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Abstract—Mathematical modeling and numerical simulation
of non-linear mathematical model for digital simulation of an
enzyme loaded porous microreactor is investigated in this paper.
The model is based on a system of reaction-diffusion equations,
containing a non-linear term related to the Michaelis-Menten
kinetics, and involves three regions: the enzyme microreactor
where the enzyme reaction as well as mass transport by diffu-
sion take place, a diffusion limiting region (the Nernst layer),
where only the mass transport by diffusion takes place, and
a convective region, where the constant analyte concentration
is maintained. The digital simulation was carried out using
the finite difference technique. Assuming well-stirred conditions,
impact of the diffusion modulus and the Biot number as well as
porosity on transient effectiveness factor and yield factor has been
numerically investigated. The simulation results showed that the
Nernst layer must be taken into consideration when modelling
micro-size bioreactors. The computational simulations showed
that the yield factor and the effectiveness factors have different
properties to describe system productivity.

Keywords—reaction-diffusion; Michaelis - Menten kinetics;
microbioreactor; porosity; CSTR.

I. INTRODUCTION

This paper is an extension of the work originally reported
in The Ninth International Conference on Advances in System
Simulation [1].

Continuous-flow stirred tank reactors (CSTR) are common
in chemical industries [2][3]. Although a stirred tank is a usual
construction of industrial enzyme reactors, the effectiveness
and optimal construction of CSTR remain open to study [4][5].
Specifically, further research is needed due to the application
of the immobilized enzymes, such as biocatalysts, on a man-
ufactoring scale that requires to use the reactors of different
types, including CSTR [6][7][8].

The CSTR often refers to the model used to estimate
the operation parameters when using a continuous agitated-
tank reactor to reach a specified output [7]. In the last few
decades, immobilized enzyme reactor models have evolved
significantly with a wide range of applications in food industry
[9], waste cleaning [10], immobilization of microbial cells
[11][12]. The main advantages of immobilized cells over non-
immobilized cells can be enumerated: (1) incapsulation not
only keep enzyme from wash out, but also protect it during
the changes of various conditions, such as pH, temperature,
and toxic compounds; (2) cells do not stick up to bioreactors

or other materials within the reactor; (3) reusability; and (4)
control over reactions that are allowed, shell can be formated
to avoid the diffusion of all material to microreactor. Rapid
progress was noticed in integrating microfluidic reactors and
biocatalytic reactions [13]. The combination of miniaturized
technologies and microfluidics allows to increase the efficiency
of bioprocess. In the recent review, Jansen concludes that end-
to-end fabrication and on-demand manufacturing based on
microreactors have growing industrial interest, which leads
to development and progress [14]. However, coupling mi-
croreactors and biocatalysis is highly complex, requiring an
integrated approach addressing biocatalyst features, reaction
kinetics, mass transfer and microreactors geometry [13][15].
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Figure 1. Continuous stirred tank reactor with enzyme-loaded microreactors
(pellets) and a zoomed unit cell to be modelled.
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Mathematical models have been widely used to investigate
the kinetic peculiarities of the enzyme microreactors [8][13].
Models coupling the enzyme-catalysed reaction with the diffu-
sion in enzyme microreactors are usually used. Since contain-
ing catalytic particles, the analyte in CSTR is well-stirred and
set in powerful motion, the mass transport by diffusion outside
the microreactors is usually neglected [15][16]. Mixing within
CSTR creates the Nernst layer while increasing stirrer speed
can reduce the thickness of Nernst layer. However, due to the
inner force of attraction, the zero thickness of the diffusion
shell (layer) can not be achieved [17]. We consider an array of
identical spherical microreactors placed in the CSTR shown
in Figure 1 [7], where area Ωm denotes a microreactor, Ωd
denotes surrounding diffusion shell and Ωc is a convective
region.

