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Abstract—A general approach for change detection in vibra-
tion signals with application in predictive maintenance ofrotating
machines represents the object of the paper. After an overview of
the maintenance approach, the condition monitoring in predictive
maintenance is presented. Also, some vibration analysis tech-
niques, making use of change detection, independent component
analysis, time-frequency analysis and energy distribution, with
application in predictive maintenance of rotating machinery, are
discussed. They can be combined in a unified approach, offering
new possibilities for more robust detection of changes in vibration
signals, and assuring proactive actions in predictive maintenance.
Finally, some experimental results for detection of faults in
rolling element bearings and in a rotating machine operating,
an industrial pump, are presented.

Index Terms—Predictive maintenance; Change detection; In-
dependent component analysis; Time-frequency analysis; Energy
distribution; Rolling element bearings; Industrial pump.

I. I NTRODUCTION

Vibration analysis is the one of the most effective tool
used to check the health of plant machinery and diagnose the
causes. The health of machine is checked by routine or con-
tinuous vibration monitoring with sophisticated instruments,
giving an early indication of a possible failure and offering
countermeasures to avoid a possible catastrophic event. The
paper presents some vibration analysis techniques, and dif-
ferent combination of these, in order to offer a framework for
predictive maintenance of rotating machines and represents an
extended and enhanced version of [1].

Vibration monitoring problem consists of machines con-
dition and the change rate of its behavior. It can be ascer-
tained by selecting of a suitable parameter for deterioration
measuring and recording its value for further analysis. This
activity is known as condition monitoring. The great parts
of the defects encountered in the rotating machinery give
rise to a distinct vibration pattern, or ”vibration signature”.
Vibration monitoring has the ability to record and identify
vibration ”signatures” for monitoring rotating machinery. Vi-
bration analysis is applied by using transducers to measure
acceleration, velocity or displacement, depending of the fre-
quencies making the object of the analysis. Careful scrutiny

and deep study of vibration ”signature” eliminate different
fault possibilities and concludes to single fault. A logical and
systematic approach has proved successful in diagnosing the
basic causes. This applies to small, medium, large, direct cou-
pled machines, motors, pumps, generators, turbo-machinery
fans and compressors. Some machines are directly coupled to
motor or some through gear boxes.

Sometimes, the vibration monitoring makes use of different
change detection (CD) techniques. From statistical point of
view, these techniques identify changes in the probability
distribution of a stochastic process. The problem involvesboth
detecting whether or not a change has occurred, or whether
several changes might have occurred, and identifies the times
of such changes produced. These techniques can be classified
either as time, frequency or time-frequency domain based
algorithms. They are based on distance measures, artificial
intelligence, fuzzy logic, statistical differences, etc., applied
on the original signals or on the preprocessed signals, in order
to amplify the changes in their dynamics. Presently, the CD
problem represents a key point, when preventive maintenance
is replaced by predictive maintenance.

Some features, among the amplitude levels in the time do-
main, are easily extracted and classified, but they are affected
by noise. Energy distribution in the time-frequency domain
[2], involving more operations, can lead to more robust change
detection in vibrating signal dynamics. Also, parametric signal
processing algorithms can be used for change detection if there
is an accurate model of the signal, in a selected representation
space. However, the approach, based on modeling techniques,
has limitations as well.

The time-frequency analysis (TFA) [3], in comparison with
the time-domain analysis, usually provides a simpler interpre-
tation and comprehension of nonstationary signals, with large
application in vibration monitoring. The idea is to analyzethe
behavior of the energy distribution (ED), i.e., the distribution
of energy at certain instant or certain frequency band or
more generally [2], in some particular time and frequency
region. The results can represent a starting point in solving CD
problems. So, new analysis facilities in CD problem solving,
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are offered by the usage of the entropy based measures,
such as Kullback-Leibler distance, Rényi distance, and Jensen
difference, adapted to the time-frequency plane [4].

The paper is organized as follows. Section II refers to
maintenance approach, while Section III presents the condition
monitoring problem in predictive maintenance. Section IV has
as subject change detection in vibration monitoring and is
followed, in Section V, by a general view on the main signal
processing techniques involved in vibration monitoring, with
application in predictive maintenance of rotating machines.
Section VI discusses different approaches in change detection
of vibration signals based of signal processing techniquespre-
sented in Section V. Finally, in Section VII are discussed two
case studies having as object fault detection in rolling element
bearings (REB), and in a rotating machine, an industrial pump.

II. M AINTENANCE APPROACH

Usually, the maintenance is performed aspreventive main-
tenance, at fixed time intervals, or asreactive maintenance,
when an actually fault produced. In the last case, it is necessary
to perform immediately maintenance actions, while in the
predictive maintenance, after a warning of a fault producing,
the problem solving is carried out when necessary, so to avoid
disruption of machine operating. A comparison of different
maintenance types, with disadvantages and advantages is given
in [5]. We present in the following some aspects concerning
these approaches, to be taken into account, mainly in predictive
maintenance of rolling element bearings.

A. Reactive Maintenance

This approach refers to machine running till a fault pro-
duced and involves fixing problems only the fault occurs. It
represents the simplest and cheapest approach in terms of
maintenance costs; often it implies additional costs, usually
due to unplanned downtime. It can be seen as an easy solution
to many maintenance strategies.

In rotating machines, rolling element bearings represent the
most critical components, both in terms of initial selection
and as well as in how they are maintained. Monitoring the
condition of rolling bearings are essential and vibration based
monitoring is frequently used to detect an early fault.

