
Dynamic Fuzzy Cognitive Maps Embedded and Intelligent Controllers Applied in 

Industrial Mixer Process  

 

Lucas Botoni de Souza 

Patrick Prieto Soares 

Ruan Victor Pelloso Duarte Barros 

Márcio Mendonça 

DAELE (Electric Academic Department)  

 UTFPR-CP  

Cornélio Procópio, Brazil 

{lucasbotoni; p.prietosoares}@hotmail.com 

ruan_pelloso@yahoo.com.br 

mendonca@utfpr.edu.br 

 

 

 

Elpiniki I. Papageorgiou 
Department of Computer Engineering 

Technological Education Institute/ University of Applied 

Sciences of Central Greece 
Lamia, Greece 

epapageorgiou@teiste.gr 

 

 
Abstract— This paper presents the application of certain 

intelligent techniques to control an industrial mixer. The 

controller design is based on a Hebbian modification of the 

Fuzzy Cognitive Maps learning mechanism. This research 

develops a Dynamic Fuzzy Cognitive Map (DFCM) based on 

Hebbian Learning algorithms. Fuzzy Classic Controller was 

used to help validate simulation results of an industrial mixer 

controlled by DFCM. Experimental analysis of simulations in 

this control problem was conducted. Additionally, the results 

were embedded using efficient algorithms into the Arduino 

platform to acknowledge the performance of the codes reported 

in this paper. 

Keywords-Fuzzy Cognitive Maps; Hebbian Learning; 

Arduino Microcontroller; Process Control; Fuzzy Logic; Artificial 

Neural Network. 

I.  INTRODUCTION 

This work is an evolution of the article shown in [1]. In 
general, some of the difficulties found in acquiring knowledge 
in different areas of engineering (such as robotics, control or 
process control) are: how to recognize the processes /systems; 
how to identify important variables and parameters; to classify 
the type of physical problem; o identify the family of 
mathematical models that can be associated; to select the 
method and / or tool for the search and analysis of the model.  

Indeed, the final output of modern processes is 
significantly influenced by the selection of the set points of the 
process variables, as they fundamentally impact the product 
quality characteristics and the process performance metrics 
[2]. In this context, it is possible to define the main goal of this 
research, to develop techniques based on knowledge for the 
process control of a classic problem of Fuzzy Cognitive Maps 
area, an industrial mixer; this work is an evolution of the 
previous work [3]. 

The article proposal is to use a different setup, in special 

the initial state and a comparison with a new controller using 

Fuzzy-Logic with ANN (artificial neural network). The 

motivation of this research is: developments in optimal 

control theory, robust control and adaptive control, 

expanding significantly the automation concept and, also 

studying the feasibility of an autonomous control in practice.  

On the other hand, intelligent control techniques take 
control actions without depending on a complete or partial 
mathematical model. Otherwise, the ability of a human to find 
solutions to a particular problem is known as human 
intelligence. In short, human beings can deal with complicated 
processes based on inaccurate and/or approximate 
information. The strategy adopted by them is also of imprecise 
nature and usually capable of being expressed in linguistic 
terms. Thus, by means of Fuzzy Logic concepts, it is possible 
to model this type of information [4]. 

Some previous works that used Fuzzy techniques can be 
cited, such as [5], which applies a Fuzzy-Neuro predictive 
control tuned by Genetic Algorithms (GA) on a fermentation 
process. A Proportional Derivative Fuzzy Logic Controller 
(Fuzzy-PD) was initially used to control the process, a non-
linear system with non-minimal phase, and a large 
accommodation time. 

More recently, [6] presented a FCM used to tune PI 
controllers’ parameters used on a non-linear system. These 
controllers cannot achieve satisfactory results in this type of 
system, by the difference of their static and dynamic 
properties. 

There is also [7], where new types of concept and relation, 
not restricted to cause-effect ones, are added to the model 
resulting in a dynamic fuzzy cognitive map (DFCM). In this 
sense, a supervisory system is developed in order to control 
the fermentation process. 

