
13

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MobileTimeSync - An Android App for Time Synchronization for Mobile

Construction Assessment

Maik Benndorf, Marika Kaden,
Frederic Ringsleben and Thomas Haenselmann

Faculty of Applied Computer
Sciences & Biosciences

University of Applied Sciences
Germany, Mittweida 09648

{benndorf, kaden1, ringsleb, haenselm}@hsmw.de

Eric Zuchantke
Faculty of Mathematics and

Computer Science
Friedrich-Schiller-Universität Jena

Germany, Jena 07743
eric.zuchantke@uni-jena.de

Martin Gaedke
Faculty of Computer Science

Technische Universität Chemnitz
Germany, Chemnitz 09111

gaedke@informatik.tu-chemnitz.de

Abstract—Modern smartphones offer more use-cases than
(just) pure communication. These devices, equipped with several
sensors, can be used as measuring devices, for example. In
order to compare and interpret the sensor data obtained from
multiple devices, precisely synchronized clocks are needed. Since
all clocks are subject to inaccuracies, a synchronization method
is necessary. In this article, we propose MobileTimeSync - an
Android app for time synchronization. We suggest how to align
clocks based on ultrasound beacons to mutually take clock
drift and skew into account. In addition, we will discuss the
different kinds of time sources in Android smartphones. With
our approach, we obtain a precision, which can be expected
from traditional synchronization approaches such as Network
Time Protocol but with much less effort.

Index Terms—time synchronization; clock skew; clock drift;
sensor networks; mobile devices; smartphones

I. INTRODUCTION

Most computer clocks, e.g., those built into a smartphone,
are subject to an inaccuracy [1]. This inaccuracy can be
neglected in the general purpose of the smartphone. However,
since these devices are equipped with several sensors, there are
other use cases in which this inaccuracy cannot be neglected.

The following scenario illustrates our need for accurate
clocks: In cases of natural disasters such as flooding, timely ac-
cess to information about transport infrastructure is crucial for
the first-aider as well as for the affected people. In particular,
bridges could be fit for traffic, partially usable or be destroyed
entirely. While in many cases a visual inspection is sufficient to
assess the accessibility of roads, for the assessment of bridges
further information is needed. Assessing the construction’s
integrity can be accomplished by the analysis of the bridge’s
eigenfrequencies. Therefore, a proprietary, expensive Vibration
Measurement Systems (VMS) is necessary. However, in many
cases, such a device is not available in a timely manner in
the areas struck by a disaster. In [2], [3], we were able to
show how this VMS can be replaced by low-cost, off-the-
shelf smartphones that can be applied to perform an ad-
hoc assessment of a bridge. Our current research is now
focusing on the issue of locating the damage on the bridge.
For this purpose, several smartphones have to be placed on

the surface of the bridge, and their measured values have to
be aligned finally. Therefore, the clocks of these devices must
be synchronized.

At the Sensorcomm conference we presented an approach
for acoustic time synchronization of smartphones [1]. The
basic idea for this synchronization approach comes from
sports. With a 100 m sprint, eight athletes stand in starting
blocks. The race begins with an external signal which is the
same for each athlete. This idea was adapted for the time
synchronization of smartphones. For that purpose, an external
acoustic signal is generated and sent out. The smartphones
microphone receives this signal and the timestamp of the
arriving of the signal is used for aligning different devices.
If several of those signals were sent out with this procedure,
it is possible to determine the clock skew and clock drift.

One issue of our previous work was the source of the sound
signal. In our experiments in [1], we used a choke in the same
way as it is applied in athletic sports. In our recent research,
we create an Android app (see Fig. 1) for this purpose. This
app serves as both a sender (sound source) and a receiver.
Moreover, the app facilitates the use of time synchronization
on these devices and will be presented in this paper.

Fig. 1. Screenshot of the Android App for Time Synchronization

Therefore, this article is organized as follows: Section II
is devoted to provide fundamentals and give an overview of
related work in the field of synchronizing methods. Our appli-
cation and methodology is described in Section Methodology



14

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(Section III). Some experiments and their results are presented
in Section IV. A summary and outlook are drawn in Section
V.