The goal of this work was to investigate the dependencies
of the internal and external diffusion limitations on the yield
and the effectiveness factors, modelled by reaction-diffusion
equations, containing a non-linear term related to Michaelis-
Menten kinetics [7][8][18]. The model involves three regions:
the enzyme microreactor, where the enzyme reaction, as well
as the mass transport by diffusion take place, a diffusion
limiting region, where only the mass transport by diffusion
takes place, and a convective region, where the constant
analyte concentration is maintained. In practice, the laboratory
experiments aimed to be performed with as small as possible
particle layer size to avoid process limitations caused by
diffusion of the reacting solution in the catalyst pore system.
There is a practice of performing experiments under the fluid-
dynamic conditions in order to eliminate the lack of mass
transfer liminations outside the particles. However, it is not
always possible to reduce the particle size as much as it is
required for avoiding diffusion limitations.

It has been shown that for first order chemical reactions, the
transient effectiveness factor depends not only on the Thiele
modulus but also on the adsorption capacity of the system,
the fact that should be taken into account when kinetic ex-
periments are designed. However, the type of immobilization
can raise the diffusion difference within the reactor and the
Nernst layer. The porous materials as well as nanoparticles
immobilized in mircoreactors, can be considered porous with
respect to the Nernst layer. This paper also analyses how
the porosity impacts effectiveness factor as well as the yield
factor. Due to a strong non-linearity of the reaction term, the
computer simulation was carried out using the finite difference
technique [19].

The rest of the paper is organised as follows: in Section
II, the mathematical model and microbioreactor characteristics
are described; Section III formulates a dimensionless model
and determines the main parameters of the bioreactor; Section
IV describes the numerical model and the simulator; in Section
V, the results of numerical experiments are presented, and
conclusions close the article.
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Figure 2. Principal structure of the unit cell consisting of a microbioreactor
and the Nernst diffusion shell in homogenously distributed volume.

II. MATHEMATICAL MODEL

We consider an array of identical spherical microreactors
placed in a continuous ideally stirred-tank reactor [7]. Assum-
ing a uniform distribution of the microreactors (see Figure
2) in the tank and a comparably great distance between
adjacent microreactors and fact that microreactor volume Vm
is significantly smaller than the tank volume V , the spherical
unit cell was modelled by an enzyme-loaded microreactor
(pellet) and a surrounding diffusion shell (the Nernst diffusion
layer). The principal structure of the tank containing uniformly
distributed microreactors and a unit cell are presented in
Figure 1, where Ωm denotes a microreactor (MR), Ωd stands
for the diffusion shell and Ωc is a convective region.

In the enzyme-loaded MR layer we consider the enzyme-
catalyzed reaction

E + S
kf

GGGGGGBFGGGGGG

kr
ES

kcat
GGGGGGGGAE + P, (1)

the substrate (S) combines reversibly with an enzyme (E) to
form a complex (ES). The complex then dissociates into the
product (P) and the enzyme is regenerated [20][21]. The kf ,
kr and kcat are forward rate, reverse rate and catalytic rate
constanst, respectively.

Assuming the steady-state approximation, the concentration
of the intermediate complex (ES) does not change and may
be neglected when modelling the biochemical behaviour of the
microreactor [7][21][22]. In the resulting scheme, the substrate
(S) is enzymatically converted to the product (P),

S
E−→ P. (2)
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A. Governing Equations
Considering the symmetrical geometry of the microreactor

and homogenised distribution of the immobilized enzyme
inside the porous microreactor, the mathematical model can
be described in one-dimensional domain using the radial
distance [7].

Coupling enzymatic reaction in the microreactor (region
Ωm) with the one-dimensional-in-space diffusion, described
by Fick’s second law, and considering the steady-state of a
system (2) leads to the following governing equations of the
reaction-diffusion type (0 < r < R0):

DS,m
1

r2
d

dr

(
r2

dSm
dr

)
=

VmaxSm
KM + Sm

, (3a)

DP,m
1

r2
d

dr

(
r2

dPm
dr

)
= − VmaxSm

KM + Sm
, (3b)

r stands for space variable, Sm = Sm(r) and Pm = Pm(r)
are the concentrations of the substrate and the reaction product
in the microreactor, respectively, R0 is the radius of the
microreactor, Vmax = kcatE0 is the maximal enzymatic rate
and KM = (kr + kcat)/kf is the Michaelis constant. The
volumetric reaction as a function from concentration is marked
as V (S) = VmaxSm/(KM + Sm).