II. FUZZY COGNITIVE MAPS – BACKGROUND 

Fuzzy Cognitive Maps (FCM) was introduced by Kosko’s 
work, which added Fuzzy values to the causal relationships of 
Axelrod’s Cognitive Maps paper. In fact, FCMs are system 
models represented in a graph-form, the nodes are the 
concepts related to the problem and the lines connecting them 
are the causal relationships. A FCM is a 4-tuple, as described 
in works as [8] and [9]. It is commonly used to study system’s 
dynamics because of its mathematically simplicity. The 
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relationship’s influence is calculated using normalized states 
and matrix multiplications.  

The inference of the system’s dynamics might reach a 
steady state, a limit cycle of states or even a chaotic state [10-
11]. Every concept’s activation level is based on its own 
previous iteration and the propagated weighted values of all 
the concepts connected to it (it means all concepts that have 
influence over it).  

In the literature, there are many examples of FCMs that 
use monotonic and symmetric weight cause-effect 
relationships between the concepts that might work on 
controlled environments but cannot be applied on the real 
world considering its dynamic aspects. In order to bring FCMs 
to a more realistic environments, there are a few techniques 
that can be used such as using Fuzzy rules and feedback 
mechanisms [12-13] or algebraic equations to define the 
causal relationships when the real system have been modeled 
by crisp relations [14]. 

In general, a Fuzzy Cognitive Map (FCM) is a tool for 
modeling the human knowledge. It can be obtained through 
linguistic terms, inherent to Fuzzy Systems, but with a 
structure like the Artificial Neural Networks (ANN), which 
facilitates data processing, and has capabilities for training and 
adaptation. FCM is a technique based on the knowledge that 
inherits characteristics of Cognitive Maps and Artificial 
Neural Networks [10-15], with applications in different areas 
of knowledge [16-17].  

Besides the advantages and characteristics inherited from 
these primary techniques, FCM was originally proposed as a 
tool to build models or cognitive maps in various fields of 
knowledge. It makes the tool easier to abstract the information 
necessary for modeling complex systems, which are similar in 
the construction to the human reasoning.  

Dynamic Fuzzy Cognitive Maps (DFCM) needs to be 
developed to a model that can manage behaviors of non-linear 
time-dependent systems and sometimes in real time. 
Examples of different variation of the classic FCMs can be 
found in the recent literature, e.g., [18-19]. 

This paper has two objectives. The first objective is the 
development of two controllers using an acyclic DFCM with 
same knowledge of a Fuzzy and Fuzzy Neural controller, and 
with similar heuristic, thus producing comparable simulated 
results. The second goal is to show an embedded DFCM in the 
low-cost processing microcontroller Arduino with more noise 
and disturbances (valve locking) to test the adaptability of the 
DFCM.  

To succeed the goals, we initially use the similar DFCM 
proposed initially in [20] to control an industrial mixing tank. 
In contrary to [20], it is used the Hebbian algorithm to 
dynamically adapt the DFCM weights. In order to validate the 
DFCM controller, its performance was compared with a 
Fuzzy Logic controller. This comparison is carried out with 
simulated data. 

III. DEVELOPMENT 

To demonstrate the evolution of the proposed technique 
(DFCM) we will use a case study well known in the literature 
as seen in [3-21] and others. This case was selected to 

illustrate the need for refinement of a model based on FCM 
built exclusively with knowledge.  

The process shown in Fig. 1 consists of a tank with two 
inlet valves for different liquids, a mixer, an outlet valve for 
removal of the final product and a specific gravity meter that 
measures the specific gravity of the produced liquid. In this 
research, to illustrate and exemplify the operation of the 
industrial mixer, the liquids are water with specific gravity 1 
and soybean oil with a specific gravity of about 0.9. 

 

 
Figure 1.  Mixer tank (Source: adapted from [21]). 

Valves (V1) and (V2) insert two different liquids (specific 
gravities) in the tank. During the reaction of the two liquids, a 
new liquid characterized by its new specific gravity value is 
produced. At this time, the valve (V3) empties the tank in 
accordance with a campaign output flow, but the liquid 
mixture should match the specified levels of the volume and 
specific gravity. 