B. Preventive Maintenance

The preventive maintenance implies the scheduling of regu-
lar machine shutdowns, even if they are non required; this will
increase the maintenance costs as some machine components
are replaced, when this is not necessarily required. Some
risks could appear due to replacing a defective machine
part, incorrectly installing or reassembling parts. A frequently
result of preventive maintenance consist of the fact that the
maintenance is performed when there is nothing wrong in
machine operating. Significant costs saving can be obtained
by predictive maintenance.

C. Predictive Maintenance

The predictive maintenance refers to the process of mon-
itoring the machine condition as it operates in order to
predict which components are likely to fail and when. So,
the maintenance can be planned and there is the possibility
to change only those components that produce failure signs
in its operating. The predictive maintenance principle consist
of take measurements, to be used for prediction of the ma-
chine components behavior, susceptible of failure, and when
these will be produced. Usually, these measurements include
machine vibration, and machine operating parameters: flow,
temperature, pressure, etc.

The continuous monitoring detects, in advance, the onset of
component problems, so the maintenance is performed when
needed. By this approach, unplanned downtime is reduced, as
well as the risk of catastrophic failure. This will increasethe
efficiency and reducing of the costs. By predictive maintenance
strategy, applied in rolling bearings, the costs can be avoid,
giving in advance, a warning of a possible failure, enabling
remedial action in advance.

III. C ONDITION MONITORING

Condition monitoring consists of machine monitoring for
early sign of failure so that the maintenance activity can be
better planned, with reduced down time and costs.

The monitoring of vibration, temperature, voltage or current
and oil analysis is frequently the most used. Vibration is the
most widely used for its ability to detect and diagnose failure
problems, but it offers also a prognosis on the useful life
and possible failure mode of the machine. The prognosis is
much more difficult to be performed and usually relies on
continue monitoring of the fault to estimate the time when the
machine will become unusable, taking into account the known
experience in similar cases.

Vibration monitoring can be considered the most widely
used predictive maintenance technique, and can be applied to
a wide area of rotating machines. Machine vibration comes
from many sources such as bearings, gears, unbalance etc.,
each sources having its own characteristic frequencies, mani-
festing as a discrete frequency, or as a sum and/or difference
frequency. It can result complex vibration signals which put
problems in vibration analysis, but some techniques, with
a high sensitivity to faults, can reduce the complexity of
the analysis. Bearing defects can affect higher frequencies,
offering a basis for detecting incipient failure.

Usually, the detection uses the basic form of vibration
measurement, where the vibration level is measured on a
broadband basis (10-1000 Hz or 10-10000 Hz). The spikiness
of the vibration signal, in machines with little vibration other
than in the case of the bearings, is highlighted by the Crest
Factor, indicating an incipient defect; also a great value of the
energy, given by RMS level, indicates a severe defect.

Only this type of measurement offers limited information,
but it can be useful for trend evaluation; increasing vibration
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level highlights the machine condition deterioration. Also, a
comparison of the measurement level with some vibration
criteria from literature proves to be useful in practice.

Generally, rolling bearings produce very little vibrationin
faults absence, and present specific frequencies when a fault
produced. At the beginning of a fault, for a single defect, the
vibration signals present a narrow band frequency spectrum.
As the malfunction increases, it can be noted an increase
in the characteristic defect frequencies and sidebands, with
a drop in these amplitudes, broadband noise increasing and
considerable vibration at shaft rotational frequency [5].At very
low machine speed, low energy signals are generated by the
bearings, difficult to be detected. Also, bearings located within
a gearbox are difficult to monitor, because of the high energy
at the gear, which can mask the bearing defect frequencies.

IV. CHANGE DETECTION IN V IBRATION MONITORING

The CD problem is frequently present for continuous moni-
toring of systems like machinery, structure, process, equipment
or plant, using data provided by the sensors. So, it is possible
to anticipate the abnormal functioning or these systems, before
it is produced and to reduce the maintenance costs. The normal
behavior of a system can be described by a parametric model,
without using artificial excitation, reducing the speed of the
equipment or temporary stop. If such early detections are
possible, large changes of the system can be prevented, and
the effects of defects, mechanical fatigue, etc. can be quickly
anticipate, raising the availability of the system.

The applications in this field make use of theories based on
statistics, providing theoretical instruments to solve the early
detection problem. Many industrial processes are based on
known physical principles, with available analytical models,
and for very complicated or unknown models, semi-physical
or black-box models can be used. Vibrations analysis and
surveillance of machinery or industrial equipments represent
important cases of detection and diagnosis problems.

The CD problem refers to detection of the change (the
alarm) and evaluation of the change (estimation), providing
information, in some case, for diagnosis (source isolation). The
performance criterion of a change detection algorithm consists
of its ability to correctly detect the changes, with minimum
delay and minimum probability of false decisions. So, it must
respond to the small changes (sensitivity to changes), and does
not be affected by the disturbances, noise or modeling errors
(robustness of the algorithm). The sensitivity and robustness
properties are usually in conflict, a good change detection al-
gorithm must perform a compromise between the two aspects.

Two basic approaches in CD are reported as based on quan-
titative models (using analytical redundancy) and qualitative
models, which can be conveniently combined to improve the
robustness of the generation of the quantitative residuals. In
the case of analytical exact models absence, learning models,
such as fuzzy and neural models, can be used. More, the neural
networks can be used for classification of the residuals, while

fuzzy logic is useful for decision making. The methods based
on quantitative models are oriented to identification (parameter
estimation), observers (state estimation) and parity space.
Some heuristics results, obtained from the previous experience,
can be used for diagnosing the origins of the failure or change,
based on the dispersion of the characteristics.

