
Large-Scale Space Network Simulator for
Performance-Optimized DTNs

Nadia Kortas
NASA Glenn Research Center

Cleveland, OH, USA
nadia.kortas@nasa.gov

Timothy Recker
University of California, Berkeley

Berkeley, CA, USA
tjr@berkeley.edu

Abstract—High-rate Delay Tolerant Networking (HDTN) is a
performance-optimized Delay Tolerant Networking (DTN) imple-
mentation that can provide multigigabit per second data rates in
disruptive and high-latency space networks. Routing, especially in
large-scale space networks, remains challenging due to network
topologies that evolve over time. This paper presents a simulation
tool that enables HDTN implementation testing at accelerated
speeds, which is key for routing in large-scale space networks.

Index Terms—High data-rate Delay Tolerant Networking,
performance-optimized space networks, network simulation,
DTN routing.

I. INTRODUCTION

Communication in space environments on an interplanetary
scale is challenging due to the extreme distances involved, sig-
nal propagation delays, and disrupted networks without end-to-
end connection. The existing TCP/IP-based internet protocols
operate on a principle of providing end-to-end communication
and do not tolerate long delays and disruptions. Delay Tolerant
Networking (DTN) [1] was designed to address these issues
and to operate effectively in such environments achieving re-
liable automated network communications for space missions
by using the bundle protocol which forms a store-and-forward
overlay network [2].

With the significant rise in the number of satellites being
sent into space, the scale of space communication networks
continues to increase, and routing in these space–terrestrial
systems remains challenging due to network topologies that
evolve over time. At the NASA Glenn Research Center,
an implementation of DTN called High-rate Delay Tolerant
Networking (HDTN) has been developed with the goal of
offering a solution that can scale to large, heterogeneous,
interplanetary networks while maximizing performance [3].
However, the typical means for analyzing a network of HDTN
nodes is slow and difficult, especially when scaling to large
networks or long time periods. Emulations on virtual ma-
chines or local laboratory tests on physical machines were
time consuming to configure and set up and did not scale
to large numbers of nodes. To overcome these challenges,
a simulation tool was developed that replicates the routing
decisions that HDTN would take in an operative situation
but does so in a controllable, easy-to-debug, and accelerated
simulation environment. This paper presents (H)DtnSim, a
simulator implemented based on DtnSim [4] by extending it

to interact with the HDTN routing module. This simulator was
created in OMNeT++ [5], a discrete event network simulator
platform. DtnSim was built using this event driven framework
to simulate scenarios efficiently at accelerated speeds, which is
crucial for large-scale space networks where analysis is needed
over long duration orbital periods. The structure of this paper
is as follows: Section II provides a general HDTN software
overview. The simulator design decisions and architecture are
described in detail in Section III. Testing results from the tool
for four different case studies are presented in Section IV. Sec-
tion V summarizes the conclusion and simulator enhancements
now in development.

II. HDTN ARCHITECTURE

HDTN software, which is available as open-source code [6],
was designed with the goal of substantially reducing latency
and improving throughput, even in constrained environments.
For this reason, it adopts a parallel pipelined and message-
oriented modular architecture, allowing the system to scale
gracefully as its resources increase. State information is repli-
cated between HDTN modules using ZeroMQ (ZMQ) [7],
avoiding the use of shared memory methods of interprocess
communication, which were found to create several bottle-
necks in similar networking applications [8]. HDTN modules
are defined in the following subsections; Figure 1 shows their
interactions.

A. Ingress

The Ingress module intakes bundles and decodes the header
fields to determine the source and destination of the bundles.
If the link is available, Ingress will send the bundles in a cut-
through mode straight to Egress; if the link is down or custody
transfer is enabled (which involves moving the responsibility
for reliable delivery of bundles among different DTN nodes
in the network), it sends the bundles to the Storage module.
Even if an immediate forwarding opportunity exists, Storage is
always required when custody transfer is enabled. The bundle
layer must be prepared to retransmit the bundle if it does not
receive an acknowledgment within the time-to-acknowledge
that the subsequent custodian has received and accepted the
bundle.