Although being relatively simple, this process is a TITO 
(Two Inputs and Two Outputs) type with coupled variables. 
To establish the quality of the control system of the produced 
fluid, a weighting machine placed in the tank measures the 
specific gravity of the liquid produced. 

When the value of the measured variable G, liquid mass, 
reaches the range of values between the maximum and 
minimum [Gmin, Gmax] specified, the desired mixed liquid 
is ready. The removal of liquid is only possible when the 
volume (V) is in a specified range between the values [Vmin 
and Vmax]. The control consists to keep these two variables 
in their operating ranges, as: 

 Vmin < V < Vmax 

 Gmin < G < Gmax 

In this study, it was tried to limit these values from 
approximately the range of 810 to 850 [mg] for the mass and 
approximately the range of 840 to 880 [ml] for the volume. 
The initial values for mass and volume are 800mg and 850ml, 
respectively. According to Papageorgiou and collaborators 
[23], through the observation and analysis of the process, it is 
possible for experts to define a list of key concepts related to 
physical quantities involved. The concepts and cognitive 
model are: 

 Concept 1 - State of the valve 1 (closed, open or 
partially open); 

 Concept 2 - State of the valve 2 (closed, open or 
partially open); 
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 Concept 3 - State of the valve 3 (closed, open or 
partially open); 

 Concept 4 - quantity of mixture (volume) in the tank, 
which depends on the operational state of the valves 
V1, V2 and V3. 

 Concept 5 - value measured by the G sensor for the 
specific gravity of the liquid. 

Considering the initial proposed evolution for FCM, it is 
used a DFCM to control the mixer, which should maintain 
levels of volume and mass within specified limits. 

The process model uses the mass conservation principle in 
incompressible fluid to derive a set of differential equations 
representing the process used to test the DFCM controller. As 
a result, the tank volume is the volume over the initial input 
flow of the inlet valves V1 and V2 minus the outflow valve 
V3, this valve V3 and the output campaign was introduced in 
this work to increase the original process’ complexity [22].  

Similarly, the mass of the tank follows the same principle 
as shown below. The values used for me1 and me2 were 1.0 and 
0.9, respectively. 

 𝑉𝑡𝑎𝑛𝑘 = 𝑉𝑖 + 𝑉1 + 𝑉2 − 𝑉3 

 𝑊𝑒𝑖𝑔ℎ𝑡𝑡𝑎𝑛𝑘 = 𝑀𝑖 + (𝑉1. 𝑚𝑒1) + (𝑉2. 𝑚𝑒2) − 𝑀𝑜𝑢𝑡

IV. FUZZY CONTROLLER DEVELOPMENT 

To establish a correlation and a future comparison between 

techniques, a Fuzzy controller was also developed. The 

Fuzzy rules base uses the same heuristic control strategy and 

conditions. 

Fuzzy logic has proved being able to provide satisfactory 

non-linear controllers even when only the nominal plant 

model is available, or when plant parameters are not known 

with precision [24-25]. Fuzzy Control is a technique used for 

decades, especially in process controlling [21]. 

It is a motivation to validate DFCM, so in this study it was 

used the same approach for two controllers, with two 

different formalisms. It is not in the scope to discuss the 

development of the Fuzzy controller, but some details of the 

structure are pertinent: functions are triangles and trapezoidal 

and 6 rules are considered in its base. The Fuzzy controller 

surfaces are shown in Fig. 2. Moreover, the rules are 

symmetric and similar by two output valves; in this specific 

case, the surface of valve 1 is the same as in valve 2. The base 

rules and its respective weights are: 

1. If (Level is low) then (V1 is medium) (V2 is medium)(1);         

2. If (Level is medium) then (V1 is low) (V2 is low) (1);            

3. If (Level is high) then (V1 is low) (V2 is low) (1);            

4. If (Weight is low) then (V1 is high) (V2 is high) (1);            

5. If (Weight is medium) then (V1 is low) (V2 is low) (0.5);         

6. If (Weight is high) then (V1 is low) (V2 is low) (1);             

7. If (ValveOut is high) then (V1 is high) (V2 is high) (0.5);       

8. If (ValveOut is medium) then (V1 is medium) (V2 is 

medium) (0.5); 

9. If (ValveOut is low) then (V1 is low) (V2 is low) (0.5).      

The rules and structure of the Fuzzy Controller used on its 
development was based on the DFCM heuristic. 