Almost all CD solutions assume that the monitored sys-
tem can be described, with sufficient precision, by a finite-
dimensional linear model. In practice, if the system is more
complex than the structure, described by a finite-dimensional
model, the parameter estimates will still converge, but their
values can be strongly dependent on the experimental condi-
tions. The algorithms will not be able to separate the changes
determined by the external conditions from those produced by
the internal defect of the investigated system, so the classical
tests will fail. The problems mentioned above point out the
requirement of the robust CD algorithms, able to separate
the changes determined by the external conditions from the
changes of the internal dynamics of the system.

The first generation of CD algorithms is based on strong
hypotheses, or strong assumptions, which are difficult to verify
in practice. So, a second generation of solutions was required,
insensitive to the uncertainty of the system’s dynamics, to
the operating environment, and to large noise, statistically
unknown. In our opinion, among the central problems to be
addressed in the CD area refer to robustness, sensitivity and
versatility. The lack of robustness of the classical algorithms
concerns the failure of the detection, if one or more of the
hypotheses assumed during the design are not verified in
practice. The sensitivity concerns the ability of the algorithm
to detect the change, even if there are small scale incipient
changes. Finally, the versatility concerns the ability of the
methods and techniques to solve more CD problems, using
the same set of algorithms.

To solve the vibration monitoring problem different tech-
niques have been developed, one can be mentioned: analy-
sis of overall vibration level, frequency spectrum, envelope
spectrum, cepstrum analysis, etc. [5]. The success of vibra-
tion monitoring, in many practical cases, requires specialized
functions and tools. Simple application of CD techniques on
original mono- or multivariate vibration signals can assure
the successful of monitoring. Sometimes, it is necessary that
some signal pre- or postprocessing procedures to be applied,
to emphasize and highlight the characteristics of the vibra-
tion signals making the object of the analysis. So, some
signal processing techniques can be used in conjunction with
CD techniques: independent component analysis (ICA), time-
frequency analysis (TFA), energy distribution (ED) evaluation
in time-frequency domain. These techniques are implemented
in a software toolbox, Matlab VIBROTOOL Toolbox [6], built
as a set of programs that compute specific parameters and
solve specialized tasks for vibrating monitoring.

The CD problem can be solved by change point estimation
(mean change), change detection using one and two model
approach, with different distance measures and stoping rules
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[7], multiple change detection [8], detection and diagnosis of
model parameter and noise variance changes [9], for mono-
and multivariable vibration signals. Some algorithms, making
the object of [10] and [11] in CD, represented the starting
points in developing of these algorithms. The analysis of
the behavior of the vibration signals reveals that most of
the changes that occur are either changes in the mean level,
variance, or changes in spectral characteristics.

The toolbox is used in the framework offered by an ex-
perimental model, VIBROCHANGE, for vibrational processes
analysis using advanced measuring and signal analysis tech-
niques [12]. The main modules involved in VIBROCHANGE
include:

• VIBROSIG - vibration and other signals measurement
module.

• VIBROTOOL - Matlab Toolbox for change detection and
diagnosis, with modules dedicated to change detection
and segmentation problem solving, among others.

• VIBROMOD - hardware module for change detection and
diagnosis implementing some components of the VIBRO-
TOOL module, for on-line analysis and monitoring of
vibration processes [13].

For laboratory condition working, a generator of vibrations
in controlled operation mode, for different electro-mechanical
processes, VIBROGEN, has been developed. It includes an
electrical motor, as well as bearings and other gearboxes, to
emulate an industrial process. The system is an open one and
different incipient faults can be generated.

V. SIGNAL PROCESSING INV IBRATION MONITORING

The success of vibration monitoring requires specialized
functions and tools to compute specific parameters and solve
specialized tasks for change detection using classical and
recent techniques.

Sometimes, only simple application of CD techniques on
original mono- or multivariate vibration signals can assure the
successful of monitoring. Frequently, it is necessary to apply
some signal pre- or postprocessing procedures, to emphasize
and highlight the characteristics of the vibration signalsmak-
ing the object of the analysis. So, some signal processing
techniques can be used in conjunction with CD techniques: in-
dependent component analysis (ICA), time-frequency analysis
(TFA), energy distribution (ED) evaluation in time-frequency
domain, etc. These techniques are briefly described in in the
following.

A. Change Detection - CD

We present here only the framework in which the CD
problem will be solved in the case studies presented in Section
VII, using the Maximum A posteriori Probability (MAP)
estimator [8].

CD allows for a first detection of changes in the original
vibration signals, or in other signals, resulting after a possible
preprocessing of these. A frequently used model, in this

case, is a linear regression model with piecewise constant
parameters [8],

yt = φT
t θ(i) + et, E(e2t ) = Rt, (1)

where yt is the observed signal,θ(i) is the d-dimensional
parameter vector in data stationary segmenti, φt is the
regressor; the noiseet is assumed to be Gaussian with variance
Rt.

The used model is referred to as changing regression,
because it changes between regression models. Its important
feature is that the jumps divide the vibration signals into a
number of independent segments, since the parameter vectors
in different segments are independent. Some important model
derived from the model, whereφt has different expressions
[8]. In this framework, the problem of segmentation between
”homogenous” parts of the data arises more or less explicitly.

B. Independent Component Analysis - ICA

Independent Component Analysis (ICA) is closely related
to the blind source separation (BSS) [14], offering new solu-
tions for vibration and noise analysis [15]. The use of BSS
techniques in conjunction with other techniques, such as CD
and TFA, proved very useful in vibration monitoring. So, it
is offered the possibility to translate the CD problem from
the original space of the measurements to the space of the
independent components (sources). The reduced number of
components, in this case, will simplify the monitoring problem
and the CD methods will be applied only for scalar signals;
BSS also provides a mixing model of the independent sources,
that point out how the source changes are reflected in the
original vibration signals, for diagnosis purposes. When it
comes to deal with mechanical signals, which are typically
characterized by an excessive complexity, BSS faces a number
of difficulties which seriously hinder its feasibility [15].