II. FUNDAMENTALS AND RELATED WORK

The addressed problem is related to the time synchroniza-
tion in sensor networks. A lot of research has been done in
this area. There are several methods for synchronizing physical
clocks. These methods can be classified as ”internal” and ”ex-
ternal” synchronization. For an internal clock synchronization,
all nodes accept the time of a reference node in the network
[4]. In external clock synchronization, the value is taken from
an external clock source, such as a common time service, e.g.,
Network Time Protocol NTP or the Global Positioning System
(GPS) [5].

A. Synchronization Methods

In this section, some of the most common synchronization
methods are shortly discussed.

1) Synchronization by NTP: NTP is a protocol for syn-
chronizing computer clocks using a set of distributed servers
around the world. This protocol is also known as Simple
Network Time Protocol (SNTP). It is built on top of the User
Datagram Protocol (UDP) [6]. Fig. 2 shows the process of an
NTP based time synchronization. The protocol was announced
with a precision in the range of nanoseconds (ns) [7] [8].
This protocol has been utilized in numerous clients for several
years. Juda Levine [9] reports in 2011 about 5× 109 requests
per day. The accuracy of the protocol and the related assets
have been studied in numerous works [10]–[12]. The network
latency has a significant impact on the accuracy. Zhao et al.
[11] evaluated the accuracy with less than 10 ms under Local
Area Network (LAN) condition and less than 100 ms under
Internet conditions. As a reference for their evaluations, they
used the time of the GPS.

Fig. 2. Overview of time synchronization via NTP [13]

2) Synchronization by GPS: The Global Positioning sys-
tem, was designed and is still under the control of the United
States Department of Defense. Nevertheless, it is also freely
accessible by anyone. The system consists currently of 32
operating satellites that are orbiting the earth at an altitude of
approximately 20, 000 km. Every satellite contains multiple
atomic clocks that support very precise timing data [14]. For

determining the position, the receiver needs signals from at
least three of these satellites. The position of the receiver
can be calculated by the difference between the signal sent
and received by the receiver. With this ability to receive very
accurate data from multiple sources an accurate time can be
obtained. In 2015, Mazur et al. [14] determined the accuracy of
such time synchronizations within up to billionth of a second.
This system can be accessed anywhere in the world and has
very high accuracy. But it requires a direct line of sight to the
satellite, and an initial connection takes a long time in some
cases.

3) Time Synchronization on Mobile Devices: One recent
work in this area is provided by Sridhar et al. In [15] they
proposed Cheepsync - a synchronization service for Bluetooth
Low Energy (BLE) Broadcasters. Cheepsync consists of a
custom transmitter platform and an Android smartphone as
the receiver. In order to overcome the non-deterministic de-
lays, they used a common BLE chip. Since the transmission
command directly addresses the hardware, they were able to
generate a low-level timestamp in the range of 10 µs.

Another approach is proposed by Lazik et al. [16]. They
used ultrasonic beacons to synchronize the time on mobile
devices. Therefore, they built up a network with one network
master. The master is connected to a GPS receiver and
transmits ultrasonic chirps in a frequency that is outside of
the human hearing but still detectable by the microphone of
smartphones. They reported that the devices could be synchro-
nized with an average accuracy of 720 µs. At the beginning
of their experiments, they investigated devices with Android
and iOS. They reported a high-level jitter on the Android
device (in the order of milliseconds and higher) and chose
the iOS devices for the rest of their experiments. The jittering
is justified by Android’s task scheduler. Within this work,
they also benchmarked the NTP timing performance (on iOS).
They ran their experiments with three different communication
channels: Long Term Evolution Technologie (LTE), Wireless
Local Area Network (WLAN), and one idle WLAN router
that is directly connected to a Stratum 1 NTP server fed by
a dedicated GPS clock. Using LTE they measured an average
jitter of 47 ms, the average WLAN jitter is measured with
30 ms, and finally, the average jitter in the ideal case with the
WLAN router connected to NTP Server is measured with 19.3
ms.

B. Available Time Sources on Android Devices

In Android devices different time sources are provided. A
distinction can be made between the hardware timers which
exist in every device, the timers offered by the Operating
System (OS) and finally the timers provided by Java Virtual
Machine. To use the correct time source for the synchro-
nization, these sources are explained in more detail in the
following.