 

 

Figure 2.  Fuzzy Controller Surfaces for V1 and V2 

Fig. 3 shows the Fuzzy structure with same variables input 
and output like DFCM. 

 

Figure 3.  Fuzzy Structure 
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This model represents the weakest degree of possible 

integration between two techniques and the consistency of 

two subsystems connected in series. As an example, we can 

cite a neuro-Fuzzy model which a Fuzzy system admits 

inputs to a neural network as shown in Fig. 4. 

 

Figure 4.  Sequential hybrid model 

A Fuzzy-ANN cascade controller had its ANN (multilayer 

perceptron) trained with the output data of the Fuzzy 

controller. The topology was empirically chosen by 

observing the learning time and output error. Therefore, 200 

neurons were used on its hidden layer. Moreover, there were 

used 6000 points from inside the control region. The results 

of the Fuzzy-ANN controller are shown in Figs. 21-24. 

V. DFCM DEVELOPMENT 

The structure of the DFCM controller is similar to the 
developed Fuzzy controller, using same heuristics, e.g., if the 
output valve (V3, in accordance to Fig. 1) increases its flow, 
the inlet valves (V1 and V2) increase too. On the other hand, 
in case volume and weight of the mixture increase, the inlet 
valves decrease. For example, the relationships W54 and 
W53, in the DFCM, are similar in effects or control actions of 
the Fuzzy controller’s base rules. 

The development of the DFCM is made through three 
distinct stages. First, the DFCM is developed as structure, 
concepts and causal relationships, similar to a classic FCM, 
where concepts and causal relationships are identified through 
sensors and actuators of the process. The concepts can be 
variables and/or control actions, as already mentioned.  

 
 

 

Figure 5.  DFCM Controller 

The output valve is defined by a positive relationship, i.e., 
when the campaign increases, the output flow (V3) also 

increases, similarly, the input valves increase too; moreover, 
when the mixture volume and weight increase, V1 and V2 
decrease. In both cases, the flow of the valves increases or 
decreases proportionally. The second development stage is the 
well-known GA [26]. Fig. 5 shows the schematic graph of a 
DFCM controller. 

In this research, the initial values of causal relationships 
are determined through offline Genetic Algorithms. The GA 
used is a conventional one, with a population of 30 
individuals, simple crossing and approximately 1% of 
mutation. The chromosomes were generated by real numbers 
with all the DFCM weights, individuals were random and the 
initial method of classification was the tournament method 
with 3 individuals.  

Finally, the fitness function, for simplicity, considers the 
overall error of the two desired outputs with 15 generations of 
the proposed GA. It stabilizes and reaches the initial solution 
for the opening of the valves, approximately 44% (V1) and 
42% (V2), as shown in Fig. 6. In short, some of the GA 
parameters used in this work are: 

 

  Recombination method: single-point crossover; 

  Mutation method: randomly chosen; 

  Selection method: tournament; 

  Initial causal relationships: randomly chosen nearby 
expected values; 

  Fitness function E(i), given by (5): 
 

𝐸𝑖={0.44−𝐴3𝑘+12+0.42−𝐴4𝑘+12}0.5    (5) 
 

  Probability of recombination: 1; 

  Initial population size: 30 chromosomes. 
 
Table I shows the initial values of the DFCM weights. 

Different proposals and variations of this method applied in 
tuning FCM can be found [26]. Fig. 6 shows the initial causal 
relationships’ evolution by GA optimizing valve locking. 