One of the frequently used model for BSS, assumes the
existence ofn independent signalss1(t), . . . ,sn(t) and the
observation of as many mixturesx1(t), . . . , xn(t), these mix-
tures being linear and instantaneous, i.e.

xi(t) =

n∑

j=1

aijsj(t) + ni(t) (2)

for eachi = 1, n, and compactly represented by the mixing
equation

x(t) = As(t) + n(t) (3)

wheres(t) = [s1(t), . . . , sn(t)]
T is an n × 1 column vector

containing the source signals, while vectorx(t) contains the
n observed signals and the squaren × n ”mixing matrix” A

contains the mixture coefficients.

The BSS objective is to recover the source vectors(t) using
only the observed datax(t), the assumption of independence
between the entries of the input vectors(t) and possible some
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


ŝ1
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Fig. 1. Signal mixing and separating in BSS.

a priori information about the probability distribution ofthe
inputs. It can be formulated as the computation of ann × n
”separating matrix”W whose output̂s(t) is an estimate of
the vectors(t) of the source signals, and has the form:

ŝ(t) = Wx(t) (4)

in the case of an instantaneous mixture (see Fig. 1).

For temporal coherent signals, the BSS problem can be
solved using second and higher order statistics, the well known
algorithms being SOBI (Second Order Blind Identification))
[16], and JADE (Joint Approximate Diagonalization of Eigen-
matrices) [17], among others.

C. Time-Frequency Analyis - TFA

The analysis, processing, and parameter estimation of vi-
bration signals whose spectral content changes in time are
crucial in many CD applications. In this case, TFA can
be of great interest, specially when the signal models are
unavailable. In those cases, the time or the frequency domain
descriptions of a signal alone cannot provide comprehensive
information for change detection. The time domain lacks the
frequency description of the signals. The TFA provides a
proper description of the spectral content changes as a function
of time.

The time-frequency representations (TFRs) can be classified
according to the analysis approaches [18]. In the first category,
the signal is represented by time-frequency (TF) functionsde-
rived from translating, modulating and scaling a basis function
having a definite time and frequency localization. For a signal,
x(t), the TFR is given by

TFx(t, ω) =

∫ +∞

−∞

x(τ)φ∗
t,ω(τ)dτ =< x, φt, ω >, (5)

where φt,ω represents the basis functions and∗ represents
the complex conjugate. The basis functions are assumed to
be square integrable, i.e., they have finite energy. Short-
time Fourier transform (STFT) [19], wavelets [20], [21], and
matching pursuit algorithms [20], [22], are typical examples
in this category.

The second category of time-frequency distributions (TFD),
known as Cohen’s shift invariant class distributions [3], char-
acterizes the TFR by a kernel function. TABLE I gives the
kernels used for main Cohen’s class time-frequency distribu-
tions.

Some remarks on properties of the main Cohen’s class
time-frequency distributions from TABLE I could be made.

TABLE I. K ERNELS USED FOR MAINCOHEN’ S CLASS TIME-FREQUENCY
DISTRIBUTIONS

Name Kernelφ(θ, τ)
SP

∫
h∗(u−

1

2
τ) exp−jθu h(u+ 1

2
τ)du

WVD 1

CWD exp−θ2t2/σ2

RID 2d Low pass filter inθ, τ space

The spectrogram (SP), suffers from the undesirable trade-
off between the resolution and frequency resolution. On
the other hand, the Wigner-Ville distribution (WVD) has a
high time-frequency resolution, but is known to suffer from
the presence of cross-terms. The Choi-Williams distribution
(CWD) overcomes the WVD limitation suppressing to a large
extent the cross-term interference, but some time-frequency
resolution is lost. The last distribution belongs to the so-called
Reduced Interference Distribution (RID), and also belongsto
the Cohen’s class, being an extension of the WVD.

Even if all TFDs tend to the same goal, each representation
has to be interpreted differently, according to its own proper-
ties. For example, some of them present important interference
terms, other are only positive, other are perfectly localized on
particular signals, etc. The extraction of information hasto
be done with care, from the knowledge of these properties.
We need a distribution that can reveal the features of the
signal as clearly as possible without any ”ghost” component
and to apply a TFD that can get rid of the cross-terms while
preserving a high time-frequency resolution.

D. Energy Distribution - ED

One of the simplest feature based signal processing proce-
dures in TFA is via energy distribution. The idea is to analyze
the distribution of energy at certain time instant or certain
frequency band or more generally, in some particular time and
frequency region. Such analysis is capable of revealing more
information about a particular phenomenon [2], [18].

Once the local frequency content has been obtained, using
TFA, an entropy measure can be evaluated for extracting the
information containing in a given position oft = n. The
Rényi entropy measures class [23], [24], with some significant
contributions [25], offers new measures for estimating signal
information and complexity in the time-frequency plane.

For a generic time-frequency distribution,Px(n, k), the
Rényi entropy measure has the following form:

Rα =
1

1− α
log2

(∑

n

∑

k

Pα
x (n, k)

)
(6)

wheren is the temporal discrete variable andk the frequency
discrete variable, withα ≥ 2 being values recommended
for time-frequency distribution measures [25]. The normalized
Rényi entropy measures, with the normalization done in vari-
ous ways, leads to a variety of possible measure definitions [2],
[25]. Eisberg and Resnik [26], assimilate the time-frequency
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distributions at a given instantt = n to a wave function and
for α = 3, resulting

R3 = −
1

2
log2

(∑

n

∑

k

P 3
x (n, k)

)
(7)

The normalizing stage affects exclusively to indexk, when
the operation is restricted to a single positionn to satisfy the
condition

∑
k Px(n, k) = 1 in such position.