1) The Hardware Timers: Accessing hardware timers on
Android devices can be useful if the application only has
to run on targeted hardware. It can be rewarding to do so



15

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

because these timers are incredibly accurate, monotonic, non-
decreasing clocks and cheap to read. On some ARM CPUs
the overhead to read the time can be as small as only
one CPU cycle (e.g., for Cortex A9 processors). But this
high performance comes at a price as directly accessing the
hardware requires an assembly code which is not portable,
takes a lot of time to develop and is hard to read. Furthermore,
if the program ought to be used on different devices most of
them will have different hardware clocks. Errors can also occur
when the device enters CPU saving or low-frequency states.
All in all this method would only be suitable if the hardware
is precisely targeted, which is not in our case [17].

2) Android Based Timers: Times from the Android oper-
ating system can be obtained by using clock sources from
the Linux kernel. As in any system based on the 2.6 kernel,
Android holds a linked list of all its clock sources sorted
by rating and chooses the best available clock for all func-
tions getting time from the kernel. One function to access
these time sources is the clock_gettime()-posix function,
which returns the time in a resolution of ns. However, this
produces a small, acceptable overhead on ARM CPUs. If the
clock_gettime()-function is running on a system which
implements a syscall for it the overhead can also be removed.
But as long as this method is only usable in native applications
developed with C or with the usage of the Java Native Interface
(JNI), it may not be suitable for particular use cases [17].

3) Java Timers: Because many Android applications are
written in Java, the Java time functions are also considered
for use as they are implemented in the Java Virtual Machine
(JVM) and therefore are easily accessible from any Java
application. There are four different types of clock functions
offered that may prove useful [18]:

• SystemClock.uptimeMillis()
• System.currentTimeMillis()
• System.currentThreadTimeMillis()
• SystemClock.elapsedRealtime()

uptimeMillis() returns the system uptime since
last boot in milliseconds (ms). The clock is guaranteed
to be monotonic and is unaffected by most power saving
mechanism, but it stops when the device enters deep sleep
[18]. Therefore, this can be a reliable time source only if the
measured time does not span deep sleep. However, due to the
possibility of device going into ’deep sleep mode’ this clock
is not the best choice.

currentTimeMillis() returns the time in ms since
the epoch. It can be used to measure daytime and dates but
can be set by the user or the phone network. So the returned
time may jump around [18]. In conclusion, the time provided
by this function would be great to use in the application, but
is too unreliable due to time changes.

currentThreadTimeMillis() returns milliseconds
running in the current thread [18]. However, this can only be

used for time measurement in combination with timestamps
received from other time sources. Even if it is used that way,
this will produce more overhead for time calculation then
using uptimeMillis(). So, it is not considered as a helpful
time source to compare timestamps among devices.

The functions elapsedRealtime() and
elapsedRealtimeNanos() return the time since
the system’s last boot in ms and ns. Both functions include
deep sleep and are guaranteed to be monotonic not to be
influenced by the CPU entering power saving modes [18].
Thus, it can be useful for time comparison, but it should
be noted that this is a relative time and cannot be used for
comparison across different devices.

4) Advanced Time Calculation with Combined Methods:
Another method for achieving accurate timestamps is called
TrueTime [19]. The proposed algorithm takes advantage of the
function elapsedRealtime() by requesting a timestamp
from an NTP Server and storing this timestamp along with the
elapsedRealtime() upon receiving the NTP timestamp
in the device memory. Now every time a timestamp is needed
the stored elapsedRealtime() can be subtracted from
the current elapsedRealtime() and this difference is
then added to the stored NTP timestamps creating the new
current time in ms. Advantages of this method are that these
timestamps are impervious to device clock changes as the NTP
server dictates the time and the accuracy of this procedure
above multiple devices is very high as long as every device
receives the same timestamp via NTP. Also, the created times
will be accurate until the device reboots, and it does not require
a stable data connection. Disadvantages include the need for a
data connection every time after reboot before the method can
be used and the precision of the timestamp received that may
vary depending on the latency of the network connection.

5) Summary: In summary, there are two types of times we
can get from the system. First of all, there is the daytime which
is dependent on which time the device was manually set to by
the user or automatically.

