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Abstract— The recent shift in machine learning towards the
edge offers a new opportunity to realize intelligent applications
on resource constrained Internet of Things (IoT) hardware.
This paper presents a pre-trained Recurrent Neural Network
(RNN) model optimized for an IoT device running on 8-bit
microcontrollers. The device is used for data acquisition in a
research on the impact of prolonged sedentary work on health.
Our prediction model facilitates smart data transfer operations
to reduce the energy consumption of the device. Application
specific optimizations were applied to deploy and execute the
pre-trained model on a device which has only 8 KB RAM size.
Experiments show that the resulting edge intelligence can
reduce the communication cost significantly, achieving subs-
tantial savings in the energy used by the IoT device.
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I. INTRODUCTION

Several IoT applications have emerged in healthcare with
advances in wearable electronics [6], [11]. Miniaturized
devices having sensing, computing and communication
capabilities transformed the healthcare sector, enabling the
realization of new services. Wearable devices can collect
data for monitoring patients remotely to get insights on
symptoms or trends, and provide better treatment.

Typical healthcare IoT services use wearable devices in
combination with smartphones. Physical and physiological
data collected by the wearable sensors is sent to the
smartphones where it is aggregated and transferred to
backend applications for further processing. The backend
often consists of a number of Cloud services for data storage,
analytics and machine learning needed to provide actionable
information to physicians and patients [10].

The motivation for this work comes from an ongoing
research aimed at mitigating Musculo-Skeletal Disorders
(MSD) problems in sedentary work environment. In an effort
to establish a large dataset for this research, participating
subjects were identified for collecting posture data. The data
collection is performed continuously for several hours a day,
over a long period. In order to build a comprehensive dataset,
out of work activities requiring sedentary postures (such as
driving) will also be included in the data collection [4].

Energy efficiency is a major challenge in the adoption of
wearable IoT for such studies because most devices used in
these applications are energy constrained, often running on
low capacity power sources. In our case, multiple, coin-cell
battery operated wireless devices equipped with inertial
sensors are worn by the subjects. Communication between

the devices and the smartphone takes place via a Bluetooth
Low Energy (BLE) interface. However, the batteries of the
devices last few hours only because of the volume of data
they transfer. For example, a wearable motion sensor with 9
channels reading 50 samples per second generates over
100MB of data per day.

In this paper, we shall present an approach to improve
energy efficiency of wearable sensors through Edge Machine
Learning techniques. Our goal is to reduce the volume of
communication between the sensor devices and the
smartphones to the minimum needed. The machine learning
implementation shall recognize eventful data and transfer it
to the smartphone only when it is necessary. Implementing
machine learning algorithms on resource constrained devices
is often not practical because the algorithms require adequate
computing power and large storage memory, both of which
are not available on most wearable devices. However, with
the emergence of edge computing, it has been possible to
handle most of the computational and storage burden of
machine learning far away from the source of the data.

We investigated different machine learning algorithms to
identify the ones that suit our task. Our findings show that
RNNs can be implemented on a resource-constrained edge
device and give the desired accuracy in real-time. As a
proof-of-concept, we evaluated the execution performance
and accuracy of a pre-trained RNN model on an Atmega640
microcontroller. The Atmega640 is an 8-bit microcontroller
with 16MHZ clock, 64KB boot (code) memory and 8KB
data memory (static RAM). This microcontroller has lower
specifications (processor speed and memory) than typical
devices used for such applications. It can therefore be said
that the results of our experiment can be applied to devices
already adopted by the wearables industry.

A Python based Machine Learning library was used to
build and pre-train our RNN model. Experiments were run
to determine the optimal set of model parameters that fit in
the device without sacrificing accuracy significantly.

Posture data collected for the research is used to train the
model. We then developed a program in C to implement the
pre-trained RNN and deployed it on the sensor device for
evaluation. The model’s real-time performance on the edge
device is found to be satisfactory for posture monitoring in
sedentary work environment.

The rest of this paper is organized as follows. Section II
gives a brief background on MSD research and the state-of-
art in the area. Section III discusses Edge Machine Learning,
its challenges and contemporary research in the field and the
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approach proposed for the task at hand. Section IV describes
the experimental setup for this study. Section V discusses
the results of the experiments followed by analysis of the
results. Section VI discusses related work in Edge Machine
Learning research. We conclude this paper by highlighting
important results and citing directions of future work.