1Copyright (c) The Government of USA, 2023. Used by permission to IARIA.     ISBN:  978-1-68558-035-3

SPACOMM 2023 : The Fifteenth International Conference on Advances in Satellite and Space Communications



Fig. 1. HDTN software architecture and modules interactions.

B. Scheduler

The Scheduler sends LinkUp or LinkDown events with
time updates to Ingress, Storage and Router. This information
is used to determine if a given bundle should be forwarded
immediately to Egress or stored, to recompute the route
as needed if a link down would invalidate it and to keep
updating the Router’s own internal time before computing the
optimal route. To determine the availability of a given link, the
Scheduler reads a contact plan, which is a JavaScript Object
Notation (JSON) file that defines all the connections between
all the nodes in the network. In addition, the Scheduler
dynamically handles unexpected link status changes upon
receiving HDTN_MSGTYPE_LINKSTATUS from Egress, as
well as reloading the entire contact plan upon receiving a
CPM_NEW_CONTACT_PLAN request.

C. Storage

Storage is a multi-threaded implementation distributed
across multiple disks and where custody transfer is handled.
It receives messages from the Scheduler to determine when
stored bundles can be released and forwarded to Egress.

D. Router

The Router module gets the next hop and best route leading
to the final destination using one of the algorithms in the
routing library. The router currently supports Contact Graph
Routing (CGR), Dijkstra’s algorithm (the default algorithm
used), and Contact Multigraph Routing (CMR), which is a
modified version of Dijkstra’s algorithm using a multigraph
structure instead of a contact graph and providing a signifi-
cant performance improvement [9]. The Router then sends a

RouteUpdate event to Egress to update its outduct to the
outduct of that next hop. If the link goes down unexpectedly
or the contact plan gets updated, the Router is notified,
recalculates the next hop, and sends the RouteUpdate event
to Egress so that it updates its outduct based on the new next
hop.

E. Egress

The Egress module is responsible for forwarding bundles
received from Storage or Ingress to the correct outduct and
next hop based on the optimal route computed by Router.
HDTN uses an event-driven approach based on ZeroMQ pub-
sub sockets for sending unexpected link updates and contact
plan changes. When the connection changes unexpectedly,
Egress will send a LinkStatus update message to the
Scheduler, which triggers it to send a LinkDown or LinkUp
event to Ingress, Storage and Router to determine whether
bundles should be stored or the route needs to be recomputed.

F. Web Interface

The Web Interface displays data rates graph and bundles
statistics for network troubleshooting. It’s also used for updat-
ing configuration, routes, and contact plans.

III. HDTN SIMULATOR DESIGN

Analyzing the behavior of a complete network of HDTN
nodes poses some challenges. Unit tests can be used to assess
individual modules in HDTN and integrated tests can assess
how modules combine to implement HDTN node behavior.
However, assessing the behavior of an HDTN network has
traditionally required running tests on physical machines or
emulations on virtual machines. Laboratory tests of up to

2Copyright (c) The Government of USA, 2023. Used by permission to IARIA.     ISBN:  978-1-68558-035-3

SPACOMM 2023 : The Fifteenth International Conference on Advances in Satellite and Space Communications



Fig. 2. (H)DtnSim Graphical User Interface (GUI)

ten nodes have been run, but a major design goal of HDTN
is to achieve performance and stability that can scale to a
large, interplanetary network. Given this goal, existing network
analysis methods have two main problems:

• Setting up and configuring tests can be slow. This prob-
lem becomes more significant as tests scale to more
nodes, contacts, and data transmitted.

• Running tests can be slow. This problem also grows as
tests scale to longer time periods.

This section explores simulation as a potential solution to these
two testing difficulties. A DTN simulator should exhibit six
desirable properties:

(A) Accuracy
(R) Run-time acceleration
(U) Utility
(D) Development-time acceleration
(M) Maintainability
(S) Scalability.

