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Abstract—The general method of topological reduction for the
network problems is presented on example of gas transport
networks. The method is based on a contraction of series,
parallel and tree-like subgraphs for the element equations of
quadratic, power law and general monotone dependencies. The
method allows to reduce significantly the complexity of the
graph and to accelerate the solution procedure for stationary
network problems. The method has been tested on a large set
of realistic network scenarios. Possible extensions of the method
have been described, including triangulated element equations,
continuation of the equations at infinity, providing uniqueness of
solution, a choice of Newtonian stabilizer for nearly degenerated
systems. The method is applicable for various sectors in the field
of energetics, including gas networks, water networks, electric
networks, as well as for coupling of different sectors.
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I. INTRODUCTION

This work is an extension of our conference paper [1],
where the method of topological reduction for stationary gas
transport network problems has been introduced. We have
performed additional testing of the method on a large num-
ber of networks, evaluated various statistical characteristics,
improved main algorithms for representing the equations and
for their solution, considered the extension of the method for
the networks of general type, as well as their coupling.

The physical modeling of gas transport networks is com-
prehensively described in works [2]–[4]. The element equa-
tions for pipes vary from the simplest quadratic form to more
complex formulae by Nikuradze, Hofer and Colebrook-White.
In our papers [5][6], we have shown how to continue these
formulae to the whole domain of model variables, in order to
achieve a global convergence for non-linear solvers. Further, in
paper [7] we have constructed a universal translation algorithm,
capable of formulating network problems for non-linear solvers
with arbitrary problem description language. In paper [8],
we presented theoretical foundations of topological reduction
methods for generic stationary network problems.

In this paper, we continue the development of general topo-
logical reduction methods, applied to gas transport networks as
an example. Our motivation is to accelerate solution procedure
for stationary network problems. The goal is to perform
significant reduction of the graphs, preserving the accuracy of
the modeling. The main idea is to reduce the series and parallel
connections of elements in the network, with the operations,
known in the theory of Series-Parallel Graphs (SPG) [9]. These
operations can also be extended by contraction of a leaf,

Figure 1. Main operations in GSPG reduction: series (a), parallel (b) connec-
tions to be reduced, contraction of a leaf (c).

which after recurrent application contracts tree-like subgraphs,
leading to Generalized Series-Parallel Graphs (GSPG) [10].
Such elementary operations are shown in Figure 1. In paper
[8], we have estimated the efficiency of this method and shown
on realistic gas transport networks that high reduction factors
can be achieved. In our current work, we perform an actual
implementation of the topological reduction for pipes, which
form a considerable part of the gas transport networks.

In Section II, we present the details of a topological
reduction procedure for pipes, modeled by quadratic friction
law. In Section III, the results of numerical experiments with
estimation of reduction factors and acceleration rates are given.
In Section IV, we perform a comparison of our method with
[11], which is also based on graph theory but using a different
approach. In Section IV, we also discuss possible extensions
of our method. In Section V, we present further improvement
of the main algorithms.

The described algorithms are implemented in the software
MYNTS (Multi-phYsics NeTwork Simulator) [12], developed
in our group.

II. TOPOLOGICAL REDUCTION ALGORITHM FOR PIPE
NETWORKS

For the equations representing the pipes, one can use the
simplest quadratic friction law from [2][11]:

Pin|Pin| − Pout|Pout| = RQ|Q|, (1)

where Pin,out are the input and output pressures and Q is
the mass flow through the pipe. R is a resistance coefficient,
depending on the pipe length L, diameter D, roughness
parameter k, universal gas constant Rgas, temperature T ,
compression factor z and molar mass µ:

R = 16L/(π2D5)/(2 log10(D/k) + 1.138)2

×RgasTz/µ · 10−10. (2)
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All parameters are given in SI units (French, Système Inter-
national), except of pressures, given in bar, hence the scale
factor at the end of the formula. The structure of the term
Q|Q| ensures the symmetry of the equation when reversing
the flow direction Q→ −Q. The similar structure of P -terms
has a very special reason: it provides a monotonic continuation
of the equation to the non-physical domain P < 0.

It was shown in [6] that, as a result of such continuation,
the solver maintains stability also in the non-physical domain,
where it can occasionally wander during the iterations. In
addition, with such an extension (and the refinements, done
here in Section V), the system describing the stationary state
of the network has a unique solution, even if the problem
was set infeasibly. The simplest example of such an infeasible
setting is to take a real network, such as shown in Figure 2,
require a large throughput from suppliers to consumers, but at
the same time switch off all the compressors. This problem,
obviously, will not have a solution. On the other hand, if
one uses the techniques from [6], the solution will exist and
will be unique even in this case, but it will be located in the
nonphysical domain P < 0. Thus, in this approach, one has a
necessary and sufficient feasibility indicator, lacking for other
solvers, for which the infeasible statement of the problem is
indistinguishable from the occasional divergence.

Let us consider the above described GSPG elementary
operations for pipe networks.

The series connection is (see Figure 1a):

P1|P1| − P2|P2| = R1Q|Q|, (3)
P2|P2| − P3|P3| = R2Q|Q|.

From here, we add the 2 formulas to get:

P1|P1| − P3|P3| = Rs12Q|Q|, Rs12 = R1 +R2. (4)

The inverse reconstruction of the eliminated variable P2 is:

P2|P2| = P1|P1| −R1Q|Q|. (5)

The parallel connection is (see Figure 1b):

P1|P1| − P2|P2| = R1Q1|Q1| = R2Q2|Q2|, (6)
Q = Q1 +Q2.

From here, we solve this system for Q1,2 to get:

P1|P1| − P2|P2| = Rp12Q|Q|, (7)

Rp12 =
(
R

−1/2
1 +R

−1/2
2

)−2

.

