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Abstract— Background Subtraction technique is widely used in 

surveillance systems to identify moving objects. Although color 

features have been extensively used in several background 

subtraction algorithms, demonstrating high efficiency and 

performances, in actual real-time applications the background 

subtraction performance is still a challenge due to high 

computational requirements. In this paper, two approaches 

and their optimized versions are evaluated to implement high-

performance background subtraction algorithms for real-time 

applications. Gaussian Mixture Model and the Multimodal 

Background Subtraction are characterized by two different 

color descriptors: Gray scale and H color invariant combined 

with Gray scale information respectively. Different 

experimental analysis allows evaluating the efficiency in terms 

of computational complexity and accuracy for outdoor and 

indoor environments. Experimental tests demonstrated that 

the Multimodal Background Subtraction approach with its 

variants is established as affordable for real-time applications 

and particularly suitable on hardware platforms with on-

board memory and limited computational resources.  

Keywords- Real-Time; Image processing; Background 

subtraction; Segmentation. 

I.  INTRODUCTION  

In recent decades, great interest has been shown for 
Background Subtraction (BS) technique to achieve a precise 
pixel classification as background (static) and foreground 
(dynamic) and then to identify the objects of interest [1] 
within observed scenes. Since cameras are less expensive 
than most other sensors and they are already installed on 
security environments, video sequences are used to build 
intelligent surveillance systems [2], where many BS 
algorithms work for specific environments in very controlled 
situations. Unfortunately, several applications are too slow to 
be practical as a consequence of their high computational 
requirements. 

The BS algorithms typically use five features as 
descriptor: color, edge, motion and texture features [3]. Each 
one is particularly robust to handle critical issues in a 
different way. For instance, color feature is highly 
discriminative but depends on the way of representing colors 
in the image. Therefore, different color representations 
obtain different accuracies, which are limited in the presence 
of shadows, illumination changes, and camouflage [1]. On 
the other hand, edge feature is very discriminative in the 
presence of ghost and illumination variations. Texture 

feature works well with shadows and illumination variations, 
while stereo is robust in order to handle the camouflage 
issue. Finally, motion feature is useful for detecting 
articulated objects, but at the expense of increased the 
computational cost [4]. 

In order to be more robust in the presence of critical 
situations, some algorithms combine different features. 
Therefore, the best solution should reach higher accuracy to 
classify correctly a pixel as background or foreground. 
Moreover, it should achieve high speed to incorporate 
changes from the environment with the ability to run in real-
time (RT) without demanding high computational 
capabilities. In this context, the multi-scale region BS 
algorithm [5] performs the Gaussian Mixture modeling 
(GMM) in conjunction with color histograms, texture 
information, and consecutive division of image regions to 
efficiently detect edges of the moving objects. Also, in [6], 
the use of color and edge information is applied to handle 
slow illumination changes and camera noise, being able to 
run on standard platform for RT applications. 

Although numerous BS algorithms have been introduced 
with demonstrated efficiency, RT applications, mainly for 
surveillance systems, remain challenging. One of the reasons 
is that more robust algorithms usually perform complex 
operations, thus requiring higher computational capabilities; 
as a consequence, they are not suitable for RT applications, 
where portability, low weight, low size, low computational 
load and low power consumption are required. On the 
contrary, lower computational loads are usually related to 
simple background models that lack adaptive background 
updates and sensitivity to even small background changes.  

This paper presents a comparative evaluation of two light 
and efficient BS algorithms for RT applications oriented to 
hardware friendly implementations. GMM [7] uses Gray 
scale and takes advantage of exploiting a color space that 
does not require complex color transformations. Meanwhile, 
the Multimodal Background Subtraction (MBSCIG) 
algorithm [8] exploits two simple background models 
separately build for the color invariant H and the Gray scale 
pixels intensities. Experimental tests demonstrate that 
MBSCIG with its optimized variations can reach higher 
percentages of correct classified pixels with a reduced 
computational complexity. 

The rest of this paper is organized as follows. Section II 
describes the most relevant related works. Section III 
introduces the color descriptors. We briefly explain the 
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GMM algorithm and its optimized version in Section IV. 
MBSCIG and its variations are presented in Section V. 
Section VI presents comparison results, and conclusions are 
finally drawn in Section VII. 