In the Nernst diffusion layer Ωd only the mass transport by
diffusion takes place (R0 < r < R1):

DS,d
1

r2
d

dr

(
r2

dSd
dr

)
= 0, (4a)

DP,d
1

r2
d

dr

(
r2

dPd
dr

)
= 0, (4b)

Sd = Sd(r) and Pd = Pd(r) are the concentrations of
the substrate and the reaction product in the diffusion shell.
Respectively, DS,d and DP,d are the diffusion coefficients of
the materials in the bulk solution and R1 is the radius of the
unit cell.

Microbioreactors are microparticles immobilized with the
enzyme, so the core of the particle is porous. Due to the
porosity of microbioreactor diffusion coefficients DS,m and
DP,m can be expressed through diffusion coefficients for bulk
solution [23],

DS,m =
DS,dεt
τ

(5a)

DP,m =
DP,dεt
τ

, (5b)

εt is porosity (void fraction space in a material) and τ is
tortuosity.

B. Boundary Conditions
Fluxes of the substrate and the product through the stagnant

external diffusion shell is assumed to be equal to the corre-
sponding fluxes entering the surface of the microreactor,

εt
τ

dSm
dr

∣∣∣
r=R0

=
dSd
dr

∣∣∣
r=R0

, (6a)

εt
τ

dPm
dr

∣∣∣
r=R0

=
dPd
dr

∣∣∣
r=R0

. (6b)

The formal partition coefficient φ is used to describe the
specificity of concentration distribution of the compounds
between two neighboring regions [7][24],

Sm(R0) = φSd(R0), (7a)
Pm(R0) = φPd(R0). (7b)

The partition within the reactor caused by porosity, so we
assume that the porosity and partition coefficient is in a linear
relationship:

φ = εt (8)

Due to the symmetry of the microreactor, the zero-flux
boundary conditions are defined for the center of the microre-
actor (r = 0),

DS,dεt
τ

dSm
dr

∣∣∣
r=0

= 0, (9a)

DP,dεt
τ

dPm
dr

∣∣∣
r=0

= 0. (9b)

According to the Nernst approach, the shell of thickness ν =
R1−R0 remains unchanged with time [17][19]. Away from it,
the solution is in motion and is uniform in concentration. Due
to the continuous injection of the substrate into the stirred
tank and washing off the product, the concentration in the
convective region remains unchanged:

Sd(R1) = S0, (10a)
Pd(R1) = 0. (10b)

The thickness ν of the Nernst diffusion shell depends on the
nature and stirring up of the buffer solution. Usually, more
intensive stirring corresponds to the thinner diffusion layer
(shell).

C. Microbioreactor characteristics

In many industrial processes, especially in the production
of low-value added products like biopesticides, bio-fertilizers,
bio-surfactants ect. [10], it is important to continuously im-
prove the yield and/or productivity of the reactor system [8].
The productivity is important, since this ensures an efficient
utilization of the production capacity, i.e., the bioreactors.

The yield of the desired product on the substrate is one
of the most important criteria for design and optimization
of bioreactors. The economic feasibility of the process is
expressed by the yield factor as the ratio of product formation
rate and the substrate uptake rate [7][8].

The bioreactor construction is efficient enough when the
product emission is relatively large with given substrate
amount used. The product emission rate ĒP,O can be cal-
culated by an integration of the product flux over the outer
surface of the diffusion shell [8],
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ĒP,O = −
∫ π

0

∫ 2π

0

DP,d
dPd
dr

∣∣∣
r=R1

R2
1 sin(θ)dϕdθ

= −4πR2
1DP,d

dPd
dr

∣∣∣
r=R1

. (11)

The product emission rate has the units of mol/s.
The substrate consumption rate C̄S over the whole microre-

actor can be calculated as follows:

C̄S =

∫ R0

0

∫ 2π

0

∫ π

0

V (S) sin(θ)dθdϕr2dr

=

∫ R0

0

∫ 2π

0

2V (S)dϕr2dr

= 4π

∫ R0

0

V (S)r2dr.

