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Abstract—A general approach for change detection in vibra-
tion signals with application in predictive maintenance ofrotating
machines represents the object of the paper. After an overew of
the maintenance approach, the condition monitoring in predctive
maintenance is presented. Also, some vibration analysis de-
nigues, making use of change detection, independent compamt
analysis, time-frequency analysis and energy distributin, with
application in predictive maintenance of rotating machiney, are
discussed. They can be combined in a unified approach, offer
new possibilities for more robust detection of changes in biration
signals, and assuring proactive actions in predictive maitenance.
Finally, some experimental results for detection of faultsin
rolling element bearings and in a rotating machine operatirg,
an industrial pump, are presented.
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and deep study of vibration "signature” eliminate diffeéren
fault possibilities and concludes to single fault. A lodiead
systematic approach has proved successful in diagnoseng th
basic causes. This applies to small, medium, large, diact ¢
pled machines, motors, pumps, generators, turbo-maghiner
fans and compressors. Some machines are directly coupled to
motor or some through gear boxes.

Sometimes, the vibration monitoring makes use of different
change detection (CD) techniques. From statistical pofnt o
view, these techniques identify changes in the probability
distribution of a stochastic process. The problem invoheth
detecting whether or not a change has occurred, or whether
several changes might have occurred, and identifies thestime
of such changes produced. These techniques can be classified
either as time, frequency or time-frequency domain based
algorithms. They are based on distance measures, atrtificial
intelligence, fuzzy logic, statistical differences, etapplied

Vibration analysis is the one of the most effective todi" the original signals or on the preprocessed signals,daror

used to check the health of plant machinery and diagnose fA
causes. The health of machine is checked by routine or ¢

tinuous vibration monitoring with sophisticated instrumss

eamplify the changes in their dynamics. Presently, the CD

Hroblem represents a key point, when preventive maintenanc

is replaced by predictive maintenance.

giving an early indication of a possible failure and offgrin  Some features, among the amplitude levels in the time do-
countermeasures to avoid a possible catastrophic evest. Tiain, are easily extracted and classified, but they aretaffec
paper presents some vibration analysis techniques, and 8§ noise. Energy distribution in the time-frequency domain
ferent combination of these, in order to offer a framewonk fd2], involving more operations, can lead to more robust ¢fgan
predictive maintenance of rotating machines and represent detection in vibrating signal dynamics. Also, parametigmal
extended and enhanced version of [1]. processing algorithms can be used for change detectioarié th
Vibration monitoring problem consists of machines corlS 8N accurate model of the signal, in a selected represemtat
dition and the change rate of its behavior. It can be asc&Race. However, the approach, based on modeling techniques

tained by selecting of a suitable parameter for deterionatin@s limitations as well.

measuring and recording its value for further analysis.sThi The time-frequency analysis (TFA) [3], in comparison with
activity is known as condition monitoring. The great partthe time-domain analysis, usually provides a simpler prier

of the defects encountered in the rotating machinery gitation and comprehension of nonstationary signals, witela
rise to a distinct vibration pattern, or "vibration signegti application in vibration monitoring. The idea is to analyhe
Vibration monitoring has the ability to record and identifybehavior of the energy distribution (ED), i.e., the diaitibn
vibration "signatures” for monitoring rotating machinesji- of energy at certain instant or certain frequency band or
bration analysis is applied by using transducers to measunere generally [2], in some particular time and frequency
acceleration, velocity or displacement, depending of tiee f region. The results can represent a starting point in sgIZB
guencies making the object of the analysis. Careful sgrutiproblems. So, new analysis facilities in CD problem solying
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are offered by the usage of the entropy based measur@€s,Predictive Maintenance
such as Kullback-Leibler distance, Rényi distance, ams$de

difference, adapted to the time-frequency plane [4] The predictive maintenance refers to the process of mon-

itoring the machine condition as it operates in order to
The paper is organized as follows. Section Il refers teredict which components are likely to fail and when. So,
maintenance approach, while Section Iil presents the tiondi the maintenance can be planned and there is the possibility
monitoring problem in predictive maintenance. Section Bh to change only those components that produce failure signs
as subject change detection in vibration monitoring and ii§ its operating. The predictive maintenance principlesisin
followed, in Section V, by a general view on the main signgf take measurements, to be used for prediction of the ma-
processing techniques involved in vibration monitoringthw chine components behavior, susceptible of failure, andnwhe
application in predictive maintenance of rotating machinethese will be produced. Usually, these measurements iaclud

Section VI discusses different approaches in change d@@tecimachine vibration, and machine operating parameters: flow,
of vibration signals based of signal processing techniques temperature, pressure, etc.

sented in Section V. Finally, in Section VII are discussed tw
case studies having as object fault detection in rollingnelet
bearings (REB), and in a rotating machine, an industrialpu

The continuous monitoring detects, in advance, the onset of
component problems, so the maintenance is performed when

Mheeded. By this approach, unplanned downtime is reduced, as
well as the risk of catastrophic failure. This will increabe
efficiency and reducing of the costs. By predictive mainteea
strategy, applied in rolling bearings, the costs can bedavoi
giving in advance, a warning of a possible failure, enabling
remedial action in advance.