The first three properties are essential for the purpose of
HDTN simulation; without them, there would be no reason
to simulate HDTN instead of running nodes in the laboratory.
Property A means that given the same transmission plan,
contact plan, and time-varying network topology, a simulated
DTN should produce the same results as a real DTN. R means
that simulations should run in an accelerated simulation time
instead of real time, i.e., a simulation spanning one hour of
the contact plan should take less than one hour of real time
to run. U means that the simulator must produce some output
that can be processed—either by a machine or a human—and
the output should yield some insight about the behavior of the
DTN. D and M refer to the man-hour cost of developing
simulation scenarios and of maintaining the simulator. S
means that as one varies the size of parameters—such as
number of nodes, number of contacts, time elapsed, number of

Fig. 3. DtnSim Routing class hierarchy with methods omitted. All Routing
models implement the abstract Routing class and RoutingHdtn imitates the
RoutingCgrIon350 class.

bundles sent, and size of bundles sent—all previous properties
continue to hold.

The approach taken to simulating HDTN in this paper is an
extended version of DtnSim, referred to here as (H)DtnSim.
DtnSim is a simulator for DTNs with a special emphasis on
analyzing routing. It exhibits many of the desirable properties
described previously in this section, including accelerated
execution in non-real time (R), ease of configuration with short
and simple .ini files that can be edited in text mode or using
a graphical interface (D), automatic generation of metrics and
diagrams for network flows and network topologies (U ), and
user-friendly interfaces for the visualization and control of
simulation scenarios and the analysis and plotting of metrics
(U ). The (H)DtnSim user-friendly GUI shown in Figure 2 is
a key element to gaining insight into complex time-evolving
topologies.

3Copyright (c) The Government of USA, 2023. Used by permission to IARIA.     ISBN:  978-1-68558-035-3

SPACOMM 2023 : The Fifteenth International Conference on Advances in Satellite and Space Communications



Fig. 4. Illustration of the architecture of (H)DtnSim showing three real HDTN nodes communicating via ZMQ messages with simulated nodes in DtnSim.
A shared contact plan must be supplied by the user but HDTN configuration is largely generated by the simulator.

This approach is viable because DtnSim is written in a
modular, object-oriented fashion that allows users to select dif-
ferent routing models for their simulations and enables devel-
opers to easily implement new routing models as subclasses.
It relies on a class hierarchy starting from the Routing
class and uses virtual methods throughout the code to enable
extension through inheritance. Extending the base Routing
model with subclasses enables a developer to create DTN
nodes with custom behavior that can take full advantage of
all the features and functionality of DtnSim. Thus, HDTN
simulation is achieved by implementing a RoutingHdtn
class as shown in Figure 3.

Two notable subclasses include RoutingCgr Model350
and RoutingCgrIon350, each of which exhibits distinct
and instructive approaches to simulation. The former imple-
ments a simplified version of Interplanetary Overlay Network
(ION)’s routing logic using the abstractions of DtnSim. The
latter can be understood as an interface gluing together DtnSim
code and actual ION flight code; ION support in DtnSim
is implemented by taking a subset of ION (namely the
part that decides when and where bundles are forwarded
or stored), compiling it into DtnSim, and calling it from
the RoutingCgrIon350 class. These two classes represent
alternative ways to answer the question: “What would ION
do?” After determining the answer, they replicate this action in
the simulator. The RoutingCgrIon350 class answers the
question by actually running ION in accelerated simulation
time and inspecting the result.

Although this approach is clever, its implementation has one
notable limitation: copying ION code and compiling it into the

simulator requires the simulator to be updated every time ION
changes to stay current with ION. This has left ION support in
DtnSim frozen at ION version 3.5.0, even though the latest ver-
sion is 4.1.1. This Maintainability limitation is too costly for
an HDTN simulator to embrace, given that HDTN—especially
the functionality of the Router—is under active research and
development. Over the ten weeks during which the research
for this paper was conducted, HDTN was enhanced with
several additions, including a CGR library written in C++, an
implementation of the CMR algorithm, and features for time-
tracking and route re-computation. Additionally, during this
time, developers were researching a routing approach based
on Spiking Neural Networks (SNN) using estimations and
observations of the network congestion and loss, neighbor
discovery and other routing enhancements.