= 4π

∫ R0

0

VmaxSm(r)

KM + Sm(r)
r2dr. (12)

The substrate emission rate also have the units of mol/s.
The yield factor γ for the microreactor system, as well as for

the entire tank reactor shown in Figure 1, can be defined by the
ratio of the product emission rate to the substrate consumption
rate,

γ =
ĒP,O
C̄S

. (13)

The yield factor is characterised by an actual rate within the
reactor in contrast to the actual product formation rate.

The effectiveness factors characterise the interaction be-
tween action in microbioreactor in porous catalytic pellets and
microreactors when particles are solid [25], and often used
in the biochemical engineering [26][27]. The effectiveness
factors are usually defined in terms of the stationary mode
of biocatalytic systems [25][27][28]. The effectiveness factor
η can be calculated [29]:

η =

(
C̄S

(4πR3
0/3)

)
/V (S0)

=
3
∫ R0

0
V (S)r2dr

R3
0 V (S0)

=
3
∫ R0

0
VmaxSm(r)
KM+Sm(r)r

2dr

R3
0
VmaxS0

KM+S0

. (14)

Summarising definition (14), the effectiveness factor η can
be defined also as the ratio of the average reaction rate
actually observed in the MR to ideal rate evaluated at the
bulk concentrations of the substrate [29][30].

III. DIMENSIONLESS MODEL

In order to define the main governing parameters of the
two compartment model (3)-(10), the dimensional variable r

and unknown concentrations Sm(r), Pm(r), Sd(r), Pd(r) are
replaced with the following dimensionless parameters:

r̃ =
r

R0
, S̃m =

Sm
KM

P̃m =
Pm
KM

, S̃d =
Sd
KM

, P̃d =
Pd
KM

,

(15)

r̃ is the dimensionless distance from the microreactor center
and S̃m(r̃), P̃m(r̃), S̃d(r̃), P̃d(r̃) are the dimensionless con-
centrations. Having defined dimensionless variables and un-
knowns, the following dimensionless parameters characterize
the domain geometry and the substrate concentration in the
bulk:

ν̃ =
ν

R0
, S̃0 =

S0

KM
, D =

τ

εt
(16)

ν̃ is the dimensionless thickness of the Nernst diffusion layer,
S̃0 is the dimensionless substrate concentration in the bulk
solution, D is the dimensionless diffusion coefficient. The
dimensionless thickness of the microreactor equals one.

A. Model description
The governing equations (3) in the dimensionless coordi-

nates are expressed as follows (0 < r̃ < 1):

1

r̃2
d

dr̃

(
r̃2

dS̃m
dr̃

)
− σ2 S̃m

1 + S̃m
= 0, (17a)

1

r̃2
d

dr̃

(
r̃2

dP̃m
dr̃

)
+ σ2 S̃m

1 + S̃m
= 0, (17b)

σ is the Thiele modulus or the Damköhler number [8][31][32]
defined as:

σ2 =
VmaxR

2
0

KMDS,m
=

VmaxR
2
0τ

KMDS,dεt
. (18)

The governing equations (4) take the following
form (1 < r̃ < 1 + ν̃):

D
1

r̃2
d

dr̃

(
r̃2

dS̃d
dr̃

)
= 0, (19a)

D
1

r̃2
d

dr̃

(
r̃2

dP̃d
dr̃

)
= 0. (19b)

The matching conditions (6)-(10) become:

dS̃m
dr̃

∣∣∣
r̃=1

= D
dS̃d
dr̃

∣∣∣
r̃=1

(20a)

dP̃m
dr̃

∣∣∣
r̃=1

= D
dP̃d
dr̃

∣∣∣
r̃=1

, (20b)

S̃m(1) = φS̃d(1), (21a)

P̃m(1) = φP̃d(1), (21b)

dS̃m
dr̃

∣∣∣
r̃=0

= 0, (22a)

dP̃m
dr̃

∣∣∣
r̃=0

= 0, (22b)
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S̃d(1 + ν̃) = S̃0, (23a)

P̃d(1 + ν̃) = 0. (23b)

B. Model reduction

The second order homogeneous differential equations (19)
can be easily integrated (1 < r̃ < 1 + ν̃) [19],