II. MAINTENANCE APPROACH

Usually, the maintenance is performedmsventive main-
tenance at fixed time intervals, or aseactive maintenance
when an actually fault produced. In the last case, it is resurgs
to perform immediately maintenance actions, while in the
predictive maintenancefter a warning of a fault producing,
the problem solving is carried out when necessary, so tadavoi Condition monitoring consists of machine monitoring for
disruption of machine operating. A comparison of differergarly sign of failure so that the maintenance activity can be
maintenance types, with disadvantages and advantage®is gbetter planned, with reduced down time and costs.

in [5]. We present in the following some aspects concerning The monitoring of vibration, temperature, voltage or catre
these approaches, to be taken into account, mainly in gieglic and oil analysis is frequently the most used. Vibration is th

IIl. CONDITION MONITORING

maintenance of rolling element bearings. most widely used for its ability to detect and diagnose failu
problems, but it offers also a prognosis on the useful life
A. Reactive Maintenance and possible failure mode of the machine. The prognosis is

. , , ) much more difficult to be performed and usually relies on
This approach refers to machine running il a fault prog,niinye monitoring of the fault to estimate the time whea th

duced and involves fixing problems only the fault occurs. |5 hine will become unusable, taking into account the known
represents the simplest and cheapest approach in term%ﬁjerience in similar cases

maintenance costs; often it implies additional costs, lisua

due to unplanned downtime. It can be seen as an easy solutiowdbrat'%r.] momtormg can be cr?r!3|dereddthe mbost W'?eg’
to many maintenance strategies. used predictive maintenance technique, and can be applied t

_ _ ) _ a wide area of rotating machines. Machine vibration comes
In rotating machines, rolling element bearings represet tf,om many sources such as bearings, gears, unbalance etc.,
most critical components, both in terms of initial selestiogach sources having its own characteristic frequenciesi-ma
and as well as in how they are maintained. Monitoring thgsting as a discrete frequency, or as a sum and/or differenc
cond_mo_n of_ rolling bearings are essential and vibratiasdxd frequency. It can result complex vibration signals which pu
monitoring is frequently used to detect an early fault. problems in vibration analysis, but some techniques, with
_ _ a high sensitivity to faults, can reduce the complexity of
B. Preventive Maintenance the analysis. Bearing defects can affect higher frequencie

The preventive maintenance implies the scheduling of reg(l)Jf_fermg a basis for detecting incipient failure.

lar machine shutdowns, even if they are non required:; this wi Usually, the detection uses the basic form of vibration
increase the maintenance costs as some machine compori@g@surement, where the vibration level is measured on a
are replaced, when this is not necessarily required. SoRf@adband basis (10-1000 Hz or 10-10000 Hz). The spikiness
risks could appear due to replacing a defective machifEthe vibration signal, in machines with little vibrationher
part, incorrectly installing or reassembling parts. A fregtly than in the case of the bearings, is highlighted by the Crest
result of preventive maintenance consist of the fact that tractor, indicating an incipient defect; also a great valiithe
maintenance is performed when there is nothing wrong §€rgy. given by RMS level, indicates a severe defect.
machine operating. Significant costs saving can be obtainednly this type of measurement offers limited information,
by predictive maintenance. but it can be useful for trend evaluation; increasing vilorat
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level highlights the machine condition deterioration. &l& fuzzy logic is useful for decision making. The methods based
comparison of the measurement level with some vibratiam quantitative models are oriented to identification (peeter
criteria from literature proves to be useful in practice. estimation), observers (state estimation) and parity espac

Generally, rolling bearings produce very little vibratign SOMe heuristics results, obtained from the previous ezpeei,
faults absence, and present specific frequencies when @ 5@ be used for diagnosing the origins of the failure or ckang
produced. At the beginning of a fault, for a single defect, tH@Sed on the dispersion of the characteristics.
vibration signals present a narrow band frequency spectrumAlmost all CD solutions assume that the monitored sys-
As the malfunction increases, it can be noted an incredsgn can be described, with sufficient precision, by a finite-
in the characteristic defect frequencies and sidebands$, wiimensional linear model. In practice, if the system is more
a drop in these amplitudes, broadband noise increasing aanplex than the structure, described by a finite-dimeradion
considerable vibration at shaft rotational frequencyfjvery model, the parameter estimates will still converge, butrthe
low machine speed, low energy signals are generated by tadues can be strongly dependent on the experimental condi-
bearings, difficult to be detected. Also, bearings locatétiw tions. The algorithms will not be able to separate the change
a gearbox are difficult to monitor, because of the high energgtermined by the external conditions from those produged b
at the gear, which can mask the bearing defect frequenciethe internal defect of the investigated system, so the ickalss

tests will fail. The problems mentioned above point out the

IV. CHANGE DETECTION IN VIBRATION MONITORING requirement of the robust CD algorithms, able to separate

the changes determined by the external conditions from the

The CD problem is frequently present for continuous monthanges of the internal dynamics of the system.
toring of systems like machinery, structure, process, Egant The first generation of CD algorithms is based on strong

or plant, using data provided by the sensors. So, it is pmSiP]ypotheses, or strong assumptions, which are difficult tdywe

_tto_ antlc:jpateotlhe gt:norrgal futr;]cuonl_ng: or these syfteﬁsrﬁe in practice. So, a second generation of solutions was reduir
1S produced and fo reduce the maintenance costs. 1ne hor {()ansitive to the uncertainty of the system’s dynamics, to

bgtr;]aw;)r OT a syst_tfe_z m Ican bte td escrlbgzd t_)y atEaramet;|0£? operating environment, and to large noise, statigyical
WIthout USIng artificial excrtation, reducing the spee unknown. In our opinion, among the central problems to be

equment or temporary stop. If such early detections a8 dressed in the CD area refer to robustness, sensitivity an
possible, large changes of the_ syste_m can be prevented_, & atility. The lack of robustness of the classical aldonis
the_e_ffects Of.d.efeCtS' me(_:ha_n_|ca| fatigue, etc. can bekiyic concerns the failure of the detection, if one or more of the
anticipate, raising the availability of the system. hypotheses assumed during the design are not verified in