Also, there are methods that will return timestamps
measured relative to certain events like system boot.
These methods deliver very accurate timestamps, but
they are not comparable across different devices. But
this is not necessary for our synchronization method.
To compare these methods, we conducted an experiment
with one of our phones. Therefore, we compared the
Functions System.currentTimeMillis() and
SystemClock.elapsedRealtimeNanos(). The
mean difference between both the time sources is
0.1906 ms (±0.3919). The mean difference between
ground truth and elapsedRealtimeNanos() is
9.020 ns (±7.779). And finally, the mean difference
between ground truth and currentTimeMillis()
is 9.088 ms (±7.79). The results can also be seen in
Fig. 3. The function elapsedRealtimeNanos()



16

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

10

20

0 500 1000 1500 2000

elapsed time [s]

to
ta

l e
rr

or
 [m

s]

Signals
currentTimeMillis()
elapsedRealtimeNanos()

Fig. 3. Comparision of the two signals: (sorted) difference of ground truth
to elapsedRealtimeNanos() (orange) and currentTimeMillis()(green)

performs only marginally better than the function
currentTimeMillis(). Nevertheless, since only
the function elapsedRealtimeNanos() is monotonic
and not influenced by deep sleep, we decide to use this time
source.

C. Problems

In combination with the time synchronization on Android
devices, there are some problems which are mentioned below.

1) Clock-Skew and Drift: This is not an Android specific
problem but rather a general problem of most of the computing
devices. These devices are equipped with a hardware oscillator
assisted computer clock. The frequency of the hardware os-
cillator determines the rate at which the clock runs [20]. This
clock becomes inaccurate because the frequency varies.

actual time

de
vi

ce
tim

e

perfect skew drift jittering

Fig. 4. The difference between a perfect clock, one with drift, one with a
skew and one, as it is likely to occur in real [21].

Fig. 4 shows the difference between the clock drift - in this
case, the clock is behind or ahead by a fixed offset, the clock

skew - here the offset is growing with the time, and the jittering
- in this case, the device clock is affected by internal (e.g.,
processor utilization) or external (e.g., temperature, humidity
[22]) fluctuations. To show the appearance of the clock skew
with an example, we present here a result of an experiment
shown in [1]. In this experiment, we compared the local time
on three different smartphones over 24 hours with the time
values of the GPS sensor.

−
30

0
−

20
0

−
10

0
0

10
0

20
0

30
0

elapsed time in hours

di
ffe

re
nc

e 
be

tw
ee

n 
de

vi
ce

 ti
m

e 
an

d 
ac

tu
al

 ti
m

e 
(m

s)

0 6 12 18

SP 1 SP 2 SP 3

Fig. 5. The clocks skew of the devices within 24 hours compared to the
timestamp given by GPS.

As it can be seen in Fig. 5 the offset of all three devices is
growing over time. To keep these clocks in time, Zhenjiang
Li et al. [23] use the flickering lights of fluorescent lights.

2) Jittering: Jittering is an Android specific problem. The
duration of the execution of a function can vary. If the
execution is heavily dependent on time measurement (like the
comparison of sensor values in short amounts of time), these
timing errors can lead to all kinds of possible misfunctions of
the algorithm. So, it is advisable to look into the problems
which can be caused by timing errors. The difference in
the function execution time is called Jitter. According to an
analysis from the University of Florida, the Jitter increases
when polling device sensors at higher frequencies [24]. Data
can be received from the device sensors via the sensor man-
ager, which also creates timestamps for the data. However,
this can unfortunately be received from nonmonotonic clock
(creating problems for comparison of sensor data) as some
hardware manufacturers do not fulfill the hardware specifica-
tions for sensor polling from Google. Sources for Jitter on
Android devices are issues with the Android Compatibility
Definition as it lacks hardware standards and requirements
like minimizing Jitter are only ”should” criteria. Moreover,
it can be constrained from the devices resources. These
are mainly Memory (Garbage Collection / Thread Queues),
Processor (Scheduler / Interrupt Handling) and Energy. To