 

 

Figure 6.  Initial weight’s evolution by GA 
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TABLE I.  INITIAL CAUSAL RELATIONSHIP WEIGHTS 

W13 W14 W23 W24 W53 W54 

-0.2647 -0.324 -0.2831 -0.3339 0.2648 0.2754 

 
The third stage of the DFCM development concerns the 

tuning or refinement of the model for dynamic response of the 
controller. In this case, when a change of output set point in 
the campaign occurs, the weights of the causal relationships 
are dynamically tuned. To perform this function, a new kind 
of concept and relation was included in the cognitive model.  

To dynamically adapt the DFCM weights it was used the 
Hebbian learning algorithm for FCM, which is an adaptation 
of the classic Hebbian method [10]. Different proposals and 
variations of this method applied in tuning or in learning for 
FCM are known in the literature, for example, [28]. In this 
paper, the method is used to update the intensity of causal 
relationships in a deterministic way according to the variation 
or error in the intensity of the concept or input process 
variable; equations (5) and (6) show this.  

Specifically, the application of the Hebbian learning 
algorithm provides online control actions as follows: if the 
weight or volume of the liquid mixture increases, the inlet 
valves have a causal relationship negatively intensified and 
tend to close quicker. On the other hand, if the volume or 
weight mixture decreases, the inlet valves have a causal 
relationship positively intensified. The mathematical equation 
is presented in (6). 

 𝑊𝑖(𝑘) = 𝑊𝑖𝑗(𝑘 − 1) ± 𝛾Δ𝐴𝑖 

Where: ∆Ai is the concept variation resulting from causal 
relationship, and it is given by ∆Ai = Ai (k)-Ai (k-1), γ is the 
learning rate at iteration k. 

This version of the Hebbian algorithm is an evolution of 
the two proposals of Matsumoto and collaborators [28].  

Causal relationships with negative causality have negative 
sign and similarly to positive causal relationships. The 
equations applied in this work are adapted of the original 
version (7).  

    𝑊𝑖(𝑘) = 𝑘𝑝 . (𝑊𝑖𝑗(𝑘 − 1) − 𝛾 . Δ𝐴𝑖)  

Where: γ=1 for all, and kp is different for every weight 
pairs. It has their assigned values empirically by observing the 
dynamics of process performance, recursive method, kp=40 
for (W14; W23), kp=18 for (W13; W24) and kp=2.35 for 
(W53; W54), with normalized values. 

The DFCM inference is like Classic FCM [10], and the 
inference equations are shown below (equations (8) and (9)). 

 𝐴𝑖 = ∫ (∑ (𝐴𝑗. 𝑊𝑗𝑖)𝑛
𝑗=1
𝑗≠𝑖

)  

 𝑓(𝑥) =
1

1+𝑒−𝜆𝑥 

Fig. 7 and Fig. 10 show the results of Hebbian Learning 
algorithm for DFCM considering the variations ΔAi of the 
concepts concerning volume, weight, outlet valve state, and 
the weights of the causal relationships in the process, 
considering two campaigns. These figures also show the 
evolution of the weights of the causal relationships during the 
process within a range of [-1, 1]. 

These equations combined suggest stability similarly to 

the work [30], which shows that threshold sigmoid functions 

have interval previous defined and are continuous 

differentiable.  This observation is attributed to the use of the 

sigmoid function, which lures the calculated values and 

causes their convergence to the same specific value [31].   

The stability initials analyses and results have been 

presented by the same authors in [32], this study was done by 

using an appropriately defined contraction mapping theorem 

and the non-expansive mapping theorem. In other way, 

Kosko examined Associative Memories stability by 

identifying a Lyapunov or energy function with associative 

memory states [33-34]. The DFCM uses the same equations 

of FCM, with dynamic tune, thus experimental results show 

stability. 

VI. SIMULATED EXPERIMENTAL RESULTS 

The results of DFCM are shown in Figs. 8, 9, 11, and 12, 

which show the behavior of the controlled variables within 

the predetermined range of the volume and weight of the 

mixture.  