Considering these maintainability concerns, (H)DtnSim
takes the same general approach as RoutingCgrIon350
while addressing the Maintainability issue by applying clas-
sical principles of engineering and object-oriented software:
information hiding and restricting interaction between entities
to limited public interfaces. HDTN itself is written in a
modular, object-oriented fashion since it consists of five mod-
ules interacting through asynchronous message passing. Thus,
instead of embedding HDTN within DtnSim, the authors chose
to extend DtnSim with the ability to talk to HDTN: an HDTN
Router process runs for each DtnSim node, communicating
using the messaging protocol of HDTN over ZMQ sockets,
as shown in Figure 4. Here are the steps for per-node Router
initialization:
1. Map the EID of the node to a pair of unique port numbers.

4Copyright (c) The Government of USA, 2023. Used by permission to IARIA.     ISBN:  978-1-68558-035-3

SPACOMM 2023 : The Fifteenth International Conference on Advances in Satellite and Space Communications



Fig. 5. Flow diagram of steps HdtnRouting takes to decide where bundles
go.

2. Generate an HDTN configuration file that binds the Sched-
uler and Router to the generated port numbers on the localhost.
3. Run an hdtn-router executable installed on the user’s system
using the configuration file generated in the previous step.
4. Connect objects of types SchedulerModel and EgressModel
to the Router.

The flow diagram in Figure 5 shows the steps HdtnRouting
takes to decide where bundles go. The SchedulerModel sends
LinkUp/LinkDown messages to the Router to keep the
Router’s internal notion of time synchronized with the sim-

ulator and notify it of relevant network topology changes. The
EgressModel listens for RouteUpdate messages published
by the Router and uses the Router’s decision to replicate the
equivalent action in DtnSim. Combined with the event loop
of DtnSim facilitated by OMNeT++ messages, the Scheduler-
Model models the required functionality of an HDTN Sched-
uler module; combined with the bundle forwarding threads and
the event loop, the EgressModel models the functionality of
an HDTN Egress module. In other words, these two models
are simplified versions of HDTN modules that stand in for the
actual modules and mimic their behavior.

IV. TESTING AND RESULTS

In this section, a series of simulation scenarios illustrates
how this implementation exhibits the six properties desired,
making it a simulator suitable for analyzing HDTN.

A. Simulator vs Runscript

To test the accuracy of the simulator, two routing test
cases from the HDTN source code have been mimicked in
a simulation scenario. The first is copied from a shell run
script and involves one node sending bundles to two other
nodes. The second is the “routing test” contained in the Linux
scripts directory of the HDTN source code and involves four
nodes in a network where Node 1 sends bundles to Node
4. Both tests use the same contact plans used by the HDTN
test cases and produce approximately the same outcomes as
summarized in Table I. For both the runscript and simulator
the actual number of bundles delivered is approximately as
expected and matching but there is a 1% discrepancy. In the
simulator precisely 3800 bundles are delivered while in the
runscript anywhere from 3834-3840 bundles are delivered with
some indeterminacy. The cause of this is under investigation
but there are a couple possible explanations. First, it may
be that there is some imprecision in the bundle generator
used in the runscript such that it does not produce exactly
100 bundles per second. Second, it may be that because the
bundle generator and HDTN’s Scheduler don’t share a clock
there is some asynchronization such that the bundle generator
produces 37-40 bundles before the Scheduler is fully running
and tracking time. In contrast, in DtnSim both the application
layer and the underlying DTN layer share a single notion of
time and are tightly synchronized. DtnSim supports the use of
random variation in parameters that could allow more accurate
description of the real HDTN scenario within the simulator
with some additional effort. However, both of these potential
effects might be heavily system dependant and difficult to
quantify. Despite these nuances, this test demonstrates that A
holds within a small margin of error.