The measure (7) can be rewritten for a givenn as follows:

R3(n) = −
1

2
log2

(∑

k

P 3
x (n, k)

)
(8)

Empirically the normalization proposed in [26] had shown
to be most suitable for an application in vibration signal
analysis. The values ofR3(n) depend upon the sizeN of the
window and it can be shown that they are within the interval
0 ≤ R3(n) ≤ log2 N . Hence, the measure can be normalized
by applyingR̂3(n) = R3(n)/ log2 N .

VI. GENERAL APPROACH FORCHANGE DETECTION

The signal processing techniques mentioned above can be
used in different combinations to solve the problem of machine
health monitoring. Three main approaches are discussed in the
following.

A first approach simply consists of original signal segmen-
tation (see Fig. 2), resulting the change points in vibration
signal dynamics. The MAP algorithm [8], is one algorithm
which can be used in this case, with good results for mono-
and multivariate signals. Some experimental results, using this
approach, in simulation and with real data, are presented in
[8], [27].

A second approach (see Fig. 3) makes use of change
detection of the signals resulted after blind source separation
of independent vibration sources, starting from the original
vibration signals. In this case, the problem is transferredfrom
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Change
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MAP
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?Change
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Fig. 3. Second approach in machine health monitoring

the original space of the measurements to the space of inde-
pendent sources, where the reduced number of components
will simplify the health monitoring problem, and the change
detection methods will be applied for scalar signals. The
assessment of the approach on a real machine is presented
in [7].

The third approach, considered as a complex and general
approach, practically includes all the signal processing tech-
niques discussed above and is given in Fig. 4.

The approach makes use of time-frequency information
content, the short-term time-frequency Rényi entropy, and
a segmentation algorithm, based on MAP estimator. The
segmentation algorithm operates on Rényi entropy, as a new
space of decision. The procedure can be applied on the original
vibration signals, or on the independent vibration sources
resulted for these, after blind source separation. This approach
enables more robust change detection in vibration signals.
The application of the presented approach offers a simpler
analysis and interpretation of the vibration signals behavior,
providing new physical insight into vibrational processes.
Same experimental results in simulation and with real data
are given in [28], [29], [30].

VII. C ASE STUDIES

This section presents some experimental results obtained
in two case study having as object fault detection in rolling
element bearings (REB) and in a rotating machine, a pump,
using the framework described in the previous sections of the
paper.

A. Fault Detection in Rolling Elements Bearings

1) Test Data: The performed experiments use a data set
from [31], with three faults having different locations:F1
(Inner race),F2 (Ball) andF3 (Outer race), and four sizes
of the faults;F0 denotes no faults; only the data for the first
case (06HH) have been used (see TABLE II).
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TABLE II. 1 ST DATA TEST SET (6203BEARING TYPE)

Fault F0 F1 F2 F3
size Free Inn. Race Ball Outer Race

0.000” y0(t) - - -
0.007” - y1(t) y2(t) y3(t)
0.014” - y4(t) y5(t) y6(t)
0.021” - y7(t) y8(t) y9(t)
0.028” - y10(t) y11(t) -

The signaly0(t) contains 4,096 samples recorded during
normal conditions operating, while signalsyi(t), i = 1, . . . 11
indicate files/vectors, containing each 4,096 samples, forthe
cases with faults; the sampling rate was of 12,000 samples/s.

2) Preliminary Analysis:For the signals mentioned above,
some statistical features in time domain [32], have been
computed, and are given in TABLE III, offering a general
view of the signal characteristics.

The signals, making the object of the analysis, are simul-
taneously characterized in time and frequency domain using
their mean localizations and dispersions. So, the averagedtime
and the time spreading, as well as the averaged frequency
and the frequency spreading [33], are given in TABLE IV for
signals analyzed.

3) Algorithm Description: The model used in the case
study is a linear regression model with piecewise constant
parameters (1).

TABLE III. T IME-DOMAIN STATISTICAL FEATURES OF THE SIGNALS
y0(t), y1(t), . . . , y11(t) IN TIME DOMAIN

Signal RMS Mean Var. Cres. fact. Skew. Kurt.
y0(t) 0.999 -0.002 0.998 3.796 -0.094 2.890
y1(t) 0.992 0.007 0.985 5.145 0.124 5.456
y2(t) 1.007 0.021 1.014 3.720 0.003 2.997
y3(t) 0.997 0.016 0.995 5.189 0.088 7.698
y4(t) 0.997 -0.001 0.995 4.016 0.067 4.281
y5(t) 1.013 0.013 1.027 5.299 0.012 7.032
y6(t) 0.987 0.078 0.974 9.747 -0.144 22.505
y7(t) 0.724 0.001 0.525 6.937 -0.066 5.775
y8(t) 0.978 0.046 0.958 3.779 0.023 2.982
y9(t) 1.018 0.011 1.037 6.495 0.315 6.868
y10(t) 0.981 0.019 0.963 4.378 0.043 3.457
y11(t) 0.955 0.002 0.913 9.992 -0.086 21.255

TABLE IV. T IME-FREQUENCY STATISTICAL FEATURES OF THE SIGNALS

y0(t), y1(t), . . . , y11(t)