II. MSD RESEARCH AND APPLICATION OF IOT

A. A Brief Background to the Research Problem

Sedentary work environment was recognized as one of
the major causes of MSD. Studies on the issue found that
prolonged seating and poor body postures can reduce blood
flow in the cervical region and cause inflammation of
muscles and tissues [1]. Poor postures and work positions
result in back, neck and shoulder pain. MSD problems may
also lead to chronic ailment and even complete immobility.
Studies explain the need to maintain the right body posture in
work and different daily-life situations, owing to the fact that
bad posture and prolonged sitting in one position cause back,
neck and shoulder pains that can get worse and develop to
chronic diseases with age [3]. Studies have shown the link
between sedentary life and the risk of obesity, diabetes,
cardiovascular disease, and all-cause mortality.

Increasing healthcare costs, absence from work and the
associated negative psychosocial complications are some of
the problems caused by MSD with severe impact at societal
level. According to the UK National Health Services, the
country lost 31 million days in 2014 alone, due to sickness
related to back, neck and muscle pain [4]. Recognizing the
severity of MSD problems, the National Institute for
Occupational Safety and Health in the United States
(NIOSH) identified the problem as an important research
agenda [8]. NIOSH identified several research directions,
among which mechanisms for reducing the impact of MSD
is a priority area.

B. IoT in MSD Research

The dataset created in earlier MSD researches were either
incomplete or inaccurate due to the method of data collection
they employed. In many cases, the data gathering process
was based on physical observation or self-reported
information [2]. Later researches made use of video
recording and tagging [7]. With advances in sensor and
communication technologies, it was possible to set up body
sensor networks (BSN) that connect multiple devices worn
on the subject’s body to detect and label movements and
postures [5]. Different types of sensors are used today to
collect physical and physiological data to capture
information on movements, postures, spinal loads, sit-stand
frequency, metabolic processes, etc. [1].

The emergence of IoT transformed the field of healthcare
by facilitating real-time data collection, monitoring and
analysis with greater convenience and ease of use. Cables
that were once used to connect wearables to a central data
acquisition unit are now replaced with a wireless interface,
such as BLE integrated into the devices.

A schematic depicting the setup of an IoT environment
for acquisition and storage of data is shown in Figure 1.

The devices needed for this specific study are placed on
the center of the upper back area and on the upper part of the
left leg. This placement is sufficient to identify sedentary
postures and detect whether the subject is sitting or standing.
The devices have inertial sensors, (accelerometer, magneto-
meter and gyro) and a BLE unit for communication with the
smartphone.

The data gathered is stored in a Microsoft Azure Cloud
storage as a time series consisting of 9 features (along x, y, z
axes for each inertial sensor unit) per sensor node or device.
Every row of data is timestamped and contains posture
labeling as well.

III. MACHINE LEARNING AT THE EDGE

Edge devices used for sensors are often resource
constrained and therefore not capable of running classical
machine learning applications on their data. For such
devices, both training the model and inference are often
carried out far from the origin of the data, in the Cloud. The
main innovation in Edge Machine Learning (Edge ML) is
that inference can take place on the edge device itself, at the
source of the data. Edge ML has several benefits, such as
reduction of communication latency, improving energy
efficiency, security, personalization and customization of
services [9]. Achieving energy requires reducing the energy
cost of communication between the sensor edge and the
smartphone, which in turn requires reducing the flow of
redundant data from the edge device (sensor).

There are important steps that should be investigated to
gain from the mentioned benefits of Edge ML. First,
identifying the right machine learning algorithm for the
dataset at hand requires expertise and skills. Selecting the
right algorithms often comes with the dilemma to choose
between performance and accuracy.

Second, the capability of the target device to support the
algorithm is not a trivial problem. In order to address this
issue, several models have to be tested on the target device
until a satisfactory one is found. One is often forced to
sacrifice the accuracy if the target hardware does not have
sufficient processing power or memory.

Figure 1. Placement of inertial measurement sensors

Finally, the availability of development tools for machine
learning is also a major challenge. Embedded software for
many low-end edge devices are written in C. Development
environments of some microcontrollers are proprietary with

Wireless Sensor node

Cloud Services
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limited flexibility, making importing available libraries very
difficult.