The inverse reconstruction of the eliminated variables Q1,2 is:

Q1 = Q/((R1/R2)1/2 + 1), (8)
Q2 = Q/((R2/R1)1/2 + 1).

Contracting the leaf, see Figure 1c, in the simplest case of
zero flow results in the removal of P2, Q variables. The inverse
reconstruction consists of the setting Q = 0 and copying P2 =
P1.

It should be noted that there are two types of source/sink
nodes in gas networks. Qset is the node in which the flow
is set. Pset is the node where the flow is not fixed, but the
pressure is set. For parallel connections, nodes of this type at
the ends do not pose a problem. For series connections, the

presence of such specifiers in the intermediate node leads to
deviations from Kirchhoff’s law and represents an obstacle to
the reduction. Next, we discuss a special algorithm that allows
to move the Qset specifiers over the network. In combination
with it, the reduction can be continued.

For contraction of the leaf, the Pset specifier represents an
obstacle, because when shifting to the neighboring node, the
Pset specifier gets an unfixed pressure value that depends on
the flow. To contract a leaf with the Qset specifier, two options
are possible. First, block contracting leafs with a nonzero Qset.
As a result, the reduction will be incomplete, but the end
Qset nodes will be intact, which is convenient for formulating
scenarios with different values of Qset and for controlling the
feasibility condition P > 0 at endpoints. Second, allow such
leafs to be moved, with Qset moving to the other side and
summing it up with another Qset that may be located there.
For the inverse reconstruction, the value of Qset must be saved,
after that the inverse operations can be performed. The pressure
at the free end is not determined by simple copying, but is
found from the equation of the element:

P2|P2| = P1|P1| −RQset|Qset|. (9)

III. THE RESULTS

We have implemented GSPG reduction algorithm with
fixed Qsets and tested it on three realistic networks. The
simplest network N1 is shown in Figure 2. It includes 4
compressors (2 stations with 2 compressors each), 2 Psets
(shown by rhombi n56, n99) and 3 Qsets (triangles n76, n80,
n91). Originally (level0), the network contains N=100 nodes
and E=111 edges, including P=34 pipes. Then (level1), a topo-
logical cleaning algorithm from [8] is used, removing (if any)
parts of the graph, disconnected from pressure suppliers, as
well as contracting superconducting edges, such as shortcuts,
open valves and short pipes (D = L = 1 m). This operation
is absolutely necessary for the stability of the solver, since
disconnected parts possess undefined pressure and loops of
superconducting edges have undefined circulating flow. This
level of reduction looks similar to level0, just some valves,
shortcuts and internals of stations are removed. The total count
on this level is N=39, E=40, P=34.

After that (level2), GSPG reduction with fixed Qsets is
applied, leaving N=13, E=14, P=8 elements. This corresponds
to the reduction factor 2.9. Then, we have implemented all
necessary GSPG operations described by the formulae above.
For the solution procedure, after the reduction, we obtain the
acceleration factor 2.2. The solution on level2 is identical
with level1 up to the solver tolerance (set to tol=10−5 in our
numerical experiments).

For GSPG reduction with moving Qsets (level3), we have
implemented the formal reduction algorithm, sufficient for the
estimation of the reduction factor. On this level, we have
N=8, E=9, P=3 elements, comprising the reduction factor 1.6
relative to the previous level. The numerical counterpart of
the algorithm has not been implemented yet, that is why the
reduced network for level3 on Figure 2 does not have pressure
data. In the next section, we will discuss the details of Qset
movement algorithm necessary for this level.

The same tests have been performed on more complex
networks N2 and N3, provided by our industrial partners for
benchmarking. The parameters of the networks and the results
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Figure 2. Realistic gas transport network N1 at different reduction levels: level0 = original network; level2 = GSPG reduction with fixed Qsets; level3 = GSPG
reduction with moving Qsets. (Not shown: level1 = removing disconnected parts and superconductive elements, looking similar to level0.)

TABLE I. PARAMETERS OF TEST NETWORKS

network compressors regulators Psets Qsets

N1 4 0 2 3

N2 7 18 4 64

N3 25 54 6 290

TABLE II. NODES:EDGES:PIPES COUNT FOR DIFFERENT REDUC-
TION LEVELS

network level0 level1 level2 level3

N1 100:111:34 39:40:34 13:14:8 8:9:3

N2 973:1047:500 528:541:479 198:208:146 126:134:72

N3 4721:5362:1749 1723:1814:1666 705:755:607 296:332:184

of the reduction are presented in Tables I-III. The obtained
level1/level2 reduction factors vary in the range 2.4-2.9, while
acceleration factors solve1/solve2 are 2.2-2.6. The ’filter’ step
in Table III includes the necessary preprocessing and reduction

TABLE III. TIMING FOR TWO REDUCTION LEVELS*

network level1 level2

filter solve filter solve

N1 0.006 0.044 0.009 0.02

N2 0.063 0.5 0.09 0.196

N3 0.243 2.103 0.371 0.944

* in seconds, for 3 GHz Intel i7 CPU 8 GB RAM workstation; ’filter’ includes removing
disconnected parts and superconductive elements (for level1,2) and GSPG reduction (for
level2); ’solve’ includes translation procedure, actual solving and extracting the result;
the actual solving is performed with IPOPT.

of the networks. The ’solve’ step includes translation of the
network to the form suitable for the solver and the solution
procedure itself, which share the timing in 1:1 proportion.
Currently, our system uses the universal translation algorithm
from [7]. It allows to plug in generic non-linear solvers with an
arbitrary problem description language, requiring only to adjust
a translation matrix in the algorithm. In particular, we have
experimented with IPOPT (Interior Point OPTimizer) [13],
Mathematica [14], MATLAB (MATrix LABoratory) [15] and a
Newton solver, developed in our group. The best results for our
type of problems have been obtained with IPOPT and Newton,
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Figure 3. Topological reduction characteristics for additional 146 gas transport
networks.

while these two solvers among themselves have comparable
performance. The details of the implementation of the Newton
solver will be published elsewhere.