The applications in this field make use of theories based practice. The sensitivity concerns the ability of the aion
statistics, providing theoretical instruments to solve #arly to detect the change, even if there are small scale incipient
detection problem. Many industrial processes are based ghanges. Finally, the versatility concerns the ability bé t
known physical principles, with available analytical mtsje methods and techniques to solve more CD problems, using
and for very complicated or unknown models, semi-physiceile same set of algorithms.

or black-box models can be used. Vibrations analysis andry, gojye the vibration monitoring problem different tech-
§urve|IIance of machlnery_ or mdus?rlal eq_wpments repnes niques have been developed, one can be mentioned: analy-
important cases of detection and diagnosis problems. sis of overall vibration level, frequency spectrum, enpelo

The CD problem refers to detection of the change (trepectrum, cepstrum analysis, etc. [5]. The success of vibra
alarm) and evaluation of the change (estimation), progdinion monitoring, in many practical cases, requires spizedl
information, in some case, for diagnosis (source isolatibhe functions and tools. Simple application of CD techniques on
performance criterion of a change detection algorithm ist#1s original mono- or multivariate vibration signals can assur
of its ability to correctly detect the changes, with minimunthe successful of monitoring. Sometimes, it is necessat th
delay and minimum probability of false decisions. So, it musome signal pre- or postprocessing procedures to be applied
respond to the small changes (sensitivity to changes), aes dto emphasize and highlight the characteristics of the vibra
not be affected by the disturbances, noise or modeling ®rréibn signals making the object of the analysis. So, some
(robustness of the algorithm). The sensitivity and robes$n signal processing techniques can be used in conjunctidn wit
properties are usually in conflict, a good change detection &D techniques: independent component analysis (ICA),-time
gorithm must perform a compromise between the two aspedtgquency analysis (TFA), energy distribution (ED) evéima

Two basic approaches in CD are reported as based on qdantime-frequency domain. These techniques are implerde_nte
titative models (using analytical redundancy) and quiaiga N @ software toolbox, Matlab VIBROTOOL Tpolbox [6], built
models, which can be conveniently combined to improve tf@$ @ set of programs that compute specific parameters and
robustness of the generation of the quantitative residuls Solve specialized tasks for vibrating monitoring.
the case of analytical exact models absence, learning model The CD problem can be solved by change point estimation
such as fuzzy and neural models, can be used. More, the ne@re@an change), change detection using one and two model
networks can be used for classification of the residualslewhapproach, with different distance measures and stopires rul

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http.//www.iariajournals.org/systems_and_measurements/

122
[7], multiple change detection [8], detection and diagaaxfi case, is a linear regression model with piecewise constant
model parameter and noise variance changes [9], for momparameters [8],
and multivariable vibration signals. Some algorithms, mgk
thg obj_ect of [10]_and [11] in CD, r_epresented the sta_rting yr = 67 0(i) +er, E(e?) = Ry, (1)
points in developing of these algorithms. The analysis of
the behavior of the vibration signals reveals that most wfhere y; is the observed signali(i) is the d-dimensional

the changes that occur are either changes in the mean lep@rameter vector in data stationary segmeénip, is the
variance, or changes in spectral characteristics. regressor; the noisg is assumed to be Gaussian with variance

The toolbox is used in the framework offered by an et
perimental model, VIBROCHANGE, for vibrational processes The used model is referred to as changing regression,
analysis using advanced measuring and signal analysis tdgcause it changes between regression models. Its importan
niques [12]. The main modules involved in VIBROCHANGHeature is that the jumps divide the vibration signals into a
include: number of independent segments, since the parameter sector
in different segments are independent. Some important mode

* \rglgdi?eSIG - vibration and other signals measuremer(‘jterived from the model, wherg; has different expressions

. VIBROTOOL - Matlab Toolbox for change detection anQ[,S]' In this framework, the problem of segmentation between

diagnosis, with modules dedicated to change detectiOrg]omogenous parts of the data arises more or less explicitl

and segmentation problem solving, among others.

« VIBROMOD - hardware module for change detection an
diagnosis implementing some components of the VIBRO- Independent Component Analysis (ICA) is closely related
TOOL module, for on-line analysis and monitoring oto the blind source separation (BSS) [14], offering new solu
vibration processes [13]. tions for vibration and noise analysis [15]. The use of BSS

For laboratory condition working, a generator of vibrationtechniques in conjunction With. other tephnique;, .SUCh as .CD

and TFA, proved very useful in vibration monitoring. So, it

in controlled operation mode, for different electro-meubal . o
processes, VIBROGEN, has been developed. It includes %noffered the possibility to translate the CD problem from

g. Independent Component Analysis - ICA

electrical motor, as well as bearings and other gearbo;z)es,_t € original space of the measurements to the space of the
emulate an industrial process. The system is an open one pendent _com_ponents (_SOWCG$)- The reduc_ed number  of
different incipient faults can be generated. components, in this case, will 5|mp_I|fy the monitoring plla_nb
and the CD methods will be applied only for scalar signals;
V. SIGNAL PROCESSING INVIBRATION MONITORING BSS also provides a mixing model of the independent sources,

) ) o ) _ that point out how the source changes are reflected in the
The success of vibration monitoring requires spemahzq)c}iginm vibration signals, for diagnosis purposes. When i

functions and tools to compute specific parameters and solgines to deal with mechanical signals, which are typically
specialized tasks for change detection using classical &fjfracterized by an excessive complexity, BSS faces a numbe
recent techniques. of difficulties which seriously hinder its feasibility [15]