Signal Aver. time Time spread Aver. freq. Freq. spread
y0(t) 2.104e+003 4.251e+003 -8.197e-009 0.287
y1(t) 2.032e+003 4.155e+003 -2.359e-008 0.850
y2(t) 2.026e+003 4.103e+003 -1.035e-006 0.906
y3(t) 2.090e+003 4.167e+003 -2.206e-008 0.969
y4(t) 1.944e+003 4.157e+003 -5.457e-009 0.804
y5(t) 2.082e+003 4.247e+003 -3.880e-008 0.983
y6(t) 1.954e+003 4.099e+003 -1.229e-008 0.920
y7(t) 1.993e+003 4.843e+003 -1.134e-008 0.820
y8(t) 2.057e+003 4.187e+003 -1.800e-007 0.968
y9(t) 2.054e+003 4.273e+003 -1.604e-007 0.857
y10(t) 2.006e+003 4.184e+003 -1.435e-007 0.909
y11(t) 2.085e+003 4.081e+003 -9.584e-010 0.911

To solve the segmentation problem, all possible segmenta-
tion kn are considered, estimate one linear regression model
in each segment, and then choose the particularkn that
minimizes an optimality criteria of the form:

k̂n = arg min
n≥1,0<k1<...<kn=N

V (kn) (9)

For the measurements in ai-th segment,yki−1+1, . . . yki
=

yki

ki−1+1, results the least square estimate and its covariance
matrix:

θ̂(i) = P (i)

ki∑

t=ki−1+1

φtR
−1
t yt, (10)

P (i) =




ki∑

t=ki−1+1

φtR
−1
t φT

t




−1

. (11)

The following quantities are used in optimal segmentation
algorithm:

V (i) =

ki∑

t=ki−1+1

(yt − φT
t θ̂(i))

TR−1
t (yt − φT

t θ̂(i))

(12)

D(i) = − log detP (i) (13)

N(i) = ki − ki−1 (14)
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whereV (i) - the sum of squared residuals,D(i) - − log det
of the covariance matrixP (i) andN(i) - the number of data
in eachi segment, and represent sufficient statistics for each
segment. The data and quantities used in segmentationkn,
havingn− 1 degrees of freedom are given in TABLE V.

TABLE V. DATA AND QUANTITIES USED IN OPTIMAL SEGMENTATION

PROCEDURE

Data y1, y2, . . . , yk1
. . . ykn−1+1, . . . , ykn

Segment Segment 1 . . . Segment n
LS est. θ̂(1), P (1) . . . θ̂(n), P (n)
Statistics V (1), D(1), N(1) . . . V (n), D(n), N(n)

To solve the optimal segmentation procedure, different types
of optimality criteria have been proposed [11]. In the following
we use MAP criterium [8]. The number of segmentationskn

is 2N (can be a change or no change at each time instant),
and this put problems concerning the dimensionality.

The conceptual description MAP estimator, for the data and
quantities given in TABLE IV, is given in Fig. 5, for three
different assumptions on noise scaling: (i) knownλ(i) = λ0,
(ii) unknown but constantλ(i) = λ and (iii) unknown and
changingλ(i), whereq is the change probability at each time
instants (0 < q < 1).

Data: Vibration signalyt, t = 1 . . .N

Step 1: Examine every possible segmentation, parameterized
in the number of jumpsn and jump timeskn, separately.

Step 2: For each segmentation, compute the best models in
each segment parameterized in the least square estimatesθ̂(i)
and their covariance matricesP (i).

Step 3: Compute in each segment:

V (i) =
∑ki

t=ki−1+1(yt − φT
t θ̂(i))

TR−1
t (yt − φT

t θ̂(i))

D(i) = − log detP (i)
N(i) = ki − ki−1

Step 4:MAP estimate,̂kn, for the three different assumptions
on noise scaling

(i) known λ(i) = λ0,
k̂n = argminkn,n

∑n

i=1(D(i) + V (i)) + 2n log 1−q
q

(ii) unknown but constantλ(i) = λ,
k̂n = argminkn,n

∑n

i=1 D(i) + (Np− nd− 2)×

× log
∑n

i=1
V (i)

Np−nd−4 + 2n log 1−q

q

(iii) unknown and changingλ(i),
k̂n = argminkn,n

∑n

i=1(D(i) + (N(i)p− d− 2)×

× log V (i)
N(i)p−d−4 ) + 2n log 1−q

q

Results : Numbern and locationski , kn = k1, k2, . . . , kn

Fig. 5. MAP segmentation algorithm.

In a practical problem, only one of the equations fromStep
4 (see Fig. 5) is evaluated, according with the assumption on
noise scaling of the procedure.

For the exact likelihood evaluation, can be implemented
recursive local search techniques and numerical searches based
on dynamic programming or MCMC (Markov Chain Monte
Carlo) techniques [11], [8].

Starting from the optimal segmentation results it is possible
to analyze the data resulted for each stationary data segment to
locate and diagnose the produced fault or change in the REB:
outer race, inner race, bearing cage, ball (roller), according
with the frequency area where it was produced.

4) Multiple Fault Detection: Started from the data given
in TABLE II data sequences with multiple faults have been
generated, for 3 types of events: inner race faults, ball faults
and outer race faults, with different fault size: 0.007”, 0.014”,
0.021”, 0.028”, for the first two cases, and 0.007”, 0.014”,
0.021” for the third case. The following data sets have been
used in the analysis, for fault detection:

s1(t) = [y0(t), y1(t), y4(t), y7(t), y10(t)]

s2(t) = [y0(t), y2(t), y5(t), y8(t), y11(t)]

s3(t) = [y0(t), y3(t), y6(t), y9(t)]

resulting data sequences of 20480 values for signals
s1(t), s2(t) and 16384 for signals3(t). The real faults instants
were 4097, 8193, 12288 and 16384. These data sets offer the
possibility to fault detection of a graduate size of fault, for the
cases mentioned above.