The solution procedure involves a multiphase workflow, de-
scribed in [7]. Although global convergence from an arbitrary
starting point for stationary network problems is guaranteed
theoretically [6], the multiphase procedure is still empirically
faster. This procedure gradually increases the complexity of the
modeling and uses the result of the previous phase as a starting
point for the next one. In our numerical experiments, a 3-phase
procedure is used, relevant to the modeling of compressors and
regulators in the network. In the first phase, compressors and
regulators have enforced goals, e.g., Pout = Const. Then,
they are set to a simplified universal free model and, finally,
to the individually calibrated advanced model [8]. The timing
in Table III presents the sum over 3 phases.

More testing: in this paper, we performed the measure-
ment of topological reduction characteristics for additional 146
gas transport networks of different complexity. The results are
shown on Figure 3. The upper histogram shows the distribution
of complexity value N + E at the reduction level 1. This
complexity value is more appropriate than the nominal one at
level 0, since it counts only the active parts of the networks and
only non-trivial (resistive) elements. The complexity values
between approximately 1K and 8K elements are populated,
with the maximum at 4K. The reduction factor between level 1
and level 2 is shown in the middle image. The reduction varies
between 1.26 and 2.3, with median value 1.84. The shape of
the histogram resembles Poisson distribution.

The acceleration factor is shown on the bottom image. It
varies between 0.34 (deceleration) and 61.4 (strong acceler-
ation), with median 1.54 and mean 2.71. The distribution is
also looking like Poisson one, with outliers. The reason for
these outliers is related with a randomness of the solver path
towards the solution. Even with the regularization, the station-
ary problem formulation f(x) = 0 contains a complicated
landscape of the function f , including sharp hills and narrow
valleys, which lead to a slowdown of the solution procedure.
The location of such features is random, so that topologically
reduced problem can stuck in such regions, while the non-
reduced problem was solved smoothly, leading to deceleration.
Vice versa, the topological reduction can help to avoid these
problematic regions, bringing very strong acceleration factor.
Both cases are visible on the histograms as outliers.

Our statistics shows that deceleration events happen at a
small probability and acceleration of solution prevails. On the
other hand, strongly accelerated outliers skew the distribution,
so that mean differs from the median significantly. While
the median presents a statistical center of the distribution,
mean value can be important in practically relevant setup,
when a large number of the network cases is solved as a
whole. Such applications appear, for example, in ensemble
simulations, when stability of solution, sensitivity to variation
of parameters or other statistically relevant characteristics are
evaluated. The total time of ensemble simulation sums the
individual time of each solution, making the mean time an
important characteristic. Note that not the mean of the ratios
between the original t1 and reduced topology t2 timings
should be taken, but the ratio of corresponding means. In
our testing cases, however, these characteristics are similar:
〈t1/t2〉 = 2.71, while 〈t1〉 / 〈t2〉 = 2.69.

IV. POSSIBLE EXTENSIONS

At first, we perform a comparison with paper [11], where
a different approach for topological reduction was taken.
Then, we describe possible generalizations of our topological
reduction algorithm.

a) Comparison with paper [11]: in this paper, the
stationary problem in gas transport networks was studied,
where subgraphs consisting of pipes only were considered.
The pipes were modeled by the expressions of type (1) and
the 2nd Kirchhoff law was consistently applied, by summing
this expression over independent cycles in the subgraph. As a
result, P -variables drop off from such sums and a system of
smaller size depending only on Q-variables remains, for which
the existence and uniqueness of the solution is proven.
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Although the approach looks promising, for its practical
implementation, some problems exist.

This approach does allow to reduce the dimension of the
system by extracting from it a subsystem that depends only on
Q-variables. The dimension of the subsystem is equal to the
number of independent cycles in the subgraph. The subsystem
has a unique solution for which, however, it is generally
impossible to obtain an analytic expression. Thus, it should
be solved numerically, for example, by Newton’s method.
The remaining variables in the subgraph are obtained by an
unambiguous analytical reconstruction procedure. The problem
appears when this subgraph is considered in the context of
a complete graph containing other elements than pipes, for
example, compressors. The solution of the complete problem is
usually also found by the Newton’s method. For the subgraph,
this means that the solution must be found many times, with
variable boundary conditions. In this case, a combination of
two Newton’s methods, external and internal, will require from
the subgraph not only a solution, but also its derivatives with
respect to the boundary conditions. Such a combination is in
any case not an efficient way to solve the system.

Figure 4. Shrinking a subgraph (a) creates a generalized network element with
a fixed number of pins (b), a multipin (M).

Figure 5. Particular examples: (a) 5-pin star; (b) 6-pin with 3 parallel
connections; (c) empty 6-pin. In all cases, the number of equations describing
the multipin is equal to the number of pins.

Another problem is that, according to [11], a pure pipe
subgraph, contained in a general graph, can be shrunk to
a single point. We cannot agree with this statement, since
a subgraph can have many boundary points in which nodal
P -variables are different, see Figure 4. The subgraph is not
shrunk to a point, but to a generalized element containing Nb
boundary points, or pins like in a microchip. We refer to such
a generalized element further as multipin. As we show below,
this element introduces not one, but Nb equations.

Without loss of generality, we can consider a connected
subgraph for which the pins have definite flows serving as
source/sink boundary conditions for the subgraph, as well as
Nb nodal P -variables. One condition necessary for the station-
ary problem is the annulation of the sums of boundary flows.
Here, for definiteness, we place all external sources/sinks in
the subgraph, including Qset and Pset nodes, on separate pins.
Further, considering one of the boundary nodes as a point with

a given pressure, the procedure from [11] uniquely reconstructs
all other Nb−1 boundary pressures in terms of the first pressure
and the boundary flows. The conditions for the equality of the
reconstructed pressures to the given boundary pressures are
the equations presenting the multipin for the external graph,
totaling Nb equations.

