. The constants are given in logarithmic values pi =
log10(ki/[mol/(m

2s)]). Two sources of decoupling of reagents (CO-related, PtO-related) are indicated, with corresponding reactions.

Figure 11. The plots of production rates Fi and reaction rates ri. All production rates except F6 show an approach to equilibrium. The horizontal axes show
the time in seconds, the vertical axes: Fi and ri in s−1.
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Figure 12. On the left: CV plot, blue points with error bars – the experiment, red line – the model. In the center: evolution of surface coverages, the colors
(red, green, blue, cyan, magenta, brown) encode sequential θi, black shows the free Pt surface. On the right: ODE→DAE variations for θi (the same colors),
relative variation for Icell (in gray).

Figure 13. Evolution of θi in logarithmic values.

The described mathematical model fits the experimental
data well, both for ODE and for DAE formulations, see
Figure 12 left. After the transition to DAE, the CV plot in
Figure 12 left changes slightly, as well as the detailed evolution
of θi, shown in Figure 12 center and in logarithmic values in
Figure 13. An interesting property that immediately catches
the eye is the temporal asymmetry of the profiles for some
reagents. Since the voltage is an even periodic function, if all
reactions were in equilibrium, all θi would be even periodic.
They would behave like red or black lines, corresponding
to OHad and free Pt in Figure 12. Deviation from this
behavior for magenta and brown, that is, COOHad and PtO,
is a purely dynamic effect. The consequence of this effect
is the observed mismatch (hysteresis) for the increasing and
decreasing branches of the CV plot. In line with this work, it
is important that DAE provides essentially the same profiles as
ODE. Figure 12 right measures the deviation between the DAE
and ODE, for θi, in the same colors, as well as the deviation of
Icell relative to its maximum, shown in gray. As a result, the
transition from ODE to DAE results in 0.8% maximal variation

for θi and 2.5% for Icell, proving a good accuracy of the DAE
representation.

V. CONCLUSION

In this paper, alkaline methanol oxidation has been con-
sidered, an important electrochemical process in the design
of efficient fuel cells. The reaction network, represented as
a hypergraph of reactions, connecting multiple reagents, is
automatically translated to the mathematical model, including
an ODE system describing the kinetics of the process. The
difference between the modeled and experimentally measured
current of the cell is used for the fitting of the parameters of the
underlying mathematical model. Three types of experiments
(PC, EIS, CV) can be used for the identification of the
parameters.

Further, the model reduction can be performed by setting
fast reactions to the equilibrium and leaving the dynamical
term only for slow reactions. The obtained DAE formulation
has an advantage that only one degree of freedom (surface
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coverage by PtO) remains in the system, to which the evolu-
tion of other reagents is strictly coupled. The model is reduced
and still describes the same effects as the complete system. In
particular, it explains the dynamic hysteresis of volt-ampere
characteristics of the cell. The methods have been tested on a
range of experiments, including different concentrations of the
reagents and different voltage range.
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