S̃d(r̃) =
c1
r̃

+ c2, P̃d(r̃) =
d1
r̃

+ d2, (24)

c1, c2, d1 and d2 are constants of integration. By evaluating
the integration constants from the boundary conditions (20)
and (23), we get the following solution to the system (19):

S̃d(r̃) = S̃0 −
εt
τ

(
1

r̃
− 1

1 + ν̃

)
dS̃m
dr̃

∣∣∣
r=1

, (25a)

P̃d(r̃) = −εt
τ

(
1

r̃
− 1

1 + ν̃

)
dP̃m
dr̃

∣∣∣
r=1

. (25b)

After applying the obtained expressions (25), the matching
conditions (21) can be expressed as the flux boundary condi-
tions,

dS̃m
dr̃

∣∣∣
r̃=1

= βS

(
S̃0 −

S̃m(1)

φ

)
, (26a)

dP̃m
dr̃

∣∣∣
r̃=1

= βP

(
− P̃m(1)

φ

)
, (26b)

βS and βP are the Biot numbers for the substrate and the
product [33][34], respectively.

βS =
DS,d

DS,dεt
τ

1 + ν̃

ν̃
=

DS,dR1

DS,dεt
τ (R1 −R0)

βP =
DP,d

DP,dεt
τ

1 + ν̃

ν̃
=

DP,dR1

DP,dεt
τ (R1 −R0)

β = βS = βP =
τ

εt

1 + ν̃

ν̃
= D

R1

(R1 −R0)
. (27)

The boundary value problem (17)-(23) has been reduced
to the boundary value problem described by the governing
equations (17), the boundary condition (22) and the flux
boundary condition (26).

C. Governing parameters

The initial set of model parameters has been reduced to the
following aggregate dimensionless parameters: ν̃ is the relative
thickness of the Nernst diffusion layer, σ is the diffusion
module, β is the Biot number, S̃0 is the substrate concentration
in the bulk, φ is the formal partition coefficient.

The dimensionless factor σ2 essentially compares the rate
of enzyme reaction (Vmax/KM ) with the diffusion through
the enzyme-loaded microreactor (DS,m/R

2
0). If σ2 � 1, the

enzyme kinetics controls the bioreactor action. The action is
under diffusion control when σ2 � 1.

The Biot number indicates the internal mass transfer resis-
tance to the external one [33][34]. When the Biot number is
small, the effect of the external diffusion is the most marked.
As the Biot number increases, the effect of the external
diffusion becomes less important.

The diffusion module and the Biot number are widely
used in analysis and design of different bioreactors [34].
The experiment conducted by Kont et al. [11] proved the
external mass-transfer limitations to be negligible for the Biot
number greater than one using the first order kinetics model
of CSTR and packed-bed reactors (PBR), which corresponds
condition (10). Typically, designers seek for bioreactors acting
in the reaction-limited regime, since in this case reaction and
diffusion occur on different time scales [35].

D. Limiting cases

Analytical solutions of product and substrate concentrations
can be found for the limiting cases when volumetric reactions
become zero or first kinetics [7][33]. Analytical solutions have
practical value, the models when diffusion is not fixed and
depends on porosity and tortuosity are rarely analyzed (see
equation (5)).

Zero order kinetics: When the substrate concentration S0

is very high compared to the Michaelis constant KM (S0 �
KM ), the reaction term reduces to the zero order reaction rate
Vmax, then volumetric reactions becomes V (S) ≈ Vmax.

The solution of substrate and product concentrations with
the boundary conditions (6)-(10) gives the following expres-
sions:

Sm(r) = φS0 −
Vmaxτ

6DS,dεt

(
R2

0 − r2 +
2φR2

0

β

)
(28)

Pm(r) =
Vmaxτ

6DP,dεt

(
R2

0 − r2 +
2φR2

0

β

)
(29)

Sd(r) = S0 −
VmaxR

3
0

3DS,d

(
1

r
− 1

R1

)
(30)

Pd(r) =
VmaxR

3
0

3DP,d

(
1

r
− 1

R1

)
(31)

Corollary 1. The yield and effectiveness factors are equal to
one for zero order kinetics.