Additionally, the results for the run script test detailed in
Table I show that the simulation versions of the tests have
a lower development time and run time. The run time can
easily be measured with a physical or software stopwatch.
Development time is difficult to measure precisely but as a
proxy one can look at the total number of Source Lines Of
Code (SLOC) that must be written to implement a scenario.

5Copyright (c) The Government of USA, 2023. Used by permission to IARIA.     ISBN:  978-1-68558-035-3

SPACOMM 2023 : The Fifteenth International Conference on Advances in Satellite and Space Communications



TABLE I
COMPARISON OF SIMULATION AND RUNSCRIPT PERFORMANCE

Simulation Runscript

Routes Found 10 → 2, 10 → 1 10 → 2, 10 → 1
Actual Bundles delivered 3800 3840± 6

Config lines (SLOC) 13 158
Run time (s) 1 73± 3

Discrete events 34558 NA

B. CGR vs CMR

As stated in Section III, a major design goal of the simulator
is to abstract internal implementation details of HDTN so that
HDTN can continue to develop without requiring updates to
the simulator. This goal was put to the test by running two
different branches of the HDTN source code in the simulator.
The first branch used a CGR version of Dijkstra’s algorithm
to compute the best routes; the second used a CMR algo-
rithm. These algorithms have different definitions, run-time
complexities, and implementations, yet the simulator worked
equally well with either branch. HDTN implementations can
be swapped easily within the simulator, requiring no changes
to simulator source code and only a one-line configuration
file change. Thus, M holds. (H)DtnSim can deliver this
flexibility and Maintainability under two conditions: 1. The
architecture of HDTN cannot change, including changes to
the structure or semantics of the messages passed between
HDTN modules 2. The user interface to HDTN must remain
backwards compatible, i.e., the command line interface must
continue to support the syntax and options that the simulator
uses to run HDTN.

If either of these conditions is unmet, the simulator might
require updates to continue working with the latest version of
HDTN. Architectural and interface updates amount to chang-
ing the design of HDTN. Given that the simulator models the
behavior of HDTN, it is hardly surprising that such design
changes necessitate updates to the simulator that models it.
However, as long as the design of HDTN remains stable,
changes in implementation details will not negate the accuracy
of the simulator’s model. This approach comes with a few
noteworthy requirements or limitations:
1. (H)DtnSim must implement some of the messages that
HDTN uses.
2. (H)DtnSim must use only these messages to get information
about the running HDTN Router; dissecting the internal state
of the Router compromises the abstraction layer.
3. (H)DtnSim must interpret the semantics of these messages
in a way that is equal to the HDTN interpretation or at least
similar enough to replicate HDTN’s behavior.

Because of the flexible nature of (H)DtnSim, performance
enhancements can be made to HDTN without requiring
a change to the simulator. Thus, in addition to facilitat-
ing Maintainability, this property of the simulator supports
HDTN’s core performance mission.

C. HDTN vs ION

The simulator has been used to identify useful enhance-
ments to HDTN by running simulation scenarios for both
HDTN and ION and comparing the results. As the flow
diagrams in Figures 6 and 7 indicate, ION can transmit
1,728,000 bytes over the last contact in the simulation for
a total of 7,680,000 bytes transmitted; in HDTN, those bytes
remain stranded on node one, resulting in a bundle loss rate
of 22.5 percent. After inspecting the HDTN source code, it
was determined that this difference in packet delivery rate was
primarily the result of the way the HDTN Router handled time
and changes in the network topology. In particular, the Router
formerly did not update its time from the initial time of the
contact plan, nor did it recompute routes when a link down
event should make a route it previously computed invalid.