II. RELATED WORKS 

In the last years, many different BS algorithms have been 
introduced, and nearly each of them can provide 
improvements over the basic algorithms and among each 
other. They can range from very simple algorithms, usually 
providing poor performance, to more robust algorithms, 
which commonly are unsuitable for RT applications due to 
their high computational complexity. For instance, the 
Running Gaussian Average [9] uses three color channels for 
background modeling and models each pixel of each color 
channel with single Gaussian distribution. The GMM 
method is exploited in several state-of-the-art algorithms, 
such as [10-15], to achieve more robustness against frequent 
and small illumination changes. These algorithms model the 
history of each pixel over the time by the mean and variance 
values of a fix number of Gaussian distributions.  

The Kernel Density Estimation (KDE) [16] was 
originally presented by Elgammal like a non-parametric 
approach to cope with the drawbacks of manually tuning. 
After that some enhancements have been proposed to 
decrease the computational complexity using techniques 
such as histogram approximation and recursive density 
estimation [17]. The algorithm presented in [18] quantizes 
each background pixel into codebooks, which represent a 
compressed form of background model for a long image 
sequence and are composed of one or more codewords. This 
allows capturing structural background variation due to 
periodic motion over a long period of time under limited 
memory and can handle scenes with moving background, 
shadows and highlights.  

The K-mean algorithms proposed in [19-21] model each 
pixel of the generic input frame by a group of clusters that 
are sorted in order of the likelihood to deal with lighting 
variations and dynamic background. Incoming pixels are 
analyzed against the corresponding cluster group and are 
classified according to whether or not the analysis cluster is 
considered as a part of the background. A fuzzy inference for 
thresholding is proposed in [22] and [23] in order to improve 
the thresholding technique avoiding the empirical selection 
of threshold values by trial and error approach. 

In [24], a neural network architecture is proposed to 
model background images for object segmentation based on 
an unsupervised Bayesian classifier. The approach proposed 
in [25] is based on self-organizing through artificial neural 
networks. It can handle the bootstrapping problem, dynamic 
scenes containing moving backgrounds, gradual illumination 
variations and camouflage, which can be included into the 
background model shadows that cast by moving objects, thus 
achieving robust detection for different types of videos taken 
with stationary cameras.  

In order to present the aids and constraints of methods 
based on spatial correlation, density estimates, parametric 
and non-parametric models, comprehensive reviews are 
reported in [14], [26] and [27], where the algorithms are 

evaluated in terms of precision, speed and memory 
requirements (critical features for RT applications).  
Concentrated in mathematical models and the solution for 
critical situations, the author in [3] provides a classification 
of the traditional and recent works.  

To improve stability, accuracy and efficiency, and to 
support RT applications, a dynamic multi-level feature 
grouping [2] can be exploited. It introduces the BS and 
corner cue to detect and handle various sizes of moving 
objects. To cope the presence of shadows and shading, a 
basic statistical background modeling at pixel-level is 
presented in [28] and [29]. However, a dynamic background 
cannot be handled efficiently with a single-model, especially 
at the beginning, where the slow learning does not allow 
differentiating the moving objects from the moving shadows. 
To solve these limitations, adaptive BS methods are 
proposed in [30-32]. The latter can efficiently handle quick 
illumination changes, moving backgrounds and shadow 
removal.  

Additionally, several original methods have been 
established. As an online estimation of the background in a 
linear regression, the model demonstrated in [33] achieves 
high efficiency, while categorizes the foreground as outliers 
and considers that the background pixels are based on low 
rank subspace. Parallel analysis at pixel level, presented in 
[34], holds for each pixel historical and occurrence 
background values, thus being suitable for both software and 
hardware implementations. The spatial probability is used in 
[35], where the eigen background builds the background 
reference image from a training set of background frames. 
Based on local texture patterns, the SILTP descriptor is 
enhanced in [36] to segment the image sequences across of 
the spatial and temporal analysis of neighborhood. PBAS 
algorithm [37] relies on the local decision thresholds to 
segment the foreground, modeling the background with an 
array of historical frames and choose randomly the observed 
background pixel to be replaced with the current value. 