Machine learning often requires complex software
packages and libraries that can only be executed on powerful
processors. Until recently, deep learning was outside the
realm of low-end processors on which many IoT devices are
based. Because edge devices are resource constrained, they
require customized implementations for most machine
learning algorithms. The following techniques can be
applied in special cases to realize edge ML:

 Offloading the computational work to more
powerful devices, for example by performing the
training and validation phases on the Cloud;

 Reducing the precision of model parameters and
approximating computations with more efficient
arithmetic operations wherever possible [20];

 Using lookup tables for activation functions instead
of run-time computations.

A. Deep Learning for Temporal Data

One limitation of classical sensor data analysis is the
need for manual feature engineering work. Most supervised-
learning algorithms are not computationally efficient for
deployment on resource constrained devices. Algorithms,
such as K-Nearest-Neighbour (KNN) have large storage
requirements that can only be met by desktop computers or
servers. Furthermore, these algorithms are not suited to
detect patterns or contexts hidden in the temporal data
collected by the sensors.

RNNs are effective for data with temporal or contextual
sequence, such as natural language processing and time
series prediction [16]. Their ability to read variable-length
sequences of input samples and merge the prediction for
each sample into a single prediction for the entire window
makes RNN suitable for the posture monitoring application
under consideration. A generalized schematic of the RNN
architecture is shown in Figure 2. Current hidden states are
generated using the input and the previous hidden state. This
cyclic behavior in the hidden layer gives the network the
ability to learn temporal sequences.

Figure 2. Representation of a recurrent neural network

The mathematical model of the network is represented
with the following equations:

hk = f(WXHxk + WHHhk-1 + bH) (1)

yk = g(WHYhk + by) (2)

where
k represents time sequence;
x, y, and h are the input output and hidden state vectors
respectively;
WXH, WHH and WHY are the input-to-hidden, hidden-to-
hidden and hidden-to-output weight matrices
respectively;
bH and by are the bias vectors for the hidden and output
states respectively (not shown in the figure);
f and g are non-linear activation functions.

RNN models can often be inaccurate and unstable for
long input sequences and time series, due to the exploding
and vanishing gradient problems [17]. The Long Short-Term
Memory (LSTM) variant of RNN was proposed as a solution
to overcome the problem. LSTM has achieved impressive
results with sequential and time series data in applications,
such as text generation, sequence prediction and anomaly
detection [16][21].

B. Realization of RNN on Constrained Edge Devices

Deploying a deep learning model on resource constrained
edge device, such as an 8-bit microcontroller requires
significant optimizations. We shall explore where these
optimizations can be applied for our specific use case. Since
the number of input features and outputs is already decided
by the application, one has to identify other areas to look
into. Several models have to be built and tested to arrive at
an acceptable one.

One optimization measure is to determine the number of
neurons in the hidden layer because the computational
complexity and memory requirements for neural network
grow exponentially with it. Models of different sizes should
be evaluated experimentally for acceptable accuracy and
matching the edge device’s resource capabilities. It is also
possible to achieve a lower count on model parameters by
pruning edges with negligibly small weights [12] [19].

Further optimization is achieved through input data
reduction. The sampling rates of the sensors are often too
high for the microcontroller to make inference from the
acquired data within a sampling interval. Applying compu-
tationally inexpensive low pass filters helps to reduce the
volume of data, to improve the quality of the data and get
sufficient time interval for making inference.

Another optimization opportunity is simplifying the
computation of activation functions. If the microcontroller
does not have built-in floating point capabilities, evaluation
of functions, such as sigmoid and tanh is expensive.
Sacrificing the accuracy of these functions to a reasonable
level reduces the time needed for inference significantly.

IV. EXPERIMENTS

We planned two specific tasks in this experiment. The
first is to realize an optimized implementation of the
algorithm and the model parameters that can fit into the
available memory of the target microcontroller. Several
models are built to evaluate the tradeoff between accuracy

ykxk
WXH
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wHH

f g
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k
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and model size. The second task is to evaluate the
performance tradeoff between inference accuracy and the
achievable saving in energy on the edge device.

A. Data Collection

A smartphone app is also developed for this experiment,
to take care of the data received from sensors, as shown in
Figure 1. The main functions of the app are labelling, time
stamping, aggregating and uploading data to Cloud storage.

A sampling frequency of 50HZ is used as the base rate.
We decided not to increase the sampling rate beyond this as
the sensor node’s microcontroller would not be able to make
predictions in real time if the rate is increased. The sensors
measurements are different, owing to the local movement of
the body area they are placed on.