In principle, it seems possible to precompute these Nb
functions on a grid in the space of parameters and use fast
interpolation algorithms to represent the multipin. The problem
is the rapid increase of the grid data volume with the increasing
dimension of Nb. In our approach, we have restricted our
calculations to 2-pins, Nb = 2, which generally allows 2D tab-
ulation (the pixel buffer from [8]). In this paper, we concentrate
on the quadratic pipe model (1), which allows to encapsulate
all the characteristics in one R-parameter and to perform all
calculations analytically, without tabulated functions. Below,
we consider also an intermediate case, where 1D-tabulation
by splines is used. Thus, we avoid curse-of-dimensionality
problems existing for general multipins and are still capable
to reduce the dimension of the problem considerably.

In the remainder of this subsection, we consider in more
detail an interesting question, why the multipin, regardless of
its structure, is described by the same number of equations.
Indeed, the number of equations external to the excluded
subgraph is the same and does not depend on the topology of
the subgraph. After eliminating the subgraph, the system must
remain closed, meaning that the subgraph introduces the same
number of equations. To calculate this number, it is enough to
consider a specific configuration.

In Figure 5a, the star-like multipin is considered. One
equation is the zero sum of the flows into the multipin. The
Kirchhoff law in the center is equivalent to this equation.
There is one P -variable in the middle, but there are also
Nb conditions relating it to the boundary Pb and Qb. In
total, Nb-pin is equivalent to Nb equations on the boundary
P and Q. Figure 5b shows the case when Nb is even and
Nb-pin represents Nb/2 conditions for equality of incoming
and outgoing flows, as well as Nb/2 of element equations. In
total, we obtain Nb equations. In fact, even the connectivity
of the graph is not important here. In Figure 5c, the case of
an empty subgraph is considered, when all pins hang freely.
Then, Qb = 0 in all of them, comprising Nb equations.

b) Possible generalizations of friction laws: in the
equations of the element, a general power dependence can
be used, as was done in [11]. The consideration is quite
similar. The element equation, series and parallel connections
are described by:

Pin|Pin| − Pout|Pout| = RQ|Q|α−1, α ≥ 1, (10)
Rs12 = R1 +R2,

Rp12 =
(
R

−1/α
1 +R

−1/α
2

)−α
.

The quadratic law (1) corresponds to α = 2.
Contraction of the leaf and reverse reconstruction are done

in the same way.
Consider a more general case:

F (Pin)− F (Pout) = G(Q), (11)

where F,G are monotonously increasing functions, every
element has an own G, while F is the same for all elements
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(strictly speaking, it is enough if F is the same in a connected
component of the graph).

For series connections, the equations can be combined as
before:

F (P1)− F (P3) = Gs12(Q), (12)
Gs12(Q) = G1(Q) +G2(Q).

If the original functions were monotonic, then their sum will
also be. The inverse reconstruction is:

P2 = Finv(F (P1)−G1(Q)), (13)

where by subscript inv we denote the inverse 1D-function, so
as not to be confused with the algebraic inversion: x−1 = 1/x.

For parallel connections, the equations can be combined
analogously:

F (P1)− F (P2) = Gp12(Q), (14)
Gp12 = (G1,inv +G2,inv)inv.

Proof:

F (P1)− F (P2) = x = G1(Q1) = G2(Q2),

Q1 = G1,inv(x), Q2 = G2,inv(x), Q =

Q1 +Q2 = G1,inv(x) +G2,inv(x) = Gp12,inv(x),

x = Gp12(Q) = (G1,inv +G2,inv)inv(Q). �

It can be seen that the resulting G-function is also monotonic.
The structure of the formulas for quadratic and α-power
resistance is also clear: the inverse of the power function is
also a power function. Thus, the inverse reconstruction is:

Q1 = G1,inv(G
p
12(Q)), Q2 = G2,inv(G

p
12(Q)). (15)

To store 1D functions y(x), one can use lists of tabulated
values (xn, yn) and interpolate between them using cubic
splines. Outside the working area |P | ≤ 150 bar, |Q| ≤
1000 Nm3/h, the data can be extended by linearly growing
functions, similar to [6]. Such a representation is convenient
for inverting the functions, for which it suffices to swap
(xn, yn) → (yn, xn) and reconstruct the splines [16]. The
accuracy of this procedure is controlled by the smoothness of
the function and the density of subdivision. The computational
complexity is proportional to the number of tabulated values,
O(N).

In the problems we are considering, the functions are
odd: y(−x) = −y(x). This means that it is enough for
them to construct splines in the region x ≥ 0 and use
the symmetry for complete reconstruction. In addition, the
functions have a vanishing derivative at zero, for example,
y = x|x| = x2 sgnx, which leads to a non-smooth root
dependence for inverse functions x =

√
|y| sgn y. This leads

to problems for representing such functions by cubic splines.
In fact, as noted in [6], vanishing of the derivative also leads
to instability of the solver. The case Q = 0 can occur in large
regions of the network in the absence of a flow in them. This
leads to zeroing of the derivative of the function Q|Q| and
entails the degeneration of the Jacobi matrix of the complete
system. To overcome this problem, the laminar term Q|Q|+εQ
must be added to this function; similar regularizing terms must
also be added to the P -functions. After this, the problem with
the zero derivative disappears and does not hinder the spline
inversion.