17

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reduce resulting issues, developers can force the sensors to
synchronize with the elapsedRealtimeNanos()-clock
from the Android SDK to get real-time timestamps for the
sensor data as this is not guaranteed for every device. In case
of data received from multiple sensors, the study recommends
to create timestamps for every sensor individually and syn-
chronize the data afterwards [24]. Monotonic time series can
only be reliably achieved through manual synchronization with
a strictly monotonic clock as the requirements for Android.
This also gives the possibility to synchronize sensors with non-
monotonic clocks. Also, event delivery delay can be reduced
by ensuring that the device has enough available resources
during the runtime of the application. However, this can be
difficult to achieve as many consumer devices may suffer
from resource starvation even without an application trying
to reserve as many resources as possible. The ideal proposed
alternative for developers is to find polling frequencies for
the sensor at which Jittering cannot occur or stays within a
forcible range [24]. To achieve these, developers can refer to
the Android Compatibility Definition (CDD) for the respective
android version.

III. METHODOLOGY

0

1

2

3

4

0   N-1

samples

a
m

p
lit

u
d

e

Fig. 6. Flat Window

In the previous section, we explained some synchronizing
methods. Synchronization with a common time service will
not be considered at the moment. This is because we can not
make any assumptions about the availability, connection, and
bandwidth. A prerequisite of synchronization among different
devices is that they share the same network. To make the
use case as simple as possible, it is not planned to create
a network between those devices. Another option would be to
synchronize via GPS. However, a direct view to the satellite
must always be guaranteed. So, we decided to use acoustic
synchronization. In [1] we created sound beacons with a choke
from the sport. These acoustic beacons were recorded by the
microphones of the smartphones. Afterwards, the peaks were
isolated from the recorded data and the time at the peak
was used to align the data of the various devices. In the

continuation of this work, we developed an app. This app (see
Fig. 1) serves both as generator and transmitter of the peak
and the receiver.

A. Specifics

Due to the operating system, there are some specifics that
need to be mentioned.

• The sound is encoded by 16 bit. Hence, values in the
range from −32, 768 to 32, 767 with a maximum signal
to noise ratio of 96.33 dB can be achieved.

• The audio samples are provided by the operating system
as chunks. Therefore, only the time when a package is
received can be measured. The time for the samples is
calculated from the sample rate by interpolation. The size
of the chunks depends on the buffersize that is proposed
by Android.

In order to reduce external influences, we disable most of
the applications on the device.

B. Sound Synthesis

To generate the synthetic peak, we use the Flat top window
function. Fig. 6 shows one peak generated with this function.
Depending on the selected sample rate and the selected period-
icity, this peak is embedded in an audio file one or more times.
The standard length of this audio file is about 30 minutes.

The synchronization process is started by pressing the send
button. This will play the audio file and can be recorded by
all nearby devices.

C. Sound Recording

All devices involved in synchronization must be close to
the transmitter (to minimize the influence of sound). On these
devices, the synchronization process is started by pressing the
Receive button. In our example, we have chosen a sample rate
of 44, 100 Hz and a frequency of 1 Hz. This means that the
peak was embedded in the audio file once per second. Fig. 7
shows (a) a single peak of the generated signal and (b) the
sequence of several such peaks.

D. Processing

The following operations are performed in the background
of the app.

1) Interpolating the time for each sample: As mentioned
above, the data is only provided in chunks. This means that for
each sample in this chunk, the times must be interpolated. One
step for interpolation is calculated by the following equation:

Is =
(tn − tn−1)

Sr

(1)

where Is is the stepwidth for the interpolation, tn is the
timestamp the current chunk is received, tn−1 the timestamp
the last chunk was received and Sr is the selected sample rate
in our example 44, 100 Hz.



18

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-20000

-10000

0

10000

20000

30000

0 1000 2000 3000 4000

elapsed time [µs]

am
pl

itu
de

(a) Single peak

0

10000

20000

30000

0 500000 1000000 1500000 2000000

elapsed time [µs]

a
b
so

lu
te

 a
m

p
lit

u
d
e

(b) Multiple peaks

Fig. 7. App recorded (a) single peak or (b) multiple peaks.

2) Preprocessing: In the given signals of each device
missing values can occur, i.e., the peak of the audio signal
cannot be detected. In these cases the signal is replenished,
i.e., if the difference between two records is greater than
periodicity × 10 % the missing value is added in between.
Thereby, the distance is fixed by periodicity× sample rate.