The effect of this problem is difficult to quantify generally
because it heavily depends on the precise contact graph and
network traffic. Thus, the difference in bundle delivery rates
between ION and HDTN resulting from this issue could be
0%, 100%, or anything in between. However, bundle delivery
rate is an important performance metric and the situation
that produced this discrepancy between ION and HDTN is
quite plausible in realistic network topologies and workloads;
all it requires is that the Router computes a route for some
bundles and one of the links in this route later goes down
while previously routed bundles are still awaiting delivery. The
discovery of this problem and the clarity of its illustration is
a strong testament to the U tility of (H)DtnSim.

As a result of this discovery, enhancements to HDTN
time-tracking and route computation were made, resulting
in the changes illustrated in the network flow diagrams of
Figures 8 and 9. These enhancements were implemented with
architectural changes to HDTN, which required updates to the
simulator that are under development. This is a good example
of the limits of property M : the simulator is resilient to internal
implementation changes but can require significant updates
when changes are made to HDTN’s ZMQ sockets, message
structure, message semantics or CLI options.

D. Scaling to Large Networks

For this section, the simulations were constructed with four
fictitious ground stations, at Albany, NASA Glenn Research
Center, University of California Berkeley, and Guam based
on data from Starlink satellite orbits. With each simulation
lasting for 24 hours (86400 seconds), and counting the ground
stations as nodes, the contact plans consisted of 14, 54, 104,
and 204 nodes corresponding to 368, 7186, 28162, and 109330
contacts, respectively.

TABLE II
SIMULATION RESULTS USING THE FOUR LARGE CONTACT PLANS

Nodes 14 54 104 203
Contacts 368 7186 28162 109329
Time (s) 5 7 15 94

Discrete events 611460 2157761 3098460 6658661

6Copyright (c) The Government of USA, 2023. Used by permission to IARIA.     ISBN:  978-1-68558-035-3

SPACOMM 2023 : The Fifteenth International Conference on Advances in Satellite and Space Communications



Dotted Lines = Contacts 
Coloured Lines = Traffic Flows 

L1

L2

L3

L4

k: 1
start: 0

end: 100

L1

L2

id:1
6000000

1-2
2560000

1-3
2560000

1-4
832000

L3

L4

k: 2
start: 100
end: 700

L1

L2

L3

L4

k: 3
start: 700
end: 1000

L1

L2

L3

id:2
6000000

1-3
2560000

1-4
832000

L4

k: 4
start: 1000
end: 1600

L1

L2

L3

L4

k: 5
start: 1600
end: 2000

L1

L2

L3

L4

id:3
60000000

1-4
832000

k: 6
start: 2000
end: 2600

L1

L2

L3

L4

k: 7
start: 2600
end: 7400

L1

L2

L4

id:4
60000000

1-4
1728000

L3

k: 8
start: 7400
end: 8000

Fig. 6. A data flow diagram for a network of four nodes running ION. All links are utilized in this scenario for 100% bundle delivery rate.

Dotted Lines = Contacts 
Coloured Lines = Traffic Flows 

L1

L2

L3

L4

k: 1
start: 0

end: 100

L1

L2

id:1
6000000

1-2
2560000

1-3
2560000

1-4
832000

L3

L4

k: 2
start: 100
end: 700

L1

L2

L3

L4

k: 3
start: 700
end: 1000

L1

L2

L3

id:2
6000000

1-3
2560000

1-4
832000

L4

k: 4
start: 1000
end: 1600

L1

L2

L3

L4

k: 5
start: 1600
end: 2000

L1

L2

L3

L4

id:3
60000000

1-4
832000

k: 6
start: 2000
end: 2600

L1

L2

L3

L4

k: 7
start: 2600
end: 7400

L1

L2

L4

id:4
60000000

L3

k: 8
start: 7400
end: 8000

Fig. 7. A data flow diagram showing how HDTN handled the same scenario shown in Figure 6. The link from L1 to L4 in the last network topology is not
utilized, resulting in bundle loss.

The data in Table II and Figures 10 and 11 show the
results of a simple, fixed scenario run with the four contact
plans described. The network is populated by nodes connected
through intermittently connected, gigabit-rate links. For 20
seconds of simulation time, one ground station sends 1907
bundles per second consisting of 65535 bytes to another
ground station, using routes with two hops via satellite. These
values are selected to saturate the gigabit links with bundles
equal in size to the maximum size of a TCP packet. In each
of the four runs, this situation is constant and only the number
of nodes and contacts varies.