Sometimes, only simple application of CD techniques on gne of the frequently used model for BSS, assumes the
original mono- or n_1u|t_|var|ate V|brat|on. s!gnals can asstlre existence ofn independent signals; (t),... ,s.(t) and the
successful of monitoring. Frequently, it is necessary tphap observation of as many mixtures (), ..., z,(¢), these mix-

some signal pre- or postprocessing procedures, to emghagizag being linear and instantaneous, i.e.
and highlight the characteristics of the vibration sigrabsk-

ing the object of the analysis. So, some signal processing n
techniques can be used in conjunction with CD techniques: in x;i(t) = Z a;;s;(t) + ni(t) 2
dependent component analysis (ICA), time-frequency aimly j=1

(TFA), energy distribution (ED) evaluation in time-freq@y ¢4, agqchi — 1,n, and compactly represented by the mixing
domain, etc. These techniques are briefly described in in t@&uation

following.
A. Change Detection - CD x(t) = As(t) + n(t) 3)
We present here only the framework in which the CBvheres(t) = [si(t),...,s,(t)]T is ann x 1 column vector

problem will be solved in the case studies presented in @ecticontaining the source signals, while vectqit) contains the
VII, using the Maximum A posteriori Probability (MAP) n observed signals and the squarex n "mixing matrix” A
estimator [8]. contains the mixture coefficients.

CD allows for a first detection of changes in the original The BSS objective is to recover the source ves{o) using
vibration signals, or in other signals, resulting after agible only the observed data(t), the assumption of independence
preprocessing of these. A frequently used model, in thietween the entries of the input vectdt) and possible some
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s1 51 TABLE |. KERNELS USED FOR MAINCOHEN'S CLASS TIME-FREQUENCY
X DISTRIBUTIONS
=S A W | — Ss= :
N Name Kernelp (0, 7)
Sn Sn SP f h*(u — %7‘) exp 0% h(u + %T)du
WVD 1
Fig. 1. Signal mixing and separating in BSS. CWD exp—0°t2/o”
RID 2d Low pass filter ind, T space

a priori information about the probability distribution die
inputs. It can be formulated as the computation ofrar n
"separating matrix"W whose outpui(t) is an estimate of
the vectors(t) of the source signals, and has the form:

The spectrogram (SP), suffers from the undesirable trade-
off between the resolution and frequency resolution. On
the other hand, the Wigner-Ville distribution (WVD) has a
high time-frequency resolution, but is known to suffer from
5(t) = Wx(t) (4)  the presence of cross-terms. The Choi-Williams distrdouti

in the case of an instantaneous mixture (see Fig. 1). (CWD) overcomes the WVD limitation suppressing to a large

. xtent the cross-term interference, but some time-fr en
For temporal coherent signals, the BSS problem can Ee e

solved using second and hiaher order statistics. the welivkn esolution is lost. The last distribution belongs to thecatied
alg\c/)rithlin; %eing SOBI (Slgcond Order Bllinld ident\illyication) educed Interference Distribution (RID), and also belotgs
[16], and JADE (Joint Approximate Diagonalization of Eigen e Cohen's class, being an extension of the WVD.

matrices) [17], among others. Even if all TFDs tend to the same goal, each representation
has to be interpreted differently, according to its own jgmep
C. Time-Frequency Analyis - TFA ties. For example, some of them present important intenfere

erms, other are only positive, other are perfectly loealipn
Articular signals, etc. The extraction of information has

ial i CD lcati in thi TEA done with care, from the knowledge of these properties.
crucial in-many appiications. in tis case, “@e need a distribution that can reveal the features of the

be of great interest, specially when the signal models aé%nal as clearly as possible without any "ghost’ component

unava}nalble. In thoge cases, the time or the_ frequency domghd to apply a TFD that can get rid of the cross-terms while
descriptions of a signal alone cannot provide comprehens reserving a high time-frequency resolution

information for change detection. The time domain lacks the
frequency description of the signals. The TFA provides P
proper description of the spectral content changes as édanc 8 Energy Distribution - ED
of time. One of the simplest feature based signal processing proce-
The time-frequency representations (TFRs) can be clagsifféures in TFA is via energy distribution. The idea is to analyz
according to the ana|y5is approaches [18] In the first m;eg the distribution of energy at certain time instant or certai
the signal is represented by time-frequency (TF) functitms frequency band or more generally, in some particular tinte an
rived from translating, modulating and scaling a basis fionc frequency region. Such analysis is capable of revealingemor
having a definite time and frequency localization. For aaign information about a particular phenomenon [2], [18].

. . . . t
The analysis, processing, and parameter estimation of
bration signals whose spectral content changes in time

z(t), the TFR is given by Once the local frequency content has been obtained, using
TFA, an entropy measure can be evaluated for extracting the
400 information containing in a given position af = n. The
TF,(t,w) = / x(r)¢; ,(T)dT =< z,¢¢,w >, (5) Reényientropy measures class [23], [24], with some sigamific
- ' contributions [25], offers new measures for estimatinqualg

where ¢, represents the basis functions andepresents information and complexity in the time-frequency plane.
the complex conjugate. The basis functions are assumed tg,, o generic time-frequency distributio®, (n, k), the

be square integrable, i.e., they have finite energy. Shoﬁ'enyi entropy measure has the following form:
time Fourier transform (STFT) [19], wavelets [20], [21],dan

matching pursuit algorithms [20], [22], are typical exasgpl

L 1

in this category. R, = - log, (Z Z P%(n, k)) (6)
The second category of time-frequency distributions (T,FD) @ no ok

known as Cohen's shift invariant class distributions [3]Jae  \yheren is the temporal discrete variable ahdhe frequency

acterizes the TFR by a kernel function. TABLE | gives thgiscrete variable, withh > 2 being values recommended

kernels used for main Cohen’s class time-frequency distribror time-frequency distribution measures [25]. The noiieea

tions. Rényi entropy measures, with the normalization done i var
Some remarks on properties of the main Cohen’s clasas ways, leads to a variety of possible measure definit@jns [

time-frequency distributions from TABLE | could be made[25]. Eisberg and Resnik [26], assimilate the time-frequyen
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Vibration
data
Vibration
data Signals Blind source
demixing separation
Change MAP
detection segmentation
Change MAP
l detection segmentation
Change
instants l
Fig. 2. First approach in machine health monitoring _Change
instants