The most popular algorithms model the temporal video 
sequences as a parametric form across the Mixture of 
Gaussians. Such probabilistic technique is shown in [11], 
where a learning training is required ahead to detect the 
motion and the interaction between multiple moving objects 
in the presence of slow light variations and suddenly 
background changes. A classification of the methods that use 
the Mixture of Gaussians for foreground detection has been 
presented in [38], discussing challenges, issues to reduce the 
computational load, improvements and critical situations that 
they claim to handle. Based on the remarkable GMM results, 
in [7] a hardware implementation was proposed for the 
OpenCV version of the GMM algorithm, and tunings to 
minimize the word length of the signals able to run on RT 
applications was performed. 

Reached performance by BS algorithms existing in 
literature also depends on the exploited colors representation 
[3], [9], [10], [12], [14], [39], [41]. In fact, the color model 
can significantly influence the achieved quality. In [42] and 
[43], it is shown that the usage of YCbCr and HSV color 
spaces can improve the pixels classification. Whereas [44] 
demonstrates that using the normalized RGB color 
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components leads to higher overall quality and speed 
performance than those reachable with the c1c2c3 color 
representation. In [45], color invariant (CI) expressions have 
been derived that allow the effects of a large set of disturbing 
factors, such as illumination, viewing direction, surface 
orientation and highlights, to be significantly reduced in 
Computer Vision applications. A way to efficiently exploit 
CIs in BS algorithms has been investigated in [9], where the 
background model is built referring to N previous frames; 
each frame is described by the color invariants H, Wx and 
Wy, and each pixel is modeled with a single Gaussian 
distribution. An alternative approach was presented in [10], 
where mixtures of Gaussians are calculated on both the Gray 
scale pixels intensity and the color invariant Hx. The two 
channels are then combined to reduce the number of pixel 
misclassifications in the presence of shadows, noises and 
illumination changes. In this context, the useful experimental 
study introduced in [1] provided a point-of-view to choose 
the best color combination considering accuracy and channel 
numbers which can be applied for BS. The results 
demonstrate that the combination of the CI H with Gray 
scale achieves higher performance for foreground 
segmentation for both indoor and outdoor video sequences. 
Then, to make hardware implementation friendlier, the 
Author exploited in [8] an approximated formulation for CI 
H transformation from RGB.  

Apart of the color representation adopted by BS 
algorithms, RT oriented algorithms demand a relatively low 
computational load and must be highly efficient to detect 
moving objects in diverse environments at common video 
sequences rates. Therefore, with the aim of establishing the 
efficiency of the GMM modifications [7] and the MBSCIG 
[8] algorithm, which are focused on high-performance for 
RT segmentation, several experimental analysis have been 
performed using purpose-written C++ routines, which 
exploit the OpenCV libraries.  

In order to reduce efficiently the computational cost of 
the MBSCIG algorithm, two alternative updating processes 
are proposed and described in the following. It is notably 
that, while original techniques provide high robustness, 
herein, experimental tests show that good performances can 
be achieved also with the proposed pixel-by-pixel 
computational scheme through quite tunings. Additionally, 
performances reached in terms of accuracy, percentage of 
correct classification, and computational load are comparable 
with the GMM algorithm presented in [7]. 

III. COLOR DESCRIPTOR 

Most of the work presented in the literature have 
demonstrated how the color features interfere with the 
achieved accuracy, typical descriptors are based on specific 
spectral information (RGB, HSV, HIS, Gray scale, among 
others). On the other hand, the CIs are derived from a 
physical model and can take into account color spectral 
information and color spatial structure. Therefore, in order to 
build a robust descriptor, handling the issues of pixel-level 
analysis, an experimental study was presented in [1], which 
evaluated the color spaces with properties independent of 

illumination intensity, reflectance property, viewing 
direction, and object 

TABLE I.  SET OF COLOR INVARIANTS 

CI Definition 

H Ελ / Ελλ 

N (Ελχ × Ε − Ελ × Εχ)  / (Ε × Ε) 

C Ελ / Ε 

W Εχ / Ε 

 
surface orientation, which are defined as the color invariants 
[46], in conjunction with Gray scale color model. 

A. Color invariant (CI) 

Any method for describing CI model relies on 
assumptions about the physical variables involved on 
photometric configuration [44]. Photometric CIs are 
characterized as functions of surface reflectance, 
illumination spectrum and the sensing device, which 
consider the spatial configuration of color, and also the color 
spectral energy distribution coding color information [9]. 