Ē0
P,O = −4πR2

1DP,d
dPd
dr

∣∣∣
r=R1

= −4πR2
1DP,d

(−1)

3
R3

0

Vmax

DP,dR2
1

=
4

3
πR3

0Vmax

C̄0
S =

4

3
πR3

0Vmax.

γ0 =
Ē0
P,O

C̄0
S

= 1 (32)
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Figure 3. Concentration profiles of the product concentration in the microreactor (simulated at the substrate concentration S̃0 = 1 porosity εt = 0.75 and
different values of the Biot number β ∈ [1, 1.6], the other parameters are as defined in (40)).
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Figure 4. Concentration profiles of the substrate concentration in the microreactor (simulated at the substrate concentration S̃0 = 1, porosity εt = 1 and
different values of the Thiele module σ ∈ [10−1, 102], the other parameters are as defined in (40)).

η0 =
3
∫ R0

0
Vmaxr

2dr

R3
0 Vmax

= 1 (33)

The zero order kinetics rate does not depend on the concen-
tration profiles, so, naturally, such type of system is efficient.

First order kinetics: At such low concentration of the
substrate as S0 � KM , the non-linear reaction rate in

equations (3) reduces to the first order reaction rate, then
volumetric reactions becomes V (S) ≈ VmaxS/KM .

The solution of substrate and product concentrations with
the boundary conditions (6)-(10) at first order kinetics gives
the following expressions:

Sm(r) =
φS0 R1 R0 τ/ε sinh (mr)

r (τ/εR1 sinh (σ) + φ (R1 − R0 ) (σ cosh (σ)− sinh (σ)))
, (34)

Sd(r) =
S0 R1 (τ/ε r sinh (σ) + φ (r − R0 ) (σ cosh (σ)− sinh (σ)))

r (τ/εR1 sinh (σ) + φ (R1 − R0 ) (σ cosh (σ)− sinh (σ)))
(35)

0 ≤ r ≤ R0.

Pm(r) = −
(
φS0 (R1 φσ cosh(σ)r − R0 φσ cosh(σ)r − sinh(mr)R0 R1 D

∗τ/ε

−R1 φ sinh(σ)r + R1 sinh(σ)D∗τ/ε r + R0 φ sinh(σ)r)
)/

(
m2r(τ/εR1 sinh(σ) + φ (R1 − R0 )(σ cosh(σ)− sinh(σ)))D∗

)
, (36)

Pd(r) = − φS0 R0 (R1 − r) (σ cosh (σ)− sinh (σ))

m2r (τ/εR1 sinh (σ) + φ (R1 − R0 ) (σ cosh (σ)− sinh (σ)))D∗ (37)

R0 ≤ r ≤ R1.



179

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Corollary 2. The yield and effectiveness factors have the
following form at first order kinetics.

γ1 = σ2, (38)

η1 =
3βφ(σ cothσ − 1)

σ2(β + φ(σ cothσ − 1))
. (39)

One can see that the effectiveness coefficient lies in the interval
[0, 1], while yield can grow. However, in practical applications
σ � 1.

IV. DIGITAL SIMULATION OF EXPERIMENTS

The non-linearity of the governing equations prevents us
from solving the boundary value problem (17)-(23) analyti-
cally, hence the numerical model was constructed and solved
using finite difference technique [19]. An explicit scheme was
used; however, due to Michaelis-Menten non-linearity, further
construction of equations was used:

DC,m ·
1

r2
d

dr

(
r2

dCnm
dr

)
= ± VmaxC

n
m

KM + Cn−1
m

,

C = S, P . Tridiagonal matrix was constructed from the
equations. In the numerical simulation, the scheme was run
until the following loss became very small:

L = ||Sn − Sn−1||l2 + ||Pn − Pn−1||l2 < ε,

decay rate value ε = 10−14 was used over l2 norm. An explicit
scheme of finite difference was built on a uniform discrete grid
with 128 points in space direction [18]. The simulator has been
programmed by the authors in C++ language [36].

The numerical solution of the mathematical model (17)-(23)
was validated by using the exact analytical solutions known
for very special cases of the model parameters [7][18][31][34]
see equations (28)-(37).