N . . . Fig. 3. Second approach in machine health monitoring
distributions at a given instart= n to a wave function and

for a = 3, resulting
the original space of the measurements to the space of inde-
1 5 pendent sources, where the reduced number of components
Rs = -3 log, ZZPI (n, k) (™) will simplify the health monitoring problem, and the change
nok detection methods will be applied for scalar signals. The
The normalizing stage affects exclusively to indexwhen _assessment of the approach on a real machine is presented
the operation is restricted to a single positiorio satisfy the in [7].
condition", P, (n,k) = 1 in such position. The third approach, considered as a complex and general
approach, practically includes all the signal processetut
nigues discussed above and is given in Fig. 4.

The approach makes use of time-frequency information
o)

The measure (7) can be rewritten for a givems follows:

(8) content, the short-term time-frequency Rényi entropyd an
a segmentation algorithm, based on MAP estimator. The
segmentation algorithm operates on Rényi entropy, as a new
pace of decision. The procedure can be applied on the afigin

ibration signals, or on the independent vibration sources
analysis. The values d®3(n) depend upon the siz¥ of the g P

) . e . resulted for these, after blind source separation. Thiscamh
window and it can be shown that they are within the mterv%ie P

- < los. N. H h b y e‘Fuables more robust change detection in vibration signals.
0 < R3(n) < log, N. Hence, the measure can be normaliz e application of the presented approach offers a simpler

by applying fi5(n) = Rs(n)/log, N. analysis and interpretation of the vibration signals barav
providing new physical insight into vibrational processes
Same experimental results in simulation and with real data

Empirically the normalization proposed in [26] had show
to be most suitable for an application in vibration sign

V1. GENERAL APPROACH FORCHANGE DETECTION

The signal processing techniques mentioned above can®3g 9iven in [28], [29], [30].
used in different combinations to solve the problem of maehi
health monitoring. Three main approaches are discusséwtin t
following. This section presents some experimental results obtained

A first approach simply consists of original signal segmerid two case study having as object fault detection in rolling
tation (see Fig. 2), resulting the change points in vibratilement bearings (REB) and in a rotating machine, a pump,
signal dynamics. The MAP algorithm [8], is one algorithn¥sing the framework described in the previous sections @f th
which can be used in this case, with good results for mon@aper.
and multivariate signals. Some experimental results,gusiis o ) )
approach, in simulation and with real data, are presentedAn Fault Detection in Rolling Elements Bearings

(81, [271. 1) Test Data: The performed experiments use a data set

A second approach (see Fig. 3) makes use of charfgem [31], with three faults having different location#’1
detection of the signals resulted after blind source se¢ipara (Inner race),F2 (Ball) and F'3 (Outer race), and four sizes
of independent vibration sources, starting from the ogginof the faults; 0 denotes no faults; only the data for the first
vibration signals. In this case, the problem is transfefreth case (O6HH) have been used (see TABLE lI).

VII. CASE STUDIES
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. . TABLE Ill. T IME-DOMAIN STATISTICAL FEATURES OF THE SIGNALS
V'%r:ttéon yo(t), y1(t), .., y11(t) IN TIME DOMAIN
Signal RMS  Mean Var. Cres. fact.  Skew. Kurt.
yo(t) 0.999 -0.002 0.998 3.796 -0.094  2.890
yi(t) 0992 0.007 0.985 5.145 0.124 5.456
Signals Blind source y2(t) 1.007 0.021 1.014 3.720 0.003 2.997
demixing separation ys(t) 0.997 0.016 0.995 5.189 0.088 7.698
ya(t) 0.997 -0.001 0.995 4.016 0.067 4.281
ys(t) 1.013 0.013 1.027 5.299 0.012 7.032
ys(t) 0.987 0.078 0.974 9.747 -0.144  22.505
yr(t) 0.724 0.001 0.525 6.937 -0.066  5.775
. ys(t) 0.978 0.046 0.958 3.779 0.023 2.982
Time- ~Reduced yo(t) 1.018 0011 1037  6.495 0.315  6.868
frequency interference yio(t) 0.981 0.019 0.963 4.378 0.043 3.457
analysis distribution y11(t) 0.955 0.002 0.913 9.992 -0.086 21.255
TABLE IV. T IME-FREQUENCY STATISTICAL FEATURES OF THE SIGNALS
o), y1 (1), .,y (t)
Energy Renyi entropy Signal Aver. time  Time spread  Aver. freq. Freq. spread
distribution yo(t) 2.104e+003  4.251e+003  -8.197e-009 0.287
yi1(t)  2.032e+003  4.155e+003  -2.359e-008 0.850
y2(t)  2.026e+003  4.103e+003  -1.035e-006 0.906
ya(t)  2.090e+003  4.167e+003  -2.206e-008 0.969
ya(t)  1.944e+003  4.157e+003  -5.457e-009 0.804
ys(t)  2.082e+003  4.247e+003  -3.880e-008 0.983
Change MAP ye(t)  1.954e+003  4.099e+003  -1.229e-008 0.920
detection segmentation yr(t)  1.993e+003  4.843e+003  -1.134e-008 0.820
ys(t)  2.057e+003  4.187e+003  -1.800e-007 0.968
yo(t)  2.054e+003  4.273e+003  -1.604e-007 0.857
l yi0(t) 2.006e+003  4.184e+003  -1.435e-007 0.909
Change y11(t) 2.085e+003  4.081e+003  -9.584e-010 0.911
instants