The data used in this experiment was collected over a
period of 30 minutes with the subject assuming different
predetermined postures alternately. This data is used to train
a machine learning model which should detect the temporal
instances of posture transitions. When training and testing is
completed, the model can be deployed on the target.

One of the investigators supervised the subjects to wear
the sensors at the correct position and guided them to change
postures every 2 to 3 minutes. During a transition, i.e., when
the subject changes her posture, a label for the new posture is
entered via the app’s user interface so that all data received
from this time on will automatically have the new label until
the next posture change occurs.

The postures assumed are labelled as follows:
 Sit -upright
 Sit -lean left
 Sit -lean right
 Sit -lean forward
 Sit -lean backward
 Stand

B. Training the Model

We implemented our machine learning model using the
Tensorflow deep learning framework in Python. The model
has 9 feature inputs, one hidden layer (LSTM) and one scalar
output, for each sensor node. Since we are interested in
posture transition only, a binary classifier is sufficient to
detect local posture changes. There are 90000 records in the
dataset, split into train (90%) and test (10%). A 70:30 train-
to-test ratio was also used later for comparison. The python
code was executed for different number of neurons in the
hidden layer. The model size depends on the number of input
features and the number of neurons in the hidden layer. The
experiment shows that the number of parameters can be
obtained from the equation:

P = (4n+1)(n+1) + 4nk (3)

where
P = number of model parameters (weights)
k = number of input features
n = number of neurons in the hidden layer

The storage requirement for the model is 4P bytes with
each parameter represented as a 4-byte floating point value.

Another parameter of interest in the experiment is the
duration of the time lag window used by the LSTM layer for
prediction. Larger window width is not practical for resource
constrained devices as the model prediction time becomes
unacceptably long. Smaller width on the other side
compromises the accuracy of the prediction. The analytical
computation of optimum window size is complex because it
depends on several factors that cannot be easily quantified.
We therefore determined this value empirically.

C. Deploying the Model on Target Device

The microcontroller version of the RNN code was
written in C. The compiled version of the code takes 34KB
of flash memory. The model parameters were combined with
the source code and compiled. However, they were stored in
the SRAM.

Modifications were made in the data acquisition part to
include a low pass moving average filter and use a sampling
rate of 50HZ. The filter serves the purpose of reducing the
volume of data processed by the model in addition to
stabilizing the data (against noise). The time taken to
execute the model’s inference task for different number of
neurons in the hidden layer is evaluated to determine
whether inference can be achieved in real time. Similar
experiments are also run for different window sizes.

The optimum number of neurons n depends on the
amount of SRAM available and the number of input features.
Having fewer neurons is not desired as it would compromise
the accuracy of the model. The results are summarized in the
next section.

V. RESULTS AND DISCUSSION

A. Evaluation of Model Training

Different hidden layer sizes were tested in the
experiment. However, owing to the limitations in the target
device, it is not practical to deploy large models. For
example, the number of parameters for a model containing
50 neurons in the hidden layer is about 11,851. This requires
about 44KB of memory on the target. The Atmel640
microcontroller has only 8KB static RAM that can be used
for all temporary data. After accounting for the memory
required to store a few seconds of sensor data, working
memory and stack for intermediate computations, the
available memory for the model parameters is just under
3.5KB. Applying equation (3), we can train a maximum of
11 neurons in the hidden layer.

Limiting the model size has also the additional benefit of
eliminating the risk of overfitting. Our evaluation also shows
that larger models are not suitable for the data. We got
satisfactory performance with models having as few as 8
neurons. Figures 3 and 4 demonstrate this by comparing the
Mean Square Error (MSE) losses for 50 and 8 neurons
respectively in the hidden layer. These results show that the
smaller model (8 neurons) has in fact a better accuracy
because it is a close match to the number of input features.
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B. Evaluation of Model Execution on the Target

The performance of the inference model was evaluated
on the microcontroller for different sizes of time lag window.
It is clear that the inference accuracy improves if a larger
time window is used. However, this incurs a large
computation cost. For a rate of 50 samples per second, the
20 milliseconds interval is very short to perform data
acquisition and inference (prediction). As can be seen in
Figure 6, it takes about 35 milliseconds to execute the
inference step alone for a window size of 3 seconds.