Color invariant properties [46] characterize the image 

color configuration discounting highlights, shadows, noise 

and shading. As an example, the Gaussian color model with 

spectral and spatial parameters is exploited in [9] to define a 

framework for the robust measurement of colored object 

reflectance. 

The CIs are derived from a physical reflectance model 

based on the Kubelka-Munk theory for colorant layers [45], 

where illumination and geometrical invariant properties 

depend on the use of reflectance model. The invariants are 

useful for materials as dyed paper and textiles, paint films, 

opaque plastics, dental silicate cements and up to enamel. 

The CIs derived from Kubelka-Munk theory are listed in 

Table I. The latter shows how computing the CIs named H, 

N, C, and W, with E, Eλ and Eλλ being the spectral 

differential quotients based on the scale-space theory [47]. 

The CIs defined in Table I can be combined incrementally 

to achieve an alternative to invariant features extraction 

[44]. 

B. Gray scale 

The Gray color space model is based on the brightness 
information and uses the measurement of amount of light 
(intensity). It is applied for object tracking often on a blob or 
a specific region [48]. However, taking into account that the 
color furnishes more information on the objects in a scene, it 
would be expected that this model can be used in 
conjunction with other models to achieve more robust 
solutions and higher accuracy in comparison with the basic 
separated models. For this reason, the Gray color space 
computed by (1) is included in the proposed evaluation to 
take the advantage of using a color space that does not 
require complex color transformations. 

 GS=0.299R + 0.58G + 0.114B  (1) 
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IV. GAUSSIAN MIXTURE MODEL 

The statistical Background Modeling presented in [12] 
uses the Gaussian Mixture Model (GMM) to handle 
efficiently dynamic background. The reported GMM 
algorithm heads the effectiveness in RT applications, with a 
good deal between constraints of low computational load and 
memory requirement, robustness and the ability to cope 
critical situations, like illumination variation and introduced 
or removed objects. The improvements of this approach 
included in the OpenCV library are shown in the following. 
Some optimizations have been introduced in [7] to obtain 
efficient hardware implementations. They are cited in the 
text as "GMM optimized". 

A. GMM implemented in OpenCV 
The GMM algorithm operates on the probability of 

observing one process more than one time over a video 
sequence [10], [12], and assumes that the set of background 
pixels is visible more frequently than any set of foreground 
pixels. Based on [12], the algorithm implemented in 
OpenCV considers that each pixel of each input frame in the 
video sequence is modeled using K mixture of Gaussian 
distributions in terms of the mean (µ), weight (w) , variance 
( σ� ), and matchsum (counter introduced in OpenCV). 
Additionally, Fitness (F) is used as a sorting parameter to 
arrange in decreasing order the K distributions, and �� is the 
learning rate. 

To update the background model, each new pixel value 

���� is checked with respect to K Gaussian distributions, 

calculating the difference between them. If at least one 

mean difference is less or equal than 2.5�	 (	|�� − ��,�| ≤

	2.5� ), then the distribution is updated as given in the 

following equations:  

                                    ��,� = ��/��,� (2a) 

                       ��,��� = ��,� + ��,���� − ��,��          (2b) 

         ��,���
� = ��,�

� + ��,�[��� − ��,��
� − ��,�

� ]                 (2c) 

                         ��,��� = ��,� − ��. ��,� + ��     (2d) 

                ����ℎ !��,��� = ����ℎ !��,� + 1             (2e) 
 

Otherwise, the distribution with the lowest Fitness value is 

replaced with a new one, for which the mean is set to the 

current pixel value, whereas the variance and the weight are 

set to predetermined high variance (highV) and low weight 

(lowW), respectively, as shown in the equations below.  

                                         ��,��� = �� (3a) 

                                   ��,���
� = ℎ#$ℎ	%  (3b) 

                                    ��,��� = &'�	� (3c) 

                                ����ℎ !��,��� = 1 (3d) 

     After the updating step, the weights are normalized so 

that their summation becomes 1. For each acquired frame at 

time t, the K distributions are sorted in decreasing order of F 

defined in (4).  