These results—combined with preliminary inspection of the
effects of bundle count and route recomputation—suggest that
the duration of a simulation depends on (a) the number of
discrete events in the simulator and (b) the time spent running
the HDTN Router. The former is mostly—aside from a small
extra startup overhead—independent of the number of nodes,

length of simulated time, and size of bundles sent; it depends
instead on the number of contacts and number of bundles sent.
However, in a dense network topology (graph) the number of
contacts (edges) will increase quite rapidly with the number
of nodes (vertices). Thus, the results of x, y, z show a steep
jump in simulation runtime in the step from 104 to 203 nodes
since the topologies in this scenario are somewhat dense. This
issue should look familiar to readers aware of the challenges
resulting from the amount of scheduling information required
to use CGR in large networks. However, a sparse network
topology would not face this issue.

On the other hand, part of the time spent running the HDTN
Router depends on the implementation and computational
complexity of HDTN’s routing algorithm. This part indicates
nothing about the performance of the simulator itself. How-
ever, time spent running the HDTN Router also depends on the
simulator implementation. Some performance optimizations

7Copyright (c) The Government of USA, 2023. Used by permission to IARIA.     ISBN:  978-1-68558-035-3

SPACOMM 2023 : The Fifteenth International Conference on Advances in Satellite and Space Communications



Dotted Lines = Contacts 
Coloured Lines = Traffic Flows 

L1

L2

id:1
5000

1-3
1000

L3

k: 1
start: 0
end: 5

L1

L2

id:1
5000

1-3
1000

L3

id:2
5000

1-3
2000

k: 2
start: 5
end: 10

L1

L2

L3

id:3
5000

k: 3
start: 10
end: 15

Fig. 8. Data flow diagram before Router changes. A link from L1 to L3 is
available in the third network topology but is not utilized to transmit bundles
because the Router did not track time and thinks the next hop should still be
L2.

Dotted Lines = Contacts 
Coloured Lines = Traffic Flows 

L1

L2

id:1
5000

1-3
1000

L3

k: 1
start: 0
end: 5

L1

L2

id:1
5000

1-3
1000

L3

id:2
5000

1-3
2000

k: 2
start: 5
end: 10

L1

L2

L3

id:3
5000

1-3
1000

k: 3
start: 10
end: 15

Fig. 9. Data flow diagram after Router was updated to track time. Unlike
in Figure 8, the link from L1 to L3 is properly utilized to deliver bundles.

have been implemented to address this, such as caching
results from the HDTN Router. Others, like more efficient

Fig. 10. The most significant factor in simulator performance when scaling
to large networks is the time (in seconds) required to run a simulation versus
node count.

Fig. 11. Contacts expressed in thousands, time in seconds, and events in tens
of thousands. Scaled to fit on one plot to show the corresponding slopes.

use of Linux threads and processes, are under development.
The simulations in this section are run in a VirtualBox VM
on a commodity laptop with no setup tuning. As such, the
numbers indicate little about expected runtimes for simulations
running with plentiful resources. They do, however, give some
idea of how performance persists or degrades with larger
networks. The results suggest that (H)DtnSim is successful
in Scaling to networks with many nodes. While simulation
performance could be improved, it may be limited by the
inherent complexity of the algorithms and the rate of growth
for contacts when nodes are added.

V. CONCLUSION AND FUTURE WORK

From this research, one can see that a simulator—and the
(H)DtnSim simulator in particular—is a satisfactory solution
to some problems with testing in HDTN. In addition to
the expected and intended outcomes, the simulator facili-
tates exploration and discovery of HDTN behavior through
rapid development and deployment of tests. This process

8Copyright (c) The Government of USA, 2023. Used by permission to IARIA.     ISBN:  978-1-68558-035-3

SPACOMM 2023 : The Fifteenth International Conference on Advances in Satellite and Space Communications



produced enhancements to the HDTN Router’s handling of
time, improving bundles delivery rate. The design of HDTN
has proven highly modular, flexible, and extensible, making
enhancements like these easy to incorporate and interaction
with the simulator seamless and maintainable.