E. Filtering and storing the values

Afterwards, the values are filtered by amplitude. For this
purpose, a threshold value can be configured in the App. The
default value is 80 % of the maximum amplitude. All filtered
values are stored in a database and can be used to align the
devices.

IV. RESULTS AND EXPERIMENTS

During our experiments, we used different model devices
from different manufacturers and will briefly denote this
with Sp1, Sp2 and so on. These devices are equipped with
up to three MEMS-Microphones (Micro-Electro-Mechanical-
Systems) and are all operating with the Android operating
system in versions from 4.2 up to 8.1.

A. Single Error Analysis for One Device

Fig. 8 shows, as an example for one of the devices,
the simple error of the measured values during a half-hour
synchronization process. The difference between ground truth
(audio file) and the measured time of the received signal is
colored gray and called single error. This deviation can be
explained by the jittering of the operating system. The red
line represents the mean value of the deviation (0.0105 ms
(±4.600)). Since the mean derivation is slightly positive, the
deviations are accumulated, and thus, the total error increases
over time.

-4

0

4

8

0 500 1000 1500 2000

elapsed time [s]

si
n

g
le

 e
rr

o
r 

[m
s]

Fig. 8. Single derivation of the received signals to the ground truth of 1000
ms with the mean single error (red) and standard deviation(blue)

B. Single Error Comparison

All devices have similar behavior in the total error develop-
ment (see Fig. 9). The deviation to the ground truth of Sp1 is
less compared to especially Sp3. This can also be seen in the
statistical values listed in Table I. Moreover, the single mean
errors of each signal are small (about 0.01 ms). However, the
standard deviations are high for all three devices (greater than
4 ms). This reflects the maximum of the single error, which
is around 10 ms. These values correspond to those of [16].

C. Synchronization of the Time Signals

Now, the acoustic signal can be used to synchronize the
devices. After a fixed time interval the acoustic signal is
recorded, the devices are synchronized and thus the total error
of time deviation can be reset to zero. We used smartphone
SP1 and select different synchronization intervals.



19

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. STATISTIC VALUES ABOUT THE ERRORS OF THE SINGLE SMARTPHONES (ELAPSED TIME WINDOW 15 MIN)

device Sp1 Sp2 Sp3

mean total error (mte) [ms] 2.0111 7.1256 9.2700
standard deviation (std) [ms] (±4.1750) (±4.705) (±4.3541)
maximum total error [ms] 13 18 20

mean single error [ms] 0.0100 0.0111 0.0189
standard deviation [ms] (±4.6101) (±4.5342) (±4.7198)
maximum single error (mse) [ms] 8 7 12

0 250 500 750 0 250 500 750 0 250 500 750

0

10

20

elapsed time [s]

to
ta

l e
rr

or
 [m

s]

Phone
SP 1
SP 2
SP 3

Fig. 9. Total error development of the three different smartphones

In Table II the statistical values for the different adjustment
intervals are given. It can be seen that the maximum total
error, as well as the standard deviation, is nearly the same
for all intervals. The mean total error increases with the
longer interval lengths. Fig. 10 shows the two total errors
for two different correction intervals, one from the original
signal and one from the corrected signal. It can be seen that
we can reduce the accumulation of the total error. To get a
better understanding of the error distribution, in Fig. 11 the
histograms of the total errors are visualized. For the original
signal, the total error is widespread and has an overhang
to larger positive values compared to the corrected signal.
The corrected signal has smaller total errors and a smaller
distribution around the zero point. The differences in the error
distribution according to the size of the intervals are not
decisive, as it can be seen in Table II.

D. Aligning Sensor Data based on a Time Synchronization

Assuming a situation in which a bridge has to be assessed.
The assessment is based on the measured values of acceler-
ation sensors built-in the smartphone. We use several smart-
phones in this situation since we can get a more accurate result.
In order to align the measured values, these devices must be
synchronized - the use case for our proposed approach of
acoustic sound synchronization. The object of this experiment

0

10

20

0 500 1000 1500

elapsed time [s]

to
ta

l e
rr

or
 [m

s]

Signal
original
corrected

Fig. 10. Total error of the original signal and the corrected signal
(adjustment interval: 90 ms)

0

50

100

150

200

0 10 20

error [ms]

qu
an

tit
y

Signal
original
corrected

Fig. 11. Histogram of the total error distribution of the original signal and
corrected signal (adjustment interval: 90 ms)