                             (�,� = ��,�/σ�,� (4) 

 
To establish whether ��  is part of the background, the 

first n sorted distributions that satisfy equation (5) are 

selected as background components, and a pixel that 

matches one of these components is classified as 

background pixel. In the opposite case,  ��  is classified as 

foreground. The Threshold (T) is a fixed value, ranging 

between 0 and 1, which determines the portion of the 

distribution weights that defines the background model. 

Preliminary tests demonstrated that, for the video sequences 

selected as the benchmarks, T=0.75 is the best value. 

                      ) = �*$+min	�∑ ��,� > 1+
�2� �        (5) 

B.  GMM Optimized (GMM v1) 

The GMM algorithm implemented in Open CV is able to 
work with one or three channels, and its execution involves 
floating point operations, thus becoming a complex statistical 
model that provides good accuracy at the expense of a high 
computational cost, which compromises its use in RT 
applications. Therefore, in order to reduce the computational 
cost, the authors proposed in [7] some optimizations based 
on the following characteristics: 

• Handle the algorithm processing with video frames in 

Gray scale. 

• Use fixed-point values for mean (µ) and variance (σ) 

instead of floating-point values, thus reducing the 

computational complexity. In fact, floating-point 

operations use more internal circuitry and require at 

least 32-bit data paths to manage two parts: the 24-bit 

integer value (base of the real number) and the 8-bit 

exponent.  

• Establish the word length for each parameter, to reduce 

the error rate due to the diminution of number of bits. 

• Set the number of mixture of Gaussian distributions to 

K=3 as suggested in [34]. 

• Quantize the learning rates ��  and ��,�  as power of 

two. 

                                �� = 2+3 					��,� = 2+4,5                     (6) 

 

• Use the parameter	6(�,�, defined in (7) as the square of 

the inverse of (�,�, to sort the Gaussian distributions. 

                                        6(�,� = �1/(�,��
�                        (7) 

In terms of learning rates, 6(�,� is defined as follows: 

                                   6(�,� = ��,�
� . 2��+4,57+3� (8) 
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where   8�,� = &'$����,��   and  8� = &'$�����.   

V. MULTIMODAL BACKGROUND SUBTRACTION MBSCIG 

A multimodal BS algorithm has been recently proposed 
for high performance embedded system MBSCIG [8], with 
the aim of achieving low computational complexity and high 
efficiency for RT applications, exploiting the advantage of 
use a reduced number of channels and historical frames. 
Only two separate color channels are used to model the 
Background: one of them is characterized by Gray scale 
information (G), and another one corresponds to Color 
Invariant (CI) H. A short detail of the algorithm MBSCIG 
and its modifications to improve performances are described 
in the following.  

A. MBSCIG 

MBSCIG gives an effective and quite method using only 
a modeled frame mF, and a small set hF of history 
observations. This approach firstly processes the captured 
RGB frame to get the Gray scale and H information as 
describes [8], then it processes the first N+1 acquired frames. 
The algorithm starts to measure for each pixel of each hF the 
percentage variation DD with respect to the current frame 	6� . 
When DD is lower that a given Threshold T, the counter λ is 

increased by one. Whether λ counts at least two and the 
percentage variation DD between mF and 	6� is lower than T, 
the pixel is classified as a background pixel. Otherwise, it is 
recognized as belonging to the foreground. This analysis is 

executed for both the channels H and G, computing λh and 

λg, respectively. As the next step, mF is updated as given in 
equations (9) and (10), depending on the current pixel has 
been classified as background or foreground. Finally, the 
oldest frame in hF is replaced by 	6� .   

                  )9��� = �1−∝�		6�+∝ 	)9���          (9) 

                  (9��� = β		6� + �1 − β�	(9���         (10) 

B. MBSCIG Optimized 

We analyze two alternative ways to perform the updating 
step of the algorithm MBSCIG. In the original algorithm the 
background and the foreground are updated as shown in 
Figure 1a. With the target of limiting the number of 
operations and reducing the computational load, in order to 
incorporate gradual changes quickly in the background 
model, the first alternative approach, reported in Figure 1b, 
updates the foreground pixels with the value of the current 
pixel, when the percentage variation is higher than T. The 
second proposed approach, shown in Figure 1c, does not 
perform any updating operation when a pixel belongs to the 
set of moving objects.   