 

 
Figure 7.  Weight evolution in the Hebbian Learning, 1st campaign 

without and with disturbances 
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It is noteworthy that the controller keeps the variables in 

the control range and pursues a trajectory according to a 
campaign, where the output flow is also predetermined. In this 
initial experiment, a campaign with a sequence of values 
ranging from 7.5 and 11 ml/min can be a set point output flow 
(outlet valve).  

Similarly, the results for the first and second campaigns of 
the Fuzzy controller are shown in Figs. 13-16.  It is observed 
that: the behaviors of DFCM and Fuzzy controllers were 
similar when the tank is empty, with a slightly advantage for 
the Fuzzy controller, which reached the desired result after 
230 steps, while the DFCM needed 250 steps with the 
adaptation off.  

 

 

 

 

Figure 8.  Valves and Results of the DFCM Controller, 1st campaign 
without disturbances 

 

 

Figure 9.  Valves and Results of the DFCM Controller, 1st campaign with 
disturbances 

 

Figure 10.  Weight evolution in the Hebbian Learning, 2nd campaign 

without and with disturbances 
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Figure 11.  Valves and Results of the DFCM Controller, 2nd campaign 

without disturbances 

 

Figure 12.  Valves and Results of the DFCM Controller, 2nd campaign with 

disturbances 

 Tables II and III show that the simulated numeric results 
of the DFCM controller had a similar performance compared 
to the conventional Fuzzy Logic controller, and DFCM 
embedded in Arduino with small difference under same 
conditions, with simulated noise and valve locking.  

TABLE II.  QUANTITATIVE RESULTS WITHOUT DISTURBANCES 

 DFCM 
Fuzzy 

 Logic 

DFCM- 

Arduino 

Fuzzy- 

ANN 

 Max-min Max-min Max-min Max-min 

Campaign 1 2 1 2 1 2 1 2 

Volume 

mix (mL) 
14.07 13.52 35.55 38.20 24.74 26.11 36.69 38.11 

Weight mix 

(mg) 
10.74 10.68 22.87 16.65 9.23 8.66 25.31 25.28 

TABLE III.  QUANTITATIVE RESULTS WITH DISTURBANCES 

 DFCM 
Fuzzy 

 Logic 

DFCM- 

Arduino 

Fuzzy- 

ANN 

 Max-min Max-min Max-min Max-min 

Campaign 1 2 1 2 1 2 1 2 

Volume 

mix (mL) 

13.8

2 
14.79 35.51 38.12 24.79 26.05 36.69 38.10 

Weight 

mix (mg) 

14.6

9 
14.31 28.02 20.64 13.05 11.49 25.28 25.29 

 

 

Figure 13.  Valves and Results of the Fuzzy Controller, 1st campaign 

without disturbances 
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Figure 14.  Valves and Results of the Fuzzy Controller, 1st campaign with 
disturbances 

 

Figure 15.  Valves and Results of the Fuzzy Controller, 2nd campaign 

without disturbances 

 

Figure 16.  Valves and Results of the Fuzzy Controller, 2nd campaign with 

disturbances 

 

Figure 17.  Valves and Results of the Arduino embedded DFCM Controller, 

1st campaign without disturbances 
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Figure 18.  Valves and Results of the Arduino embedded DFCM Controller, 

1st campaign with disturbances 

 

Figure 19.  Valves and Results of the Arduino embedded DFCM Controller, 

2nd campaign without disturbances 

 

Figure 20.  Valves and Results of the Arduino embedded DFCM Controller, 
2nd campaign with disturbances 

 
Figure 21.  Valves and Results of the Fuzzy-ANN Controller, 1st campaign 

without disturbances 
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Figure 22.  Valves and Results of the Fuzzy-ANN Controller, 1st campaign 

with disturbances 

 

Figure 23.  Valves and Results of the Fuzzy-ANN Controller, 2nd 

campaign without disturbances 

 

Figure 24.  Valves and Results of the Fuzzy-ANN Controller, 2nd 
campaign with disturbances 

In order to extend the applicability of this work, the 

developed DFCM controller is embedded into an Arduino 

platform, which ensures the portability of the FCM generated 

code. Arduino is an open-source electronic prototyping 

platform. Arduino was chosen because it is a cheap 

controller, and mainly because of its low processing capacity, 

to emphasize the low computational complexity of FCM [27].  