c) Precise friction laws: better precision can be
achieved by Nikuradze and Hofer formulae [3][4]. These dif-
ferential formulae can be analytically integrated under assump-
tion of slow variation of temperature and compression factor
over the pipe. If needed, the long pipes can be subdivided
into smaller segments to achieve the necessary precision of
the modeling. This piecewise integration approach is similar
to the finite element method in modeling of flexible materials,
flow dynamics, etc. The resulting formulae have the same
quadratic form (1), with the resistance R(Q,P1, P2) weakly
(logarithmically) dependent on the flow and the pressures.
Direct comparison between the quadratic and Hofer pipe laws
on our test networks shows the difference on the level of 7-
10%. The practical use of calculations with the approximate
quadratic formula is a rapidly computable starting point for the
subsequent refinement iterations with the precise formula. The
gravitational term, available in the precise formula and taking
into account the profile of the terrain, can also be embedded
in the quadratic formula:

P1|P1|(1 + γ)− P2|P2|(1− γ) = ... (16)
γ = µg(H1 −H2)/(RgasTz),

where the dots denote the flow-dependent right part, in any
form that we have considered. The dimensionless hydrostatic
factor γ is determined by the gravitational acceleration g, the
height difference H1 − H2 and the usual gas parameters. In
real problems, the parameter γ is small, |γ| � 1, so the factors
(1±γ) do not change the signature of the terms in the equation.

d) Inverse reconstruction: for practical purposes, it is
enough to solve the problem on the reduced graph, the topolog-
ical skeleton. The users are mainly interested in the values of
flows and pressures at the end points of pipe subgraphs, where
they are connected to active elements such as compressors and
regulators or directed to the end consumers. One also needs
to control the feasibility indicator P > 0. As we now show, it
is enough to control this indicator at the endpoints.

Consider GSPG operations in the presence of nodes with
negative pressure. For parallel connection, in the presence of
negative pressure in the end node, it remains there after the
reduction. For series connection, if there is negative pressure
at the intermediate node, it will also be negative at the end
node downstream. Indeed, considering the most general case
with gravity corrections,

P3|P3|(1− γ) = P2|P2|(1 + γ)−R2Q|Q|, (17)

since the factors (1± γ), R2 are positive, for P2 < 0, Q ≥ 0,
we get P3 < 0. Only contraction of a leaf with Qset > 0 can
be a problem, since this procedure can hide a negative pressure
node downstream. As we have already explained, there is an
option to block contracting leafs with nonzero Qset. In this
case, it suffices to check P > 0 at the end nodes of the pipe
graph.

On the other hand, the data recovery in reduced elements
is a straightforward analytical procedure. For this, a complete
reduction history with all intermediate parameters and/or tab-
ulated functions must be recorded. Then, the above-described
inverse operations can be applied. On the graph obtained, it is
possible to monitor the fulfillment of the condition P > 0 or
the enhanced condition P > 1 bar or any other inequality on
pressures and flows.
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e) Level 3, Qset movement algorithm: consider the two
graphs depicted in Figure 6. Assuming that the central element
is described by the general equation F (P1, P2, Q), we require
the equivalence of solutions, connecting these equations with
the shift transformation of the argument:

Fb(P1, P2, Q) := Fa(P1, P2, Q+Qset), (18)
Fa(P1, P2, Q) = 0 ⇒ Fb(P1, P2, Q−Qset) = 0.

Figure 6. Qset movement algorithm.

As a result, it is possible to move the Qset specifier along
a graph to an arbitrary place. For example, all Qset specifiers
can be moved to the Pset node, which should be present
in each connected component of the graph. In this case, the
undefined flow in this node will be shifted by the total Qset in
the subgraph. Alternatively, one can move all Qset specifiers
into one main consumer, who will represent all consumers
in the subgraph. Note that such transformations change the
distribution of flows in the graph, representing only a virtual
distribution, which is visually unsimilar, but mathematically
equivalent to the original one. To represent the result, of course,
all the displaced Qset specifiers must return to their places
using inverse transformations. Note also that the argument
shifts change the position of zero and violate the oddness of the
functions. This requires to modify the tabulation algorithms;
the easiest way is to consider all dependencies as monotonic
functions of general form.

f) Not only pipes, combining 2D characteristic maps:
after all pipe subgraphs are reduced to 2-pins, the functions
can be transformed to a more general representation, in one of
the equivalent forms:

Q = F (P1, P2), P1 = F (P2, Q), P2 = F (P1, Q). (19)

All other elements, such as compressors and regulators, can be
represented in the same way. Such a representation can use the
2D-tabulation (pixmaps) algorithms described in [8], as well as
piecewise linear monotone extensions outside of the working
region. As a result, GSPG reduction can be continued at the
level of 2D functions. Thus, our proposed strategy is to keep
the low-dimensional representations as long as possible, such
as quadratic equations or 1D-splines for pipes, and then, after
the network is strongly reduced, proceed to pixmaps.

V. IMPROVED ALGORITHMS

g) Triangulation: yet another possibility [8] is the rep-
resentation of element equation as triangulated surface in the
space of main variables (P1, P2, Q), see Figure 7. Such a
surface defines a continuous piecewise linear function, e.g.,
P2(P1, Q), whose monotony conditions are related with the
direction of normal at each triangle. Namely, the normal
n should be directed in octant, corresponding to (+,−,−)
signature. This property can be exhaustively checked for all
triangles. Practically, the marginal signatures, e.g., (+,−, 0),

Figure 7. An example of triangulated representation P2(P1, Q).

as for some triangles in the figure, are also allowed, if one
adds a linear function ε(P1 − P2 − Q), with small positive
regularization parameter ε, to the element equation.