VI. EXPERIMENTAL RESULTS 

Since the learning rate ��� has a fundamental impact on 
the overall classification in algorithms based on GMM, 
establishing an appropriate value of � is crucial to achieve 
high performance with the lowest overall error. Therefore, 
values in the range [0.01 ÷ 0.05] are evaluated in [49]. In 

order to select the ideal learning rate value for all tested 
video sequences, providing good classification, in this work 
performances achieved are measured not only for � in the 
range [0.01 ÷ 0.05], but for � equal to 0.1 and 0.005, as 
suggested in [49] and [50]. The F1 metric is computed for 
five benchmark video sequences. The F1, introduced in [51] 
and defined in (11), combines Recall and Precision metrics, 
defined in (12) and (13), to measure an overall quality of the 
BS based on True and False Positive and Negative (TP, TN, 
FP and FN) classifications.  The results summarized in 
Figure 2 show that, when � = 0.05 , F1 differs from the 
average of only ±3.3. 

 

 
a) 

 
b) 

 
c) 

Figure 1.  The updating process of the MBSCIG: a) original version; b) 

MBSCIG v1; c) MBSCIG v2 

                    (1 = �2	×	>	×	?�/�> + ?�                         (11) 

                   ?@��&&	�?� = 	1>/�1> + (A�        (12) 

                   >*@�# #'8	�>� = 	1>/�1> + (>�               (13) 

1. capture the current frame  

2. For each pixel It(x,y) in the frame 

3.     … 

4.         if (DD<T and λ>=2) 

5.             IsFg=0  //a background pixel is detected 

6.             )9��� = �1−∝�	. 	6�+∝. 	)9��� 

7.         else 

8.             IsFg=1 //a foreground pixel is detected 

9. … 

10.   End for 

1. capture the current frame  

2. For each pixel It(x,y) in the frame 

3.     … 

4.         if (DD<T and λ>=2) 

5.             IsFg=0  //a background pixel is detected 

6.             )9��� = �1−∝�	. 	6�+∝. 	)9��� 

7.         else 

8.             IsFg=1 //a foreground pixel is detected 

9.             if ( DD > T) 

10.                  (9��� = 6� 

11. … 

12.   End for 

1. capture the current frame  

2. For each pixel It(x,y) in the frame 

3.     … 

4.         if (DD<T and λ>=2) 

5.             IsFg=0  //a background pixel is detected 

6.             )9��� = �1−∝�	. 	6�+∝. 	)9��� 

7.         else 

8.             IsFg=1 //a foreground pixel is detected 

9.             (9��� = β	. 6� + �1 − β�. 	(9��� 

10. … 

11.   End for 
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Figure 2.  Learning rate performance in GMM

 
This suggests that using � = 0.05, as proposed in

well suited for all tested sequences and can be applied in 

TABLE II.  

Algorithm 
Looby

FPR 

GMM [12] 0,64 

GMM v1 [7] 0,71 

MBSIG [8] 0,87 

MBSIG v1 1,07 

MBSIG v2 7,73 

 
Reference frame Ground-Truth GMM

  

  

  

  

  

Figure 3.  Results for the a) Looby; b) Waving Trees; c) Bootstrapping; d) Highway; and e) Office 

1 2 3

Alpha 0.005 0.01 0.05

F1 51.04 51.69 42.38

var 5.33 5.98 3.33
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Learning rate performance in GMM 

s proposed in [13], is 

well suited for all tested sequences and can be applied in 

both indoor and outdoor environments to achieve good 

object identification.  

The versions of GMM and MBSCIG presented in this 

paper were tested on I2R [52], Wallflower

2014 dataset [54]. Lobby is part of I2R dataset, which is 

defined by illumination changes and complex background, 

and contains twenty ground-truth images for evaluation 

target. Wallflowers Dataset includes video sequences with 

dynamic motions and movement of background objects, 

such as Waving Trees, which we used in

its ground-truth provided. 2012 and 2014 Datasets contain 

outdoor and indoor environments

Bootstrapping is evaluated based on its 

while Office and Highway video sequence have been tested 

comparing the segmented results with respect to ten ground

truth given. 