Matlab, simulating the process, calculates the equations 

for volume and weight. Through a serial communication 

established with Arduino, Matlab sends the current values of 

volume, weight and output valve to Arduino that receives 

these data, calculates the values of the concept 3 (Valve 1) 

and concept 4 (Valve 2) and then returns these data to Matlab. 

  
Figure 25.  Matlab-Arduino comunication cycle [29] 
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After that, new values of volume and weight are 

recalculated. Details on how this technique can be used are 

presented in Matlab Tutorial, Matlab and Arduino codes, by 

accessing the link [35]. The cycle of communication between 

Arduino to Matlab can be checked in Fig. 25.  

Figs. 17-20 show the results obtained with the Arduino 

platform providing data of the actuators, Valve 1 and Valve 

2, with Matlab performing data acquisition. The algorithm 

switches the sets of causal relations that operate similarly to 

a DFCM simulated with noise and disturb in the Valve 1. 

 The noise in Figs. 18 and 20 is the sum of the real noise, 

observed in data transference between Arduino and Matlab, 

and a simulated white noise. Equation (10) shows the 

composition of the experiment noise. The Arduino script 

updates the causal relationships weights every iteration, 

according to (7). While the MatLab emulates the studied 

process and plot the results. 

𝑁𝑜𝑖𝑠𝑒𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 =  𝑁𝑜𝑖𝑠𝑒𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 + 𝑁𝑜𝑖𝑠𝑒𝐴𝑟𝑑𝑢𝑖𝑛𝑜−𝑀𝑎𝑡𝑙𝑎𝑏

Some metrics aspects of the controllers were observed, 

such as the processing time of the simulations ran on a Intel 

Core I5™, 6 GB RAM computational base. The results of the 

Fuzzy logic and DFCM were quite the same, with a small 

advantage for the DFCM, due to its low computational 

complexity, as shown in Figs. 17 and 18.  

   

 
Figure 26.  DFCM controller performance, 1st campaign with disturbances 

 

Figure 27.  Fuzzy controller performance, 1st campaign with disturbances 

In this paper, the DFCM controller is not recursive (that 

can be seen on equations (7) and (8)), but is compact with just 

6 lines of code, as shown in Fig. 28. 

The microcontroller chosen for this work was the most 

basic version of the Arduino software, Arduino UNO R2, 

with the lowest processing power; it suggests the algorithm 

has low computational complexity. Future works addresses 

the quantitative definition of the computational complexity of 

the algorithm. 

  

 

Figure 28.  DFCM controller in Arduino IDE 

VI. CONCLUSION 

The contribution of this study focuses  of Fuzzy Cognitive 

Maps in the embedded control area. In simulated data, the 

results are similar for the three controllers, with advantage for 

DFCM with or without Arduino, observed that DFCM 

controller is adaptive.  

Two different campaigns (two different set-point, with and 

without disturbances) were used to test the algorithms, which, 

the results obtained from both controllers were quite the 

same. However, the Fuzzy-ANN did not have any significant 

improvement, there was a slightly reduction of the noise 

which can be a major factor on industrial plants.   

Thus, one can emphasize the portability and the possibility 

of developing DFCM controllers on low cost platforms. From 

the data obtained from Arduino microcontroller, based on the 

variations of the DFCM embedded in the platform, it is 

observed that the controlled variables were in well-behaved 

ranges, which suggests that the DFCM codes have low 

computational complexity due to the simplicity of its 

inference mathematical processing. The low computational 

complexity can be seen through the metrics aspects observed. 

Future studies will quantify the computational complexity 

of the DFCM, for a more general conclusion, and results with 

a real prototype.  
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