The experimental results refer to the signals
s1(t), s2(t), s3(t) and the segmenting algorithm presented
above with unknown and constant noise scaling, and MCMC
algorithm [8], with a value of jump probability,q = 0.3 and
appropriate design parameters in search scheme, for different
model order,na. The fault instants detected for different
model ordersna are presented in TABLE VI, TABLE VII
and TABLE VIII for s1(t), s2(t) ands3(t), respectively.

The signals1(t), making the object of the analysis, and the
estimated multiple fault times for the inner race,na = 20 and
q = 0.3, are presented in Fig. 6, while the signals2(t) and the
estimated multiple fault times for ball,na = 20 and q = 0.3
are given in Fig. 7. The signals3(t) and the estimated multiple
fault times for the outer race,na = 60 andq = 0.3 make the
object of Fig. 8.

TABLE VI. FAULT DETECTION IN SIGNAL s1(t) USING DIFFERENT

MODEL ORDER

Model order Fault detection instants
na = 10 4096, 8687, 9501, 10684, 11322, 11500, 12570,

12627, 12967, 13068, 13961, 14527, 14627, 14777,
15964, 16384.

na = 15 4096, 8687, 9502, 10684, 11501, 12570, 14777, 16384.
na = 20 4096, 8195, 8687, 11502, 13026, 16384.

The changes in signalss1(t), s2(t) and s3(t), resulted
after the data concatenation, are gradual, whose effect may
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Fig. 6. The signals1(t) and estimated multiple fault times for inner race,
na = 20, q = 0.3.

TABLE VII. F AULT DETECTION IN SIGNAL s2(t) USING DIFFERENT

MODEL ORDER

Model order Fault detection instants
na = 10 4096, 8191, 8497, 8614, 9305, 9929, 11946, 16385,

16711, 16901, 18065, 18129.
na = 15 4096, 8190, 11946, 16385, 16719, 18108, 18128.
na = 20 4096, 8190, 11945, 16385, 16751, 18233.
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Fig. 7. The signals2(t) and estimated multiple fault times for the ball,
na = 20, q = 0.3.

TABLE VIII. F AULT DETECTION IN SIGNAL s3(t) USING DIFFERENT

MODEL ORDER

Model order Fault detection instants
na = 10 4096, 4383, 7081, 7170, 7897, 7950, 8192, 12298,

12367, 12480, 12982, 13151, 13260, 13407, 13596,
14042, 14179, 14378, 14489, 14668, 14823, 15169,
15271, 15575, 15605, 16050, 16229.

na = 15 4096, 8192, 12296, 12368, 12479, 12669, 12813,
13261, 13455, 13596, 14042, 14173, 14378, 15015,
15164, 15271, 15469, 15605, 16051, 16346.

na = 20 4096, 8192, 12293, 12367, 12479, 12669, 12813,
13261, 13460, 13594, 14042, 14189, 14378, 15271,
15473, 15604, 16051.

na = 60 4096, 8198, 12287, 12352, 14057.
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Fig. 8. The signals3(t) and estimated multiple fault times for outer race,
na = 60, q = 0.3.

E A MC
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B CS3

T S5 S7

D

Fig. 9. Schematically multichannel measurement

increase, producing new changes in the signal dynamics that
can be detected by the algorithm. The further deterioration
of the rolling element bearing during operating produces new
fault instants, different from 4096, 8192, 12288 and 16384
instants. According with data from TABLE VI, TABLE VII
and TABLE VIII one can notice that in all the cases the
main faults are detected. Also, it can be noted that for the
models with high order (na = 20, na = 20 and na = 60,
respectively), only the main faults are detected at instants
4096, 8192, 12288 and 16384 or near instants. The models,
of high order, can increase the robustness of the optimal
segmentation algorithm to gradual, or small changes in signal
dynamics. Different values ofq offer similar results, but a
higher order of the model leads to a better fault detection, the
model being more able to approximate the signal dynamics.

B. Industrial Pump Monitoring

The machine under investigation is an industrial pump.
The used data set consists of multichannel measurements
for 7 channels repeated for two identical machines: the first
is virtually fault free and the second shows a progressed
pitting in both gears [34]. The data were selected from the
high-frequency measurements, digitized at 12800 Hz, a data
segment of 4096 values, 2048 from the fault free machine,
and last 2048 from the machine with a progressed pitting in
gears, both for minimum load. The data have been low-pass
filtered to 5000 Hz.

A scheme of the machine with its components and sensor
position is given in Fig. 9, with the following legend:

E = electromotor
A = incoming shaft (driving shaft)
MC = machine casing
T = tachometer
B = first delay (gear-combination)
C = second delay (gear-combination)
D = outgoing shaft (to vane in water)
S1-S7 = position of sensors 1,7

The rotating speed of the driving shaft is measured with
a tachometer. This measurement is done synchronously with
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Fig. 10. Independent vibration sources in normal operatingand fault
conditions of the pump

7 accelerometers used in the following manner: sensor S1,S2
are radially mounted near the driving shaft, with an angle of
90 degrees between them, sensor S3 is axially mounted near
the driving shaft, and sensor S4-S7 are radially mounted on
different parts of the machine.

The data represented the object of the analysis in [7], where
the blind source separation (BSS) and change detection in
source signals, according with the approach presented in Fig.
3. The case study, making the object of this section, used the
general approach, given in Fig. 4, for the data set mentioned
above. It includes vibration signal demixing, time-frequency
analysis, energy distribution evaluation using short-term Rényi
entropy, and its segmentation, based MAP estimator. The
segmentation algorithm operates on Rényi entropy, as a new
space of decision. We discuss in the following this approach
and present the experimental results.

1) Blind Source Separation:The acceleration measure-
ments for 7 channels and 4098 values, from the fault free
machine and progressed pitting in gears machine, represented
the input data for SOBI algorithm [16], when 2 independent
vibration sources and an instantaneous mixture model have
been considered. The number of the sources resulted via
eigendecomposition of the sample covariance matrix [35]. The
independent vibration sources are presented in Fig. 10.