 

 AVERAGE OF FALSE POSITIVE AND FALSE NEGATIVE RATE 

Looby Waving Tree Bootstrap Highway Office 

 FNR FPR FNR FPR FNR FPR FNR FPR FNR

 1,02 0,28 18,14 2,08 14,33 0,32 5,47 0,26 7,06

 1,07 10,98 25,17 4,80 14,37 1,45 5,87 2,80 4,71

 1,23 33,18 9,69 7,15 8,46 1,48 4,39 1,16 6,90

 1,19 32,88 7,85 6,54 6,70 2,16 3,16 2,42 3,16

 1,21 23,62 8,02 18,97 4,88 2,46 3,37 2,73 1,50

GMM [12] GMM v1 [7] MBSCIG [8] MBSCIG v1

   
a) 

   
b) 

   
c) 

   
d) 

   

e) 

Results for the a) Looby; b) Waving Trees; c) Bootstrapping; d) Highway; and e) Office video sequences

4

0.1

37.72

7.99

both indoor and outdoor environments to achieve good 

The versions of GMM and MBSCIG presented in this 

Wallflower [53], 2012 and 

. Lobby is part of I2R dataset, which is 

defined by illumination changes and complex background, 

truth images for evaluation 

Wallflowers Dataset includes video sequences with 

amic motions and movement of background objects, 

used in tests considering 

truth provided. 2012 and 2014 Datasets contain 

outdoor and indoor environments, respectively, where 

Bootstrapping is evaluated based on its one ground-truth, 

while Office and Highway video sequence have been tested 

comparing the segmented results with respect to ten ground-

FNR 

7,06 

4,71 

6,90 

3,16 

1,50 

v1 MBSCIG v2 

  

  

  

  

  

video sequences. 
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TABLE III.  QUANTITATIVE ACCURACIES. 

Algorithm 
Lobby Waving Tree Bootstrap Highway Office 

F1 PCC F1 PCC F1 PCC F1 PCC F1 PCC 

GMM [12] 47,62 98,37 67,40 82,54 30,71 86,08 38,96 94,67 31,27 93,32 

GMM v1 [7] 43,57 98,25 51,22 74,92 27,30 83,74 28,91 93,27 49,21 93,10 

MBSCIG [8] 33,58 97,93 61,66 70,27 54,93 86,77 48,46 94,60 30,49 92,63 

MBSCIG v1 34,17 97,78 64,06 71,74 62,99 88,78 58,74 95,09 77,68 96,41 

MBSCIG v2 20,18 91,21 69,55 78,05 52,31 79,78 55,66 94,63 75,03 96,00 

 
TABLE IV. COMPUTATIONAL LOAD  

 
C++ software routines using OpenCV library have been 

implemented to evaluate the algorithms. In order to evaluate 

the performance reachable, for each analyzed algorithm the 

average of the numerical results achieved processing the 

selected video sequences has been computed for the 

evaluated metrics. Table II presents the percentage of False 

Positive (FPR: Percentage of misclassified pixels detected as 

foreground) and False negative Rate (FNR: Percentage of 

misclassified pixels detected as background) defined in (14) 

and (15). It can be seen that the GMM algorithm obtains the 

lowest FPR for all the examined video sequences, since it 

processes only the Gray scale features, which leads to less 

classification errors. It can also be observed that the FNR 

takes advantage of the appropriate tuning of the updating 

process in the MBSCIG algorithm. This is the effect of the 

modified updating process applied to the foreground pixels, 

in order handle the sensitivity to small and fast background 

changes. In fact, the FNR is significantly reduced in Waving 

Tree, Bootstrap and Highway sequences.  

                             (>? = 	(>/�(> + 1A� (14) 

                              (A? = (A/�1A + (>� (15) 
 

Figure 3 illustrates qualitative results for reviewed and 

optimized BS algorithms. From Figure 3b, we can see that 

the original version of GMM works better than other 

algorithms in dynamics backgrounds with small movements. 

However, the use of only three Gaussian Mixtures in both 

versions, diminishes the overall accuracy in all experiments. 

On the other hand, the variants of the MBSCIG algorithm 

perform much better than original MBSCIG, but all of them 

are still weak against the dynamic backgrounds.  

To present the quantitative accuracy of the tested 

methods, our experiments compare F1 and Percentage of 

correct classification (PCC) using equations (11) and (16).  

         >BB = 	1> + 1A/�1> + 1A + (> + (A�            (16) 
 

The results reported in Table III confirm that the variants 

of the MBSCIG algorithm are robustly capable of detecting 

moving objects. While, the original GMM algorithm [12] 

implemented in OpenCV is robust when operating in 

environments with illumination changes and quick small 

movements introduced in the background.  