V. RESULTS AND DISCUSSION

To investigate the effects of the geometry and catalytic
activity of the microreactor, the reactor action was simulated
and the yield and the effectiveness factor was calculated for
very different values of the Biot number β, the Thiele module
σ, the substrate dimensionless concentration S0, the porosity
εt.

A. Concentration profiles

Figure 3 shows the profiles of the product concentration
P calculated from the microreactor model (17)-(23) changing
the Biot number β and the porosity equal εt = 0.75. Figure 4
shows the profiles of the substrate concentration S changing
the Thiele module σ and the porosity εt = 1. As both figures
demonstrate, the following parameters of the model remain
unchanged:

DS,d = DP,d, β = 1, ν̃ = 1. (40)

One can be seen in Figure 4, where low Thiele modulus
values σ < 1, which indicates that the species pass the Nernst

diffusion layer fast, allow the concentrations approach the
straight line because of linearity of governing equations in the
area r̃ ∈ (1, 1 + ν̃). On the other hand, high Thiele modulus
values (σ ≥ 100) (see Figure 3) lead to significant differences
in concentration distribution across the outer boundary of the
microreactor. Both the radius of dimensionless microreactor
and the Nerst layer thickness is equal to one.

B. The impact of the Biot number, Thiele module and substrate
concentration

To investigate the dependence of the yield factor γ, the
effectiveness factor η on the Biot number β, changing the
Biot number in a range of [1, 102], the factor γ was calculated
at different values of the Thiele module σ in a range of
[10−1, 102] and the substrate concentration S̃0 was calculated
in a range of [10−3, 103].

Impact of the Biot number: The results of the calculations
of yield factor γ when Biot number β and Thiele module σ
is changing and the porosity εt = 0.1, 0.5, 1 are depicted in
Figure 5.

β

1
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100
σ

0.1
1

10
100

γ

0.55

0.8

1

Figure 5. The yield factor γ vs. Biot number β and Thiele module σ at
porosity εt: 0.1, 0.5, 1, the other parameters are as in (40).

In Figure 5, the yield factor γ is presented when concentra-
tion S̃0 is equal to one. It is apparent that maximal efficiency
can be achieved only with Thiele module σ < 1. It is worth to
mention that porosity can be considered as neglected for yield
factor. With large values of Thiele module, the yield factor γ
is nearing to zero independently of the porosity εt or β. The
yield factor γ, practically, does not depend on β for σ < 1.

The Biot number and substrate concentration is neglected
to yield factor γ with Thiele module σ < 20. On the other
hand, the Nernst diffusion layer may be neglected when the
Biot number is higher than approximately 20 [34][37].

Impact of the substrate concentration: Calculation results
of the yield factor γ when substrate concentration S0 and
Thiele module σ is changing and the porosity εt = 0.1, 0.5, 1
are depicted in Figure 6.



180

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S0
0.0010.010.11101001000 σ

0.1

1

10

100

γ

0.55

0.75

1

Figure 6. The yield factor γ vs. Thiele module σ and initial concentration
S0 at porosity εt: 0.1, 0.5, 1, the other parameters are as in (40).

One can see (Figure 6) a non-linear impact of the substrate
concentration on the yield factor. As a function of S̃0, the
yield factor γ is a monotonously increasing function with the
limit of one. At high values of the Thiele module σ > 20, the
yield factor is decreasing to zero near low values of substrate
(see Figure 6). The yield factor, limiting value of one, can be
reached with the low Thiele module values σ < 20.

The yield factor γ is, practically, invariant to changes in
the substrate concentration S̃0 when the Michaelis-Menten
kinetics approach the first order (S̃0 � 1) or zero order
kinetics (S̃0 � 1). In intermediate values of S̃0, when
the kinetics changes from the first to zero order, the yield
factor γ noticeably increases with increasing the substrate
concentration at low Thiele module values.