When specified in a box on (P1, Q) plane, the element
equation can be continued outside of the box by the formula
[6]:

P̃2(P1, Q) = P2(P̂1, Q̂) (20)
+kP (min(P1 − Pmin, 0) + max(P1 − Pmax, 0))

+kQ(min(Q−Qmin, 0) + max(Q−Qmax, 0)),

P̂1 = min(max(P1, Pmin), Pmax),

Q̂ = min(max(Q,Qmin), Qmax),

with constants kP > 0, kQ < 0. It is a particular case of more
general formula:

F̃ (x1, ..., xn) = F (x̂1, ..., x̂n) (21)

+

n∑
i=1

ki(min(xi − ai, 0) + max(xi − bi, 0)),

x̂i = min(max(xi, ai), bi)

for continuation of the function defined in a box in Rn,
monotone with respect to each argument, to the outside,
preserving the signature sgn(k1, ..., kn) = sgn(∇F ).

In this way, we obtain a piecewise linear representation
of the function, fulfilling all necessary monotony conditions
in the whole R2 domain. As a result, the system satisfies
the conditions [17] for the existence of solution of a system
f(x) = c for piecewise-linear function f and arbitrary c. This
solution can be found using Katzenelson algorithm [18][17][5],
converging to the solution in a finite number of steps. As an
alternative, one can use a standard Armijo rule [19], applicable
for smooth functions, which for the considered piecewise linear
functions also converges to the solution in a finite number of
steps. The reason for this is that the both algorithms require a
finite number of steps to find a triangle where the solution is
located, then, due to the linearity of the functions, converge to
the solution in one iteration.
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Figure 8. Illustration to barycentric coordinates.

Considering this representation in the context of topolog-
ical reduction, we see that the necessary lookup operation
P

(2)
2 (P

(1)
2 (P1, Q), Q) for serial connection is straightforward.

For parallel connection, consider the formula (20), representing
the element equation as continuous piecewise linear function
on the whole plane R2. It can also be reprojected to the other
axes, e.g., Q(P1, P2). Then we make a new triangulation with
the required resolution on a square (P1, P2), and evaluate Q
in the vertices of the triangles. Repeating the same operations
with the parallel element, sum Q1 + Q2 in the vertices of
the shared triangulation and continue outside of the square
by the Q(P1, P2)-analog of the formula (20). It can be then
reprojected back to P2(P1, Q)-representation if needed. The
operation count for the reduction, valid for both serial and
parallel connections, is O(Ntri) multiplied to the cost of one
evaluation of the triangulated function representation. This
cost varies between O(Ntri) if direct search of triangle is
implemented in the function evaluation and O(1) for indexed
search.

h) Low level implementation: construction of trian-
gulated surface starts with a subdivision, done either with
experimentally measured points or with continuous models,
sampled with the necessary precision. This is done once in a
preprocessing stage and the list of triangles is stored. Further,
during the solution stage, for a given point (vx, vy) = (x, y) =
(P1, Q) the triangle is found, containing this point. The search
is done either directly, or with creating an auxiliary indexing
structure during the preprocessing. This structure can be, e.g., a
rectangular grid, assigning a sublist of triangles to a particular
cell. After the triangle is found, its representation in barycentric
coordinates is used, see Figure 8. Namely, the weights wi are
introduced at the vertices vi of the triangle, i = 1..3, such that∑

i

wi = 1, vk =
∑
i

wiv
k
i , k = x, y. (22)

The same weights are used for linear interpolation of the
function vz = z = P2 we are looking for:

z =
∑
i

wizi. (23)

Solving (22) for wi and substituting it to (23), obtain:

wi = l0i + lxi x+ lyi y, i = 1..3, (24)
z = l04 + lx4x+ ly4y,

lki = nki /d, k = 0, x, y, i = 1..4,

n = {{x3y2 − x2y3,−y2 + y3, x2 − x3},
{−x3y1 + x1y3, y1 − y3,−x1 + x3},
{x2y1 − x1y2,−y1 + y2, x1 − x2},

{x3y2z1 − x2y3z1 − x3y1z2
+x1y3z2 + x2y1z3 − x1y2z3,
y3(z1 − z2) + y1(z2 − z3) + y2(−z1 + z3),

x3(−z1 + z2) + x2(z1 − z3) + x1(−z2 + z3)}},
d = x3(−y1 + y2) + x2(y1 − y3) + x1(−y2 + y3).

The necessary and sufficient condition for the point to belong
to the triangle is that all wi ≥ 0. Note also that the function z
in the triangle is linear with respect to (x, y), and its gradient
is given by

(∂z/∂x, ∂z/∂y) = (lx4 , l
y
4). (25)

i) Existence and uniqueness of solution: mathemati-
cally, the difference between the continuous piecewise linear
and smooth modeling in our class of problems is that the
mapping used in the equation f(x) = c is either invert-
ible continuous (homeomorphism) or invertible differentiable,
for both forward and backward mappings (diffeomorphism).
Any smooth mapping can be approximated by the piecewise
linear one. For the considered class of element equations,
any piecewise linear representation can be approximated by
a smooth surface with the same signature of the normal.
For this purpose, one should simply smooth the corners for
the polyhedrons in 3 dimensions, representing our element
equations. In paper [6] we have proven that if the element
equations in the form F (P1, P2, Q) = 0 everywhere possess a
signature of the gradient ∇F = (+,−,−) and all connected
components of the network have Pset-entries, then the Jacobi
matrix J = ∂f/∂x of the system f(x) = c, composed of
element and Kirchhoff equations, is globally non-degenerate.
According to [19], the boundness ||J−1|| < C provides
convergence of Newton method with Armijo line search rule,
being started from an arbitrary point, therefore, the solution of
the system f(x) = c always exists. Also, non-degeneracy of
the Jacobian means that the mapping f(x) does not have folds
or other singularities, as a result, the system f(x) = c at all c
possesses the same number of solutions, preimages of c under
mapping f . This does not mean yet that there is a unique
solution/preimage. Examples of non-trivial topology can be
constructed, possessing everywhere non-degenerate Jacobian
and having two or more preimages, e.g., mapping of torus to
itself with n > 1 winding numbers. Such examples can also
be constructed for continuous piecewise linear mappings. To
obtain a unique solution in the considered Rn case, we need to
specify the behavior of the mapping at infinity. Below, we will
show that in the considered problem, the element equation can
be continued to infinity as a linear function with the necessary
signature. As a result, the mapping f(x) at infinity will be
linear with non-degenerate Jacobian. Such a mapping with
necessity has a single preimage, then due to the absence of
singularities, there will be a single preimage of the mapping
f(x) everywhere. Thus, we prove that the mapping f(x) is true
diffeomorphism and the system f(x) = c for the considered
class of problems possesses a unique solution.