Fig. 4. Third approach in machine health monitoring . .
To solve the segmentation problem, all possible segmenta-

TABLE Il. 15T DATA TESTSET (6203BEARING TYPE) tion k™ are considered, estimate one linear regression model
TV 1 75 73 in e_at_:h segment, and then_ choose the particklarthat
size Free Inn. Race  Bal  Outer Race minimizes an optimality criteria of the form:
0.000" yo(t) - - .
0.007" - y1(t) y2(t) y3(t) — .
0.014" - ya(t) ys(t) y6(t) k= arg >1,0<ks 4o <k —NV(kn) ©
0.021" - wyr(t)  ws(t)  ye(t) rEbish s

0.028" - yo(t) w11 (d)

For the measurements inigh segmenty, 41, ... Yk, =
ka 41, results the least square estimate and its covariance
matrix:
The signalyy(t) contains 4,096 samples recorded during
normal conditions operating, while signalgt), i = 1,...11 %,
indicate files/vectors, containing each 4,096 samplestHer Gils . -1
cases with faults; the sampling rate was of 12,000 samples/s 6(0) P@) Z el e, (10)

t=ki—1+1
2) Preliminary Analysis:For the signals mentioned above, k; -1
some statistical features in time domain [32], have been Pi) = Z G R T _ (11)
computed, and are given in TABLE Ill, offering a general —h 41

view of the signal characteristics.
The signals, making the object of the analysis, are Sirnul_The following quantities are used in optimal segmentation

taneously characterized in time and frequency domain usmlgOrlthm
their mean localizations and dispersions. So, the avertged

and the time spreading, as well as the averaged frequency ki R .
and the frequency spreading [33], are given in TABLE IV for V(i) = Z (ye — L0 R (ye — o1 0(3))
signals analyzed. t=ki_1+1

3) Algorithm Description: The model used in the case (12)
study is a linear regression model with piecewise constant D(i) = —logdet P(i) (13)
parameters (1). N@) = ki —ki (14)
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whereV (i) - the sum of squared residualB|i) - — log det In a practical problem, only one of the equations frStep
of the covariance matri® (i) and N (i) - the number of data 4 (see Fig. 5) is evaluated, according with the assumption on
in each: segment, and represent sufficient statistics for eanbise scaling of the procedure.
segment. The data and quantities used in segmentation  For the exact likelihood evaluation, can be implemented
havingn — 1 degrees of freedom are given in TABLE V. recursive local search techniques and numerical searaiseslb

on dynamic programming or MCMC (Markov Chain Monte
TABLE V. DATA AND QUANTITIES USED IN OPTIMAL SEGMENTATION

PROCEDURE Carlo) techniques [11], [8].
Starting from the optimal segmentation results it is pdesib
Data Y1, Y25 -+ Yky s Yky_qt+1se s Yky .
Segment Segment 1 o Segment n to analyze the data resulted for each stationary data seégmen
LS est. 4(1), P(1) 6(n), P(n) locate and diagnose the produced fault or change in the REB:
Statistics  V/(1), D(1), N(1) ... V(n), D(n), N(n) outer race, inner race, bearing cage, ball (roller), adogrd

with the frequency area where it was produced.

To solve the optimal segmentation procedure, differer#syp  4) \yitiple Fault Detection: Started from the data given
of optimality criteria have been proposed [11]. Inthe faliog i, TABLE || data sequences with multiple faults have been
we use MAP criterium [8]. The number of segmentatiéfis ,eonerated, for 3 types of events: inner race faults, baltgau
is 277 (can be a change or no change at each time instanfyy oyter race faults, with different fault size: 0.007014",
and this put problems concerning the dimensionality. 0.021", 0.028”, for the first two cases, and 0.007”, 0.014",

The conceptual description MAP estimator, for the data afd021” for the third case. The following data sets have been
quantities given in TABLE IV, is given in Fig. 5, for threeused in the analysis, for fault detection:
different assumptions on noise scaling: (i) knowi) = A,

(i) unknown but constanf\(i) = A and (iii) unknown and

changing\ (i), whereq is the change probability at each time sit) = [yo(®),91(1):ya(t), y7(t), y10(t)]
instants < ¢ < 1). sa(t) = [yo(t),y2(t),y5(t), ys(t), y11(2)]
s3(t) = [vo(t), ys(t), ys(t), yo(t)]

Data: Vibration signaly;, t=1...N resulting data sequences of 20480 values for signals

. . . _s1(t), s2(t) and 16384 for signals(t). The real faults instants
Step 1: Examine every possible segmentation, parameterizgle 4097, 8193, 12288 and 16384. These data sets offer the
in the number of jumps: and jump times™, separately.  qsipility to fault detection of a graduate size of fault; fhe

Step 2: For each segmentation, compute the best modelsGASeS mentioned above.

each segment parameterized in the least square estififafes The experimental results refer to the signals

and their covariance matrice®(i). s1(t), s2(t), s3(t) and the segmenting algorithm presented
above with unknown and constant noise scaling, and MCMC
Step 3: Compute in each segment: algorithm [8], with a value of jump probability; = 0.3 and
_ A appropriate design parameters in search scheme, foratiffer
Ve = o e 0(0)" Ry (ye — 07 6(0)) model order,na. The fault instants detected for different
D(i) = —logdet P(i) model ordersna are presented in TABLE VI, TABLE VII
N() = ki—kia and TABLE VIII for s1(t), s2(t) andss(t), respectively.