20

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. STATISTICAL VALUES ABOUT THE TOTAL ERROR FOR DIFFERENT ADJUSTMENT INTERVALS (MEAN TOTAL ERROR (MTE),
STANDARD DEVIATION (STD), MAXIMUM OF ABSOLUTE ERROR (ME)

correction
interval [s]

15 30 45 60 95 120 180 360

mte [ms] 0.095 −.0133 −0.3200 −0.113 0.620 −0.080 1.120 1.720
std [ms] (±3.60) (±3.60) (±3.67) (±3.37) (±3.50) (±3.18) (±3.65) (±3.52)
me [ms] 10 10 10 9 9 10 11 11

9.
4

9.
6

9.
8

10
.0

10
.2

elapsed time in seconds

ac
ce

le
ra

tio
n 

in
  m

s2

0 2 4 6 8

SP 1

(a) vibrations of Sp1

9.
6

9.
8

10
.0

10
.2

elapsed time in seconds

ac
ce

le
ra

tio
n 

in
  m

s2

0 2 4 6 8

SP 2

(b) vibrations of Sp2

9.
4

9.
6

9.
8

10
.0

10
.2

elapsed time in seconds

ac
ce

le
ra

tio
n 

in
  m

s2

0 2 4 6 8

SP 1 SP 2

(c) vibrations of both devices combined

Fig. 12. Vibrations of a bridge triggered by a walking pedestrian and recorded by the smartphones. Fig. (a) shows the vibrations recorded by Sp1, (b)
recorded by Sp2 and (c) the data of both devices aligned after time synchronization.

is a single span girder bridge (T-beam) having a structure
of concrete-steel-composite (see Fig. 13). This bridge has a
length of 30 meters, a width of 4 meters and weighs about 70
tons. During the experiment, the bridge was stimulated by a
walking pedestrian. We placed the smartphones at about 1/6 of
the bridge’s length. Fig. 12a and Fig. 12b show the vibrations
caused by the pedestrian and recorded by smartphone 1 and
smartphone 2. As it can be seen, there are differences between
the measured values of the two devices. Since the two devices
were synchronized by our method, these measured values can
be aligned. This leads to a more precise measurement result,
as it can be seen in Fig. 12c and thus to a more reliable
assessment of the accessibility of this bridge.

V. CONCLUSION

In this article, we introduced MobileTimeSync - an An-
droid App for time synchronization on smartphones. This app

Fig. 13. The bridge for our experiment.

generates an audio signal that contains several peaks at the
same distance from each other. Afterwards, this signal is sent
out by the built-in loudspeaker of the device. This signal
is received by all nearby devices and can be recognized by
observing the amplitude of the built-in microphones and the
corresponding timestamp. Finally, we achieved an accuracy
of 10 ms. Thus, we confirm the results of Lazik et al. [16].
One reason for this value is the strong jittering on these
devices. In the next steps, we have to investigate whether this
accuracy is sufficient for the above-mentioned issue of damage
localization. Furthermore, the jittering must be investigated.
One option to avoid jittering could be the Native Development
Kit (NDK), which allows native system calls.

Nevertheless, one advantage of this approach is that net-
work, data or GPS connections are not necessary. The only
limitation is the distance between the sound source and the
devices. This means that this approach is highly suitable for
areas where the above-mentioned synchronization services are
not available. Rolling ahead, we want to bring this App to the
Android Play store.

ACKNOWLEDGEMENT

This research has received funding from the German Fed-
eral Ministry of Education and Research within the project
“Vulnerability of Transportation Structures – Warning and
Evacuation in Case of Major Inland Flooding” “FloodEvac”
(No. 13N13194/13N13195). Special thanks to Bharat Yadav
for proofreading.



21

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] M. Benndorf and T. Haenselman, “Time synchronization on android
devices for mobile construction assessment,” in Tenth International
Conference on Sensor Technologies and Applications SENSORCOMM
2016. IARIA, 2016, pp. 83–87.

[2] M. Benndorf, M. Garsch, T. Haenselmann, N. Gebekken, and
I. Videkhina, “Mobile bridge integrity assessment,” in Proceedings:
IEEE Sensors 2016, 2016.