Lemma: the element equation F (P1, P2, Q) = 0 with
smooth F of signature ∇F = (+,−,−) in a box can be
continued to infinity as a linear function, keeping the same
signature everywhere.

Proof: at first, consider the continuation (21) of the func-
tion F , a linear function F0 =

∑
i kixi and linear interpolation

between them: F1 = (1 − w)F̃ + wF0, where w(x) ∈ [0, 1]
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Figure 9. Illustration to Armijo rule. At the top: normal situation, at the bottom:
stagnation of the algorithm.

is the weight function. Consider two spheres |x| = R1,2, the
first one contains the box of original F definition, the second
one is of a greater radius R2 > R1. The function w(x) is
varied smoothly from 0 inside R1-sphere to 1 outside R2-
sphere. Computing the gradient:

∇F1 = (1− w)∇F̃ + w∇F0 +∇w(F0 − F̃ ). (26)

The sum of the first two terms has correct signature automati-
cally. For the third term, |F0− F̃ | < C is bounded, due to the
equal slopes ki in the linear function F0 and the continuation
F̃ . By choosing R2 � R1, the function w(x) can be selected,
so that |∇w| will be arbitrarily small. As a result, the third
term can be made arbitrarily small, so that it will not change
the signature of the gradient, defined by the sum of the first
two terms.

Note that if the function F everywhere satisfies monotony
conditions, it becomes unimportant, where [ai, bi] limits of the
box are set and how R1 and R2 spheres are selected. For every
choice, the uniqueness of solution becomes proven. Therefore,
the continuation beyond the box and interpolation between R1

and R2 spheres can be considered as auxiliary elements of the
construction, provided for the purpose of proof only.

In more general terms, in differential topology, a degree of
mapping f(x) = c is defined as a sum deg f =

∑
sgn det J ,

taken over all preimages of a point c. This characteristics does
not depend on the choice of a point c (assuming that the point
is regular, det J 6= 0). Actually, we have proven that at infinity
deg f is equal +1 or −1, dependently on the sign of Jacobian
at the linear continuation of the mapping. Then, it is the same
everywhere, and since the Jacobian always has the same sign,
the number of preimages is always 1, the system has a unique
solution.

j) A choice of Newtonian stabilizer: as already men-
tioned, a combination of Newton method with Armijo line
search rule [19] has guaranteed convergence in our problem
class. A similar proof is also available for Katzenelson al-
gorithm [17]. Armijo rule serves as a stabilizer to Newton
method, which does not allow to perform too large steps,
accepting only the steps which reduce the norm of the system
residual. Katzenelson algorithm does the same for piecewise
linear systems, testing whether the solution is located in a

current piece, and if not, going along the Newton direction to
the adjacent piece. Currently, we consider the mixed system
of linear, piecewise linear and non-linear equations and prefer
more generic Armijo rule. In certain cases, this leads to
the following problem. Some of our elements (compressors,
regulators in gas transport networks) possess degenerate equa-
tions, with zero signature instead of the prescribed ±1. Such
equations are regularized, generally, adding a small linear
function with a definite signature. However, numerically these
systems are almost degenerate. In particular, we observe a
stagnation of iterations when the problematic region is ap-
proached. The reason is that Armijo rule attempts to reduce the
function, which is almost constant in such regions, performing
a plateau optimization, see Figure 9. Consider normalized
Newton direction n = dx/|dx|, dx = −J−1f . A variation of
the norm of residual, in linear approximation, in that direction
is d|f | = fTJns/|f |, where s is the distance along n. As a
result, d|f | = −|f |s/|dx|. Approaching the degenerate region,
in general position, |dx| → ∞, thus, d|f | → −0, in linear
approximation the norm of residual along Newton direction is
almost constant. This leads to stagnation of iterations. Indeed,
∆|f | = c1s + c2s

2 + ..., a minimum of this function of
s is located at s∗ = −c1/(2c2), at c1 < 0 and c2 > 0.
Since c1 → −0, any non-zero quadratic term will lead to
the vanishing step s∗ → 0. Practically, being stopped at the
given number of iterations, the stagnation of the algorithm is
equivalent to its divergence.

To overcome this issue, we propose a relaxed version of
Armijo algorithm, which recognizes degenerate situation and
allows for larger steps in the problematic region.

Algorithm (relaxed Armijo rule):
repeat until convergence:

do Newtonian step dx

set λ = 1

trial point: xt = x+ λdx

do λ = λ/2 (* bisection *)
if |f(x)|/|dx| < ξ0

then cond = (|f(xt)| < |f(x)|+ df)

else cond = (|f(xt)| < (1− αλ)|f(x)|)
until cond (* exit condition *)
x = xt (* trial point accepted *)

The algorithm detects plateau situation by estimating of the
lowest SVD eigenvalue (Singular Value Decomposition):

Jdx = −f, n = dx/|dx|, (27)
ξ2min ≤ ξ2 = nT (JTJ)n = |f |2/|dx|2.