Figure 4 plots the F1 average and the percentage of 

variation of PCC with respect to original version of GMM, 

and demonstrates that the change in updating process of 

MBSCIG gives the highest overall accuracy (F1=59.53) 

with the lowest variation in PCC (only 1.04%).  

The computational load of the evaluated algorithms is 

presented in Table IV separately for the segmentation and 

the modeling steps in terms of Additions-Subtractions (AS) 

and Multiplications-Divisions (MD). Also, the number of 

pixels Np within each Frame is taken into account with the 

number of channels, and the number of distributions (K) or 

of historical frames (N). Figure 5a shows that the higher 

computational load of GMM does not ensure the higher 

accuracy scores in terms of F1 and PCC metrics. On the 

contrary, Figure 5b shows that the tuning of the MBSCIG 

algorithm maintains low values of both FPR and FNR 

reducing the computational load. From the accuracy and the 

computational complexity analysis, we can observe that the 

conjunction between H and Gray scale provides a soft and 

efficient method with a low computational load.   

The variants here proposed for the MBSCIG algorithm 

have been hardware implemented referring to the system 

architecture proposed in [8]. The 85K Logic Cells xc7z020 

FPGA chip, used to process RGB QQVGA (128×160 pixels 

per frame) video sequences, allows a 154Mhz running 

frequency to be reached. Resources requirements are 

summarized in Table V. It can be seen that the proposed 

 Color Model # Channels Size Background Model  Foreground 

Segmentation  

Total 

GMM [12] Gray Scale 1 K=3 (27AS+21MD ) x Np 2AS x Np (29AS + 21MD) x Np 

GMM v1 [7] Gray Scale 1 K=3  (30AS+33MD ) x Np 2AS x Np (32AS + 33MD ) x Np 

MBSCIG [8] Gray Scale+H (CI) 2 N=4 (8AS+8MD) x Np (18AS + 20MD) x Np (26AS + 28MD) x Np 

MBSCIG v1 Gray Scale+H ( CI ) 2 N=4 (4AS+4MD) x Np (18AS + 20MD) x Np (22AS + 24MD) x Np 

MBSCIG v2 Gray Scale+H ( CI ) 2 N=4 (4AS+4MD) x Np (18AS + 20MD) x Np (22AS + 24MD) x Np 
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variants occupies less LUTs due to the simplified updating 

process. Table V also shows that, at a parity of the frame 

resolution, the hardware designs exhibit computational times 

reached more than 132 times lower than the pure software 

executions when performed by one of the Cortex A9 cores 

running at 800 MHz clock frequency available within the 

chosen device. 

 
Figure 4. Average and percentage variations of F1 and PCC. 

 

 

 
a) 

 
b) 

Figure 5. Accuracy vs complexity 

TABLE V. HARDWARE DESIGNS VS PURE SOFTWARE EXECUTIONS 

 Hardware designs Software Design 

 Resources Time  Time  

MBSCIG 

[8] 
75 BRAM  

1868 LUTs 1376 FFs 

∼0.13ms 

 

∼17ms 

MBSCIG 

v1 
75 BRAM  

1523 LUTs 1376 FFs 

∼0.107ms 

 

∼14ms 

MBSCIG 

v2 
75 BRAM  

1408 LUTs 1376 FFs 

∼0.107ms 

 

∼14ms 

VII. CONCLUSIONS 

We have tested two efficient real-time approaches for BS. 
Based on accuracy metrics we can see that the efficiency in 
terms of FPR, FNR and F1 are very closer between GMM 
implemented in OpenCV and MBSCIG with their variations. 
However, considering the high robustness as the convergence 
between a good effectiveness with a low computational cost, 
we can see that MBSCIG and their variations are affordable 
for real-time applications, and particularly suitable on 
hardware platforms with on-board memory and limited 
computational resources and FPGA-based hardware 
accelerators. As another advantage, the parameters used by 
the MBSCIG algorithms can be properly chosen, during the 
design phase, based on preliminary tests performed on video 
sequences that are typical of the actual scene where the 
embedded system should work. The adaptability of the 
algorithms, as well as their performance scalability with 
video frames of different resolution, will be investigated in 
future works.   
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