It is necessary to find an acceptable tradeoff between
inference accuracy and real-time response. We applied a low
pass filter to stabilize the data by averaging 4 samples at a
time, instead of feeding the entire sensor data stream to the
ML model. The overhead of this filter is low compared to
the inference operations. To our surprise, we got impressive
accuracy even when a smaller window size is used. As can
be seen in Figure 5, the difference in accuracy between a
window size of 2 seconds and 3 seconds is not significant
(both have over 95% accuracy). However, the 2 seconds
window takes much lower time for inference.

It is possible to deploy a larger model in the flash
memory since the SRAM would not be enough. Although
the flash memory has a slower access time than that of
SRAM, its performance is still acceptable.

C. Analysis of Energy Efficiency

Larger window sizes do not improve the model accuracy
significantly. In fact, the improvement, if any, is outweighed
by the overhead of the inference step. Because the inference
overhead grows exponentially with the size of the window,
the solution is not feasible for higher sampling rates. This
can be seen in Figure 6.

The energy saving is calculated as the difference between
the reduction in data transfer costs and the extra computation
incurred by the inference step to achieve this reduction.

It follows that this saving is significant if the frequency
of posture changes is low as is the case with sedentary work.
The excess computation depends on the sensor data rate and
the window size. In our experiment, a sampling rate of 50HZ
and averaging every 4 samples is used. This gives the model
an interval of 80 milliseconds per inference.

Number of batches

Figure 3. MSE loss (%) for number of neurons=50

As can be seen in Figure 6, if a 2 seconds window is
applied, it takes about 9 milliseconds to execute the model
(inference code). This achieves the desired result with about
11% increase in computation.

The BLE interface draws an average current of 8.53mA
over its connection interval of 2.675 milliseconds with an
empty payload [15]. According to the datasheet, the device
draws a current of 17.5mA for a full payload data transfer.
Android phones support a maximum of 4 packets with a-
payload of 20 bytes for a minimum connection interval of
7.5 milliseconds [13].

To get an estimate of the energy saving, we can consider
a case where posture changes occur every 10 seconds on
average. If edge intelligence were not applied, 4.5KB of
data would have to be transferred in the 10 seconds interval
(from 9 channels at 50 samples per second and 1 byte per
sample). With the above BLE throughput information, a data
transfer period of 420 milliseconds over the 10 second
duration at an average current of 17.5mA.

With the proposed approach, however, it would be
enough to transfer only 225 bytes, the data for one time
window only. This achieves a 95% reduction in data transfer
costs. The energy consumed for the additional computational
overhead is quite modest with the microcontroller drawing
less than 2mA, about 10% increase.

VI. RELATED WORK

The emergence of low cost, yet powerful devices has
brought machine learning to the edge. Encouraged by this
development, researchers in the field have managed to
achieve interesting outcomes in edge intelligence in the last
few years. In most of the studies we found, the investigators
tested their learning algorithms on powerful devices that are
not suitable for wearable sensors.

Yazici et. al. investigated porting three different machine
learning algorithms to Raspberry Pi running an embedded
version of the Android OS [9]. They evaluated the
performance of the algorithms for speed, accuracy and power
consumption. However, their solution is realized only on
powerful edge devices, not on resource-constrained 8-bit
microcontrollers.

Gupta et. al. developed a KNN implementation that can
run on 8-bit devices such as Arduino [18].

Number of batches

Figure 4. MSE loss (%) for number of neurons=8

Window size =2 sec
Window size =2 sec
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Figure 5. Model accuracy versus time window size

KNN is not, however, suitable for cases like ours where large
datasets are required for training because the device does not
have sufficient storage for the data.

Malhotra et. al. presented stacked LSTM networks for
anomaly detection in time series. They evaluated their
algorithms on different sensor data sets [16]. However, their
algorithm is not ported to edge devices.

VII. CONCLUSIONS AND FUTURE WORK

This study has shown that an LSTM-based Edge
Machine Learning can bring about substantial improvement
in energy efficiency of resource constrained IoT devices.
Advanced machine learning platforms have significantly
simplified the practical application of deep learning models
by facilitating rapid prototyping and testing.

Due to physical and physiological differences in human
beings, the models should be trained on an individual’s own
data. In our next study, we shall investigate personalized
models rather than one-size-fits-all generic ones.

Though not empirically validated yet, we see that further
optimizations can be made on the model. Pruning edge
weights, applied by Han et al. [19], and exploiting inherent
data types of sensor values can result in reduction in the
computational overhead of the model. Utilizing binary neural
networks [20] could also give interesting results. With this, it
can be possible to deploy inference models on devices with
even lower capabilities than the one used in this experiment.
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