It has two parameters: ξ0 is the upper threshold for the
estimated lowest eigenvalue, df – the allowed increase of the
residual in plateau situation. The exit condition is therefore
modified: for ξ < ξ0 a slight increase of the norm of the
residual is allowed, not more then by df . Otherwise, a standard
sufficient decrease rule is applied.

Our tests show that this modification of the algorithm dras-
tically improves the convergence rate, for 60 tested networks
the old algorithm brings 12 scenarios to divergence, while the
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new relaxed version diverges only in 1 case, where it causes
the Newton iteration to cycle. Switching the relaxation off for
this particular scenario helps to achieve 100% convergence.

In the considered almost degenerate cases none of the
algorithms, standard or relaxed Armijo rule, provide the guar-
anteed convergence. Empirically, the relaxed version behaves
better. A construction of stable algorithm for processing almost
degenerate cases remains a challenge for further developments.

k) Coupling to other sectors: note that topological
reduction is possible not only for gas transport networks, but
also for other network problems with element equations with
the power law Qα or other from the considered forms above.
A practically important problem is a coupling of transport
networks from different energetic sectors, e.g., gas, water,
electricity, etc. In our previous work [7] it was shown how the
coupling of sectors can be done on the modeling level. The
question of stability and global convergence of solution for
multi-sectoral case has been insufficiently studied. However,
we can already identify two cases where the solution procedure
is globally convergent.

Case A: consider two sectors, both satisfying the conditions
of global convergence from [6]. If two sectors are not cou-
pled, their Jacobi matrix possesses block-diagonal structure.
The coupling produces terms located in non-diagonal blocks.
Jacobian of the whole system depends continuously on these
terms and is non-degenerate when these terms are switched
off. Therefore, when the coupling between the sectors is
sufficiently weak, then the Jacobian remains non-degenerate. In
practice, the usage of this property can encounter one obstacle.
If the element equation has marginal signature of derivatives,
the Jacobian is almost degenerate and the weak coupling can
lead it to the complete degeneracy.

Case B: consider, for definiteness, the coupling of gas trans-
port and water thermal sectors, see Figure 10. The modeling of
water thermal sector has been described in [7]. In the simplest
case, it is represented by Kirchhoff law for thermal energy and
element equations of the form:∑

e

cvQeTe = 0, Tn1 + εTn2 = Te, Qe > 0. (28)

The temperature in the edge Te is defined by the temperature
Tn1 in the node upstream, also a small reverse diffusive
term is introduced for regularization. In the presence of the
given Tset temperature per every connected component of the
graph, the problem is linear and non-degenerate. Moreover, the
problem belongs to the already described class [7] with (linear)
Kirchhoff nodal equations and (linear) element equation with
(marginally) correct signature. For the coupling of sectors, an
element is introduced representing a combustion chamber and
a heat exchanger. Their equation

∆E = ηHmQg = cvQw(Tn2 − Tn1), (29)

in fact, transforms the energy of combustion of gas HmQg ,
with a certain efficiency coefficient η, to the thermal energy
of water cvQw∆T . In this case, the definition of flows in
one sector, gas or water thermal, can be renormalized, for
the purpose of proof only, so that the energy from one
sector will flow directly to another sector. In this way, a
combined problem will be formulated, with Kirchhoff law for
the energy flow and all elements possessing correct signature.

Figure 10. An example of coupling between gas and water thermal sectors.
Gas (orange), water thermal (blue), combustion chamber (CC), heat exchanger
(HE).

Therefore, for the combined problem the global convergence
can be proven, without even using the fact that the water
part of the system is linear. The generalization to the case of
multiple contact points between sectors with different transfer
coefficients is still to be studied. An interesting property of
the considered formulation of multi-sectoral problems in the
field of energetics is that all flows participating in Kirchhoff
equations are energetic and universal, while the other type of
flows, e.g., mass flow, molar flow, volume flow, etc., are related
to the energetic ones by proportionality coefficients, depending
on the particular sector.

VI. CONCLUSION

In this paper, the general method of topological reduction
for the network problems has been presented, using gas trans-
port networks as an example. The method uses a contraction
of series, parallel and tree-like subgraphs, containing the
edge elements, described by quadratic, power law or general
monotone dependence. This way, we achieve the goal of
significant lossless reduction of the graphs and we accelerate
solution procedure correspondingly. A large set of realistic
network examples of different complexity have been used for
the benchmarking of the method. The statistical distribution for
the reduction and the acceleration factors has been evaluated,
together with corresponding minimum, maximum, median and
mean values. Comparing with the original network (level0),
the elimination of superconductive elements and disconnected
parts (level1) brings the reduction factor into the range 1.9-2.9,
further GSPG reduction with fixed Qsets (level2) multiplies it
by the factor 1.26-2.9, then GSPG reduction with moving Qsets
(level3) gives a projected multiplicative factor 1.6-2.3. We
have done performance comparison between the numerically
implemented levels 1, 2. While level1 is absolutely necessary
for the convergence, level2 brings the acceleration factor varied
from 0.34 (deceleration) to 61.4 (strong acceleration), with
median 1.54 and mean 2.71, for the solution procedure, with
a little overhead for GSPG pre-filtering.

The possible extensions of the method include iterative
schemes for Nikuradze and Hofer formulae, rapid inverse
reconstruction of data in reduced subgraphs, Qset movement
algorithm for deeper reduction and the extension of the reduc-
tion methods to other elements using 2D tabulation (pixmaps).
Additional extensions have been proposed, including triangu-
lated element equations, continuation of the equations at infin-
ity, providing uniqueness of solution, a choice of Newtonian
stabilizer for nearly degenerated systems. The generalization
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of the method for various sectors in the field of energetics
has been proposed, including gas networks, water networks,
electric networks, as well as for coupling of different sectors.
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