The signals; (t), making the object of the analysis, and the
estimated multiple fault times for the inner raee, = 20 and
g = 0.3, are presented in Fig. 6, while the signa(t) and the
(i) known A(i) = Ao, estimated multiple fault times for batha = 20 and¢ = 0.3
k" = argming S (D(i) + V(i) 4 2nlog =4 are given in Fig. 7. The signak(¢) and the estimated multiple
' - K fault times for the outer raceya = 60 andq¢ = 0.3 make the
object of Fig. 8.

Step 4: MAP estimate/”, for the three different assumptions
on noise scaling

(i) unknown but constani (i) = A,

k™ = argmingn ZZ 1 D(i)+ (Np —nd — 2)x TABLE VI. FAULT DETECTION IN SIGNAL s1(t) USING DIFFERENT
V(@ MODEL ORDER
xlog >, Np i i +2n10g—

Model order  Fault detection instants
na = 10 4096, 8687, 9501, 10684, 11322, 11500, 12570,

(i) unknown and changing\(i), 12627, 12967, 13068, 13961, 14527, 14627, 14777,
kr = argmingn ,, > . (D(i) + (N(i)p —d — 2) x 15964, 16384.
) @) 4 2nlog L= e na=15 4096, 8687, 9502, 10684, 11501, 12570, 14777, 16384.
108 Fop—a—a nlog na=20 4096, 8195, 8687, 11502, 13026, 16384.
Results : Numbern and locations:; , k™ = kq, ko, ..., ky

The changes in signals;(t), s2(¢) and s3(t), resulted
Fig. 5. MAP segmentation algorithm. after the data concatenation, are gradual, whose effect may
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Estimated multiple fault times: Inner race (6203 bearing type)

) 0.2 0.4 0.6 0.8 12z 1a 16 18 2

1
Sample number 10"

Fig. 6. The signak; (t) and estimated multiple fault times for inner race,
na = 20, ¢ = 0.3.

TABLE VII. FAULT DETECTION IN SIGNAL 82(t) USING DIFFERENT
MODEL ORDER

Model order  Fault detection instants
na = 10 4096, 8191, 8497, 8614, 9305, 9929, 11946, 16385,
16711, 16901, 18065, 18129.
na = 15 4096, 8190, 11946, 16385, 16719, 18108, 18128.
na = 20 4096, 8190, 11945, 16385, 16751, 18233.

Estimated multiple fault times: Ball (6203 bearing type)

() 0.2 0.4 0.6 0.8 12 1.a 16 18 2

1
Sample number “ 10"

Fig. 7. The signak2(t) and estimated multiple fault times for the ball,
na = 20, ¢ = 0.3.

TABLE VIII. FAULT DETECTION IN SIGNAL S:;(t) USING DIFFERENT
MODEL ORDER

Fault detection instants

4096, 4383, 7081, 7170, 7897, 7950, 8192, 12298,
12367, 12480, 12982, 13151, 13260, 13407, 13596,
14042, 14179, 14378, 14489, 14668, 14823, 15169,
15271, 15575, 15605, 16050, 16229.

4096, 8192, 12296, 12368, 12479, 12669, 12813,
13261, 13455, 13596, 14042, 14173, 14378, 15015,
15164, 15271, 15469, 15605, 16051, 16346.

4096, 8192, 12293, 12367, 12479, 12669, 12813,
13261, 13460, 13594, 14042, 14189, 14378, 15271,
15473, 15604, 16051.

4096, 8198, 12287, 12352, 14057.

Model order
na = 10

na = 15

na = 20

na = 60

Estimated multiple fault times: Outer race (6203 bearing type)

) 2000 2000 6000 10000 12000

14000

8000 16000
Sample number

Fig. 8. The signaks(t) and estimated multiple fault times for outer race,
na = 60, g = 0.3.
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MC

S1,S2 S4 S6

S3

S5 S7

D

Fig. 9. Schematically multichannel measurement

increase, producing new changes in the signal dynamics that
can be detected by the algorithm. The further deterioration
of the rolling element bearing during operating produces ne
fault instants, different from 4096, 8192, 12288 and 16384
instants. According with data from TABLE VI, TABLE VII
and TABLE VIII one can notice that in all the cases the
main faults are detected. Also, it can be noted that for the
models with high orderra = 20, na = 20 and na = 60,
respectively), only the main faults are detected at instant
4096, 8192, 12288 and 16384 or near instants. The models,
of high order, can increase the robustness of the optimal
segmentation algorithm to gradual, or small changes inasign
dynamics. Different values of offer similar results, but a
higher order of the model leads to a better fault detectiom, t
model being more able to approximate the signal dynamics.

B. Industrial Pump Monitoring

The machine under investigation is an industrial pump.
The used data set consists of multichannel measurements
for 7 channels repeated for two identical machines: the first
is virtually fault free and the second shows a progressed
pitting in both gears [34]. The data were selected from the
high-frequency measurements, digitized at 12800 Hz, a data
segment of 4096 values, 2048 from the fault free machine,
and last 2048 from the machine with a progressed pitting in
gears, both for minimum load. The data have been low-pass
filtered to 5000 Hz.