[3] M. Benndorf et al., “Robotic bridge statics assessment within strategic
flood evacuation planning using low-cost sensors,” in Safety, Security
and Rescue Robotics (SSRR), 2017 IEEE International Symposium on.
IEEE, 2017, pp. 13–18.

[4] K. Sun, P. Ning, and C. Wang, “Tinysersync: secure and resilient time
synchronization in wireless sensor networks,” in Proceedings of the 13th
ACM conference on Computer and communications security. ACM,
2006, pp. 264–277.

[5] B. Kusy et al., “Elapsed time on arrival: a simple and versatile primitive
for canonical time synchronisation services,” International Journal of Ad
Hoc and Ubiquitous Computing, vol. 1, no. 4, pp. 239–251, 2006.

[6] J. Postel, “Rfc 768 - user datagram protocol,” Isi, 1980.
[7] D. L. Mills, “Network time protocol (ntp),” Network, 1985.
[8] ——, “Internet time synchronization: the network time protocol,” Com-

munications, IEEE Transactions on, vol. 39, no. 10, pp. 1482–1493,
1991.

[9] J. Levine, “Timing in telecommunications networks,” Metrologia,
vol. 48, no. 4, p. S203, 2011.

[10] A. N. Novick and M. A. Lombardi, “Practical limitations of ntp time
transfer,” in Frequency Control Symposium & the European Frequency
and Time Forum (FCS), 2015 Joint Conference of the IEEE Interna-
tional. IEEE, 2015, pp. 570–574.

[11] K. Zhao, A. Zhang, and K. Liang, “Research on the uncertainty
evaluation of network time service system,” in European Frequency and
Time Forum (EFTF), 2012. IEEE, 2012, pp. 122–125.

[12] S. Ping, “Delay measurement time synchronization for wireless sensor
networks,” Intel Research Berkeley Lab, 2003.

[13] W. Commons, “Ntp— file: -.jpg,” 2016, [Online; accessed 01-March-
2018]. [Online]. Available: http://bit.ly/2F04ILs

[14] D. C. Mazur, R. A. Entzminger, J. A. Kay, and P. A. Morell, “Time
synchronization mechanisms for the industrial marketplace,” in Indus-
trial & Commercial Power Systems Technical Conference (I&CPS), 2015
IEEE/IAS 51st. IEEE, 2015, pp. 1–7.

[15] S. Sridhar, P. Misra, G. S. Gill, and J. Warrior, “Cheepsync: a time syn-
chronization service for resource constrained bluetooth le advertisers,”
IEEE Communications Magazine, vol. 54, no. 1, pp. 136–143, 2016.

[16] P. Lazik, N. Rajagopal, B. Sinopoli, and A. Rowe, “Ultrasonic time syn-
chronization and ranging on smartphones,” in Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2015 IEEE. IEEE,
2015, pp. 108–118.

[17] S. Giucastro, “Getting high precision timing on android,” 2012,
(retrieved: 13-Mar-2017). [Online]. Available: http://ubm.io/2HWdiZz

[18] Google, “Android developers systemclock,” (re-
trieved: 15-Mar-2017). [Online]. Available:
https://developer.android.com/reference/android/os/SystemClock.html

[19] K. Gopal, “Truetime for android,” 2016, (retrieved: 29-Mar-2017).
[Online]. Available: https://github.com/instacart/truetime-android

[20] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks: a
survey,” Network, IEEE, vol. 18, no. 4, pp. 45–50, 2004.

[21] T. Haenselmann, Wireless Sensor Networks: Design Principles for
Scattered Systems. Oldenbourg Verlag, 2011.

[22] J. Aron, “Flickering lights could help smartphones keep time,” New
Scientist, vol. 215, no. 2874, p. 22, 2012.

[23] Z. Li et al., “Flight: Clock calibration using fluorescent lighting,” in
Proceedings of the 18th annual international conference on Mobile
computing and networking. ACM, 2012, pp. 329–340.

[24] E. Peguero, M. Labrador, and B. Cook, “Assessing jitter in sensor time
series from android mobile devices,” in Smart Computing (SMART-
COMP), 2016 IEEE International Conference on. IEEE, 2016, pp.
1–8.