2) Time-Frequency Ŕenyi Entropy: Fig. 11 shows the re-
duced interference distribution (RID) [36], of S1 source,
computed with a kernel based on the Hanning window [33]. In
Fig. 11 at linear scale, it can be noted a change in the spectral
content of the source, in the second part of the signal.

Results of the TFD analysis for S2 source are presented
in Fig. 12 for RID, with a same Hanning window. Similar
conclusions, as in the previous analyzed case, concerning TFD
properties, could be established. From Fig. 12 it can be noted
a reduced change in the spectral content of the source, in the
second part of the signal, in comparison with the S1 source.

A first conclusion, in this stage of time-frequency analysis,
could be that S1 source has been induced by the fault in pump
gears, but because the source separation is not perfect, dueto
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Fig. 11. Reduced interference distribution for vibration source S1 in normal
and fault operating conditions
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Fig. 12. Reduced interference distribution for vibration source S2 in normal
and fault operating conditions

a possible lack of the BSS method robustness, the real change
can also induced in other sources, in our case in the S2 source.
The differences between the changes in spectral content in
both sources point out this fact.

To evaluate the TFD resulted for S1 source we present in
Fig. 13 the short-term Rényi entropy as measure of time-
frequency distribution, computed for RID. It was used a sliding
window of N = 64 values and a constant bias to be added to
signal of 1.

For S2 source, we present in Fig. 14 the short-term Rényi
entropy, as measure of time-frequency distribution, computed
for RID, with the same values for the sliding window and
constant bias added to signal.



129

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
 Short−term Renyi entropy using RID for Source 1

 Time [samples] 

R
en

yi
 e

nt
ro

py

Fig. 13. Short-term Renyi entropy using RID for source S1
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Fig. 14. Short-term Renyi entropy using RID for source S2

3) MAP Segmentation of Rényi Entropy: Visual inspection
for the Rényi entropy of both sources, shows that the onset
time is clearly visible as a change in energy and frequency
content. Our experience is that, for this problem, as for many
other signal processing ones, a piecewise constant model (1),
could lead to a satisfactory trade-off between complexity and
efficiency of the corresponding algorithms for the off-line
estimation of the change time. The segmentation procedure
has been performed using an autoregressive model (AR) of
order 1, the unknown and constant noise scaling assumption
and MCMC algorithm.

The parameter and variance estimates resulted in MAP
segmentation are presented in Fig. 15 and Fig. 16 for Rényi
entropies, obtained for S1 and S2 sources, respectively.

The variance traces of the piecewise constant model show,
for both sources, significant jumps in the second part of the
signals, and that a main distinct rupture event occurred. The
proposed procedure assures more robust change detection in
vibration signal analysis, than in the case of change detection
in the estimated sources in time domain, see [7].
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Fig. 15. MAP segmentation of short-term Renyi entropy for source S1
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Fig. 16. MAP segmentation of short-term Renyi entropy for source S2

VIII. C ONCLUSIONS

The paper considers the problem of change detection in
vibration signals, with application in predictive maintenance
of rotating machines, integrating some signal processing
techniques, mainly independent component analysis, time-
frequency analysis, energy distribution evaluation in time-
frequency domain, and a change detection algorithm based
on MAP estimator.

The case studies making the object of the paper prove the
effectiveness of the proposed approach. The first case study,
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having as subject detection of faults in REB, uses a segmen-
tation algorithm based on MAP estimator, directly applied
to vibration signals, while the second, for monitoring of an
industrial pump, makes use of time-frequency Rényi entropy
segmentation, applied to independent vibration sources ofthe
pump.

The general approach offers new possibilities for more
robust detection of changes in vibrating signals and assures
proactive actions in vibration monitoring. It offers a simpler
analysis and interpretation of the vibration signals behavior,
providing new physical insight into vibration processes for
predictive maintenance. It can also be used for other domains
that require change detection and diagnosis, such as biomedi-
cal signal processing (EEG, EKG, and MEG), seismic signal
analysis, infrastructure monitoring, speech analysis, commu-
nication systems, video surveillance, transportation systems,
etc.
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[13] D. Aiordǎchioaie and Th. D. .Popescu, ”VIBROMOD An Experimental
Model for Change Detection and Diagnosis Problems”,Proc. The 14th
IMEKO TC10 Workshop Technical Diagnostics, New Perspectives in
Measurements, Tools and Techniques for systems reliability, maintain-
ability and safety, Milan, Italy, pp. 317-322, 2016.

[14] A. Hyvärinen, J. Karhunen, and E. Oja,Independent Component Anal-
ysis, John Wiley, 2001.

[15] J. Antoni, ”Blind Separation of Vibration Components:Principles and
Demonstrations”,Mechanical Systems and Signal Processingpp. 1166-
1180, 2005.

[16] A. Belouchrani, K. Abed Meraim, J. F. Cardoso, and E. Moulines, ”A
Blind Source Separation Technique using Second - Order Statistics”,
IEEE Trans. Signal Processing, pp. 434-444, 1977.

[17] J. F. Cardoso and A. Souloumiac, ”Blind Beamforming forNon Gaus-
sian Signals”,IEE Proceedings-F, pp. 362-370, 1993.
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Segmentation in Fault Detection of Rotating Machinery”,Proc. of The
16th IEEE International Conference on Research and Education in
Mechatronics (REM 2015), Bochum, Germany, 18-20 November, pp.
288-295, 2015.

[30] Th. D. Popescu and D. Aiordachioaie, ”New Procedure forChange
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