Impact of the Thiele Module: It can be seen in Figure 5
and Figure 6 that the yield factor γ, practically, does not
depend on σ and approaches to one when the bioreactor acts
notably under the bioreaction control (σ < 20). At mixed
conditions when the diffusion action is influenced by both
the enzyme kinetics and the diffusion, the yield factor γ
noticeably decreases decreasing the substrate concentration S0.
Figure 6 also shows that the factor γ increases while increasing
the substrate concentration (as in Figure 6) as well as when
increasing the Biot number β (as in Figure 5).

C. Impact of the porosity

To investigate the dependence of the yield factor γ, the
effectiveness factor η on porosity εt, the calculations were
performed in a range of [0.1, 1]. The ranges of Thiele module
σ, Biot number β and tortuosity was used as in the previous
Section.

Figure 7 shows the effectiveness factor η as an increasing
function of the porosity εt when Thiele module is one and
Biot number is two. When the Michaelis-Menten kinetics
approaches the first order (S̃0 � 1), the effectiveness factor
η becomes a linear function from the porosity. The effective-
ness factor η approaches one as increased concentrations are
becoming zero order kinetics (S̃0 � 1). Those limits can be

validated from calculated factors at zero order (33) and the
first order kinetics (39).
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Figure 7. The effectiveness factor η vs. initial concentration S0 and porosity
εt, the other parameters are as in (40).

Figure 8 shows the effectiveness factor η as an increasing
function of the porosity εt when Thiele module and concentra-
tions are equal to one. The effectiveness factor η, practically,
does not depend on the Biot number for β > 2 and increases
with increasing the porosity and the Biot number.
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Figure 8. The effectiveness factor η vs. Biot number β and porosity εt, the
other parameters are as in (40).

Figure 9 shows the yield γ as an increasing function of the
porosity εt when concentrations are equal to one and the Biot
number is two. It is evident that high Thiele module values
σ � 10 are significantly descreasing any efficiency of the
system and the yield factor practicaly does not depend on the
porosity εt. On the other hand, the small Thiele module values
give a linear dependency from the porosity. It can be noted
that yield as a function of Thiele module is nonlinear and
increases with decreasing diffusion module.
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Figure 9. The effectiveness factor η vs. the Thiele module σ and porosity
εt, the other parameters are as in (40).

Figure 10 shows the yield γ as an increasing function of the
Thiele module and practicaly does not depend on the porosity
εt when Thiele module is one and the Biot number is two.
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Figure 10. The yield factor γ vs. the Thiele module σ and porosity εt, the
other parameters are as in (40).

VI. CONCLUSION AND FUTURE WORK

The mathematical model (3)-(10) and the corresponding
dimensionless model (15)-(23) of the microbioreactor can be
successfully used to investigate the behaviour of the catalytic
microreactor and to optimize its configuration.

The yield of the product increases with increasing the
substrate concentration (Figure 6) and with decreasing the
Thiele module (Figure 5). However, the effectiveness of the
yield factor can be achieved to the limit of one, with not high
Thiele module value σ < 20. More importantly, the yield
factor, practically, does not depend on the Biot number (Figure
5) and the porosity (Figure 10).

The increase in the substrate concentration becomes inef-
fective when the enzyme reaction is under control of reaction
control σ < 20 (Figure 6). The high yield can be achieved

only when the enzyme kinetics controls the bioreactor action
σ < 20 (Figure 6).

The transient effectiveness factor is an increasing function
of porosity and, practically, does not depend on the Biot
number (Figure 8). However, strong non-linear depencies
appear when analysing the impact of porosity and Thiele
module (Figure 9). Also, is evident that the effectiveness factor
approach zero under diffusion control σ > 10 and is limited
of porosity under action control σ < 0.1. The dependency
from substrate concentration (Figure 7) also shows a non-linear
relationship. The effectiveness increases to one with increase
in the substrate concentration and reduces to the linear function
of porosity when S0 < 0.01.

Such formulation can be useful to find the optimal parame-
ters of such biosystem construction [12]. More importantly, it
might improve the design and production of microbioreactors.

There are some limitations worth to mention that might
be used for the future investigations. First of all, in physical
experiments, pellets can not be considered as the perfect
spheres, which requires the modelling of more sophisticated
domains in 2D and 3D spaces. Secondly, the system with time
dependent characteristics should be considered in the future
work.
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