(H)DtnSim has been made available publicly to the DTN
community under the branch “support-hdtn” [11], which can
be found in the official DtnSim repository [4].

Future versions of (H)DtnSim will support the multi-
destination routing enhancements. It will also support oppor-
tunistic links and unexpected link disruptions. Doing more
extensive testing by running simulations on more powerful
servers will strengthen the evidence for the claims made
about the simulator and provide more insights about HDTN
performance.

ACKNOWLEDGMENT

The authors would like to thank the NASA Space Com-
munications and Navigation (SCaN) program. Support from
the rest of the HDTN team and guidance from the DtnSim
developers, including Juan Fraire and Pablo Madoery, is much
appreciated.

REFERENCES

[1] V. Cerf et al., “Delay-Tolerant Networking Architecture,” RFC
4838, IETF: Fremont, CA, USA, 2007. [Online]. Available:
https://datatracker.ietf.org/doc/rfc4838/. Accessed March 24, 2023.

[2] K. Scott and S Burleigh, “Bundle Protocol Specification,” RFC
5050, IETF Network Working Group (2007. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc5050. Accessed March 24, 2023.

[3] A. Hylton et al., “New Horizons for a Practical and Performance-
Optimized Solar System Internet,” IEEE Aerospace Conference, 2022.
[Online]. Available: https://doi.org/10.1109/AERO53065.2022.9843598.
Accessed March 24. 2023.

[4] J. Fraire and P. Madoery. (2019). DtnSim Official Repository. [Online].
Available: https://bitbucket.org/lcd-unc-ar/dtnsim/src/master/. Accessed
March 24, 2023.

[5] A. Varga. “The OMNeT++ Discrete event simulation system,” in Proc.
European Simulation Multiconference, Prague, Czech Republic, 2001,
pp.1-7.

[6] B. Tomko, N. Kortas, R. Dudukovich, and B. LaFuente. (2021). HDTN
Official Repository. [Online]. Available: https://github.com/nasa/HDTN.
Accessed March 24, 2023.

[7] P. Hintjens. (2020). ZeroMQ: Messaging for Many Applications [On-
line]. Available: https://zeromq.org/. Accessed March 24, 2023.

[8] A. Hylton, D. Raible, and G. Clark, “On the Development
and Application of High Data Rate Architecture (HiDRA) in
Future Space Networks,” AIAA 2017-5415. [Online]. Available:
https://arc.aiaa.org/doi/pdf/10.2514/6.2017-5415. Accessed March 24,
2023.

[9] R. Kassouf, “Contact Multigraph Routing: Overview and Implementa-
tion,” presented at the 2023 IEEE Aerospace Conference, Big Sky, MT,
March 4-11, 2023, Paper 4.0906.

[10] T. Recker. (2022). HDTN Example Simulation [Online]. Available:
https://bitbucket.org/lcd-unc-ar/dtnsim/src/master/. Accessed March 24,
2023.

[11] T. Recker. (2022). (H)DtnSim Branch. [Online]. Available:
https://bitbucket.org/lcd-unc-ar/dtnsim/src/support-hdtn/. Accessed
March 24, 2023.

9Copyright (c) The Government of USA, 2023. Used by permission to IARIA.     ISBN:  978-1-68558-035-3

SPACOMM 2023 : The Fifteenth International Conference on Advances in Satellite and Space Communications


	Introduction
	HDTN architecture
	Ingress
	Scheduler
	Storage
	Router
	Egress
	Web Interface

	HDTN Simulator Design
	Testing and Results
	Simulator vs Runscript
	CGR vs CMR
	HDTN vs ION
	Scaling to Large Networks

	Conclusion and Future Work
	References