A scheme of the machine with its components and sensor
position is given in Fig. 9, with the following legend:

E = electromotor

A = incoming shaft (driving shaft)
MC = machine casing

T = tachometer

B = first delay (gear-combination)

C = second delay (gear-combination)
D = outgoing shaft (to vane in water)
S1-S7 = position of sensors 1,7

The rotating speed of the driving shaft is measured with
a tachometer. This measurement is done synchronously with
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Source 1 - Case: Fault free + Fault data

” A T R “

2 i i 2560 - B g

RIDH, Lg=204, Lh=512, Nf=4096, lin. scale, contour, Threshold=5%
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Source 2 - Case: Fault free + Fault data
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Fig. 10. Independent vibration sources in normal operaging fault 6401
conditions of the pump -

I I I I I
500 1000 1500 2000 2500 3000 3500 4000
Time [samples]

7 accelerometers used in the following manner: sensor S1,Sz .
are radially mounted near the driving shaft, with an angle &f9- 11- Reduced int
90 degrees between them, sensor S3 is axially mounted near
the driving shaft, and sensor S4-S7 are radially mounted on
different parts of the machine.

erference distribution for vibratimuice S1 in normal
and fault operating conditions

RIDH, Lg=204, Lh=512, Nf=4096, lin. scale, contour, Threshold=5%

The data represented the object of the analysis in [7], where ‘ ‘ ‘ ‘ ‘ ‘
the blind source separation (BSS) and change detection in
source signals, according with the approach presentedgin Fi
3. The case study, making the object of this section, used the
general approach, given in Fig. 4, for the data set mentioned
above. It includes vibration signal demixing, time-fregag 1020} i
analysis, energy distribution evaluation using shomat&ényi
entropy, and its segmentation, based MAP estimator. The
segmentation algorithm operates on Rényi entropy, as a New< o IS o ST il
space of decision. We discuss in the following this approach :
and present the experimental results.

2560 q

quency [Hz]

1) Blind Source SeparationThe acceleration measure-
ments for 7 channels and 4098 values, from the fault free
machine and progressed pitting in gears machine, repexsent ‘ ‘
the input data for SOBI algorithm [16], when 2 independent ’ S0 a0 a0 A ER o e e
vibration sources and an instantaneous mixture model have ]
been considered. The number of the sources resulted {ig 12 Reduced int
eigendecomposition of the sample covariance matrix [36¢ T
independent vibration sources are presented in Fig. 10.

erference distribution for vibratiauice S2 in normal
and fault operating conditions

2) Time-Frequency &yi Entropy: Fig. 11 shows the re- .
duced interference distribution (RID) [36], of S1 sourc a} possible lack of the BSS method robustness, the real change

computed with a kernel based on the Hanning window [33]. n a(ﬁ? mducedtl)n t(\)l\';her s&urceﬁ, N our case |ntth|e S2 ?outrc_e
Fig. 11 at linear scale, it can be noted a change in the spec € diterences between Ihe changes in spectral content in

content of the source, in the second part of the signal. Oth sources point out this fact.

Results of the TFD ana'ysis for S2 source are presentedTo eVaIUate the TFD resulted for S1 source we present in
in Fig. 12 for RID, with a same Hanning window. SimilarFig- 13 the short-term Rényi entropy as measure of time-
conclusions, as in the previous analyzed case, concerifibg Tfrequency distribution, computed for RID. It was used aistid
properties, could be established. From Fig. 12 it can bedhot¢indow of N' = 64 values and a constant bias to be added to
a reduced change in the spectral content of the source, in $ignal of 1.
second part of the signal, in comparison with the S1 source. g, g2 source, we present in Fig. 14 the short-term Rényi

A first conclusion, in this stage of time-frequency analysi€ntropy, as measure of time-frequency distribution, caegu
could be that S1 source has been induced by the fault in pufop RID, with the same values for the sliding window and
gears, but because the source separation is not perfectp dueonstant bias added to signal.
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Short-term Renyi entropy using RID for Source 1 Renyi entropy source 1 - MAP
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Fig. 13. Short-term Renyi entropy using RID for source S1
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Fig. 14. Short-term Renyi entropy using RID for source S2 05 |
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3) MAP Segmentation oféRyi Entropy: Visual inspection ool |
for the Rényi entropy of both sources, shows that the onset
time is clearly visible as a change in energy and frequency **| ]
content. Our experience is that, for this problem, as forynan %% il

other signal processing ones, a piecewise constant moglel (1 oot - e w0 @0 00
could lead to a satisfactory trade-off between complexitgt a Time [samples]

efficiency of the corresponding algorithms for the off-line Fig. 16. MAP segmentation of short-term Renyi entropy faurse S2
estimation of the change time. The segmentation procedure
has been performed using an autoregressive model (AR) of
order 1, the unknown and constant noise scaling assumption
and MCMC algorithm.

The parameter and variance estimates resulted in MAPThe paper considers the problem of change detection in
segmentation are presented in Fig. 15 and Fig. 16 for Rémbration signals, with application in predictive mainserce
entropies, obtained for S1 and S2 sources, respectively. of rotating machines, integrating some signal processing

The variance traces of the piecewise constant model Sh(lﬁghnlques, mainly independent component analysis, time-

for both sources, significant jumps in the second part of tﬁr@quency analy_S|s, energy distribution gvaluauon In etm
signals, and that a main distinct rupture event occurree, THeduency domain, and a change detection algorithm based

proposed procedure assures more robust change detectiofiMAP estimator.
vibration signal analysis, than in the case of change detect The case studies making the object of the paper prove the
in the estimated sources in time domain, see [7]. effectiveness of the proposed approach. The first case,study

VIII. CONCLUSIONS
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having as subject detection of faults in REB, uses a segmérs;
tation algorithm based on MAP estimator, directly applied
to vibration signals, while the second, for monitoring of af g
industrial pump, makes use of time-frequency Rényi entrop
segmentation, applied to independent vibration sourcebeof a7
pump.

The general approach offers new possibilities for mofé8l
robust detection of changes in vibrating signals and assure
proactive actions in vibration monitoring. It offers a sil@p [19]
analysis and interpretation of the vibration signals bairav
providing new physical insight into vibration processes f&zo]
predictive maintenance. It can also be used for other dmnaijeu]
that require change detection and diagnosis, such as biomé&#!
cal signal processing (EEG, EKG, and MEG), seismic signrag]
analysis, infrastructure monitoring, speech analysisroo-
nication systems, video surveillance, transportatiortesys, [24]
etc.
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