
Alleviating Bundle Throughput Constriction for
Delay Tolerant Networking (DTN) Bundles with

Software Defined Networking (SDN)
Stephanie Booth

NASA Glenn Research Center
Cleveland, Ohio

email: stephanie.l.booth@nasa.gov

Nadia Kortas
NASA Glenn Research Center

Cleveland, Ohio
email: nadia.kortas@nasa.gov

Alan Hylton
NASA Goddard Space Flight Center

Greenbelt, Maryland
email: alan.g.hylton@nasa.gov

Blake LaFuente
NASA Glenn Research Center

Cleveland, Ohio
email: blake.a.lafuente@nasa.gov

Rachel Dudukovich
NASA Glenn Research Center

Cleveland, Ohio
email: rachel.m.dudukovich@nasa.gov

Brian Tomko
NASA Glenn Research Center

Cleveland, Ohio
email: brian.j.tomko@nasa.gov

Abstract—A load-balancing technique is proposed, executed,
and tested against a Delay Tolerant Network (DTN) implemen-
tation with well-known characteristics. This would prove that
transparently inserting Software Defined Networking (SDN) to
achieve load balancing without re-configuring the DTN portion
is possible. In addition, two routes were taken to alleviate a DTN
bottleneck threat. The first used a P4 networking switch. This
manual load-balancing test will balance the incoming packets
without the users at the end-points knowing that their original
packet destinations and/or sources may have been changed. The
second route utilized a High-rate Delay Tolerant Networking
(HDTN) receiving node instead of the typical DTN implemen-
tation used. Bench-marking results of the DTN implementation
receiving node and the HDTN receiving node will be compared.

Index Terms—Delay Tolerant Networking (DTN); Software
Defined Network (SDN); Interplanetary Overlay Network (ION);
High-rate Delay Tolerant Networking (HDTN); Space Communi-
cations

I. INTRODUCTION

As space networks expand and increase complexity, bundle
(and packet) throughput will also increase. This leads to the
idea that individual nodes must be able to handle increased
traffic, particularly from multiple sources and to multiple
destinations. Consider an example with two nodes. Node 1 is
sending bundles, at its processing limit, and likewise node 2
is receiving bundles at its limit. If a third node was introduced
to this system sending any number of packets to node 2,
then node 2 will be over capacity. In this case, the best-
case scenario is that bundles must be re-transmitted. The
question becomes how cases like these could be handled at a
system level. An approach for future networks to load-balance
themselves through a Software Defined Networking (SDN)
switch or a High-rate Delay Tolerant Networking (HDTN)
capability is outlined in [1].

Space networks are well-known for links featuring high
propagation times and intermittent connectivity. These diffi-
culties give rise to Delay Tolerant Networking (DTN), which

is an experimental network protocol designed for this en-
vironment. The DTN implementation used in this paper is
the Interplanetary Overlay Network (ION), which is NASA’s
current implementation of delay tolerant networking for space
communication applications [2]. Previous work shows ION’s
performance limitation capabilities where it can process, at
most, low-thousands of bundles per second [1]. This provides
concerns with scaling networks and limiting throughput. Since
ION imposes clear constraints on network performance, it is
easy to see noticeable improvement within the system if the
load-balancing alleviates bundle throughput.

SDN switches range in capabilities due to hardware con-
figuration limitations and the networking software. For the
experiments within this paper, an Aurora 710 networking
switch by Netberg was used. This particular switch provides
32 x 100GbE four-lane Quad Small Form-factor Pluggable
(QSFP) interfaces with programmable pipelines using the
Programming Protocol-Independent Packet Processors (P4)
language. The Intel Tofino switching Integrated Circuit (IC)
is capable of 3.2T switching and, therefore, will not be a
bottleneck in this experiment [3]. ION was configured to
transmit bundles over the User Datagram Protocol (UDP), and
hence the Aurora 710 P4 networking switch was programmed
to seamlessly load balance UDP packets. The authors hasten
to add that any protocol, including custom protocols, could
have been used.

P4 is one of many different network switch languages that
can be used to change how a typical network switch works,
but was chosen as it is open-source and has been around since
2013. Prior to the language’s first appearance, vendors of data
plane devices had total control over any device’s functionality.
However, now it is possible to implement specific behavior
in the network within minutes by avoiding firmware and
hardware development. Since P4’s initial debut, the language
has gone through two major reworks, known as P414 and P416

1Copyright (c) IARIA, 2022. ISBN: 978-1-61208-939-3

SPACOMM 2022 : The Fourteenth International Conference on Advances in Satellite and Space Communications

[4]. The Aurora network switch is compatible with both, but
P416 was used for this paper.

Next generation space networks require systems that can
handle longer latency times than naturally occur on Earth.
HDTN is a performance-optimized implementation of DTN
used in this paper, and is optimized for a nearby network
of space systems [1]. HDTN is designed with a message
bus architecture to attempt to eliminate software bottlenecks
caused by shared memory and related locking mechanisms,
such as semaphores and mutexes. HDTN decodes bundles
and metadata into internal messages to control how data flows
through the system.

Figure 1 shows a high level diagram of one of the network
components discussed in this paper. Two ION nodes send
bundles over UDP to HDTN through the P4 switch. Bundles
are received by HDTN’s ingress module, which decodes the
bundle header to determine the message’s desired destination
and Time-To-Live (TTL). If there is no route available to
reach the destination, bundles are saved to disk by HDTN’s
storage module. The scheduler determines if a link is available
to transfer bundles to another node. HDTN can either send
bundles directly through to the egress module, or storage will
retain the bundle until it receives a release message. Here
would be an example of when bottlenecks of data transmission
can pose a problem. If the storage is not large enough, the
packets are dropped [5]. In addition, if the receiver is unable
to process the data quick enough to handle the two ION nodes,
packets can also be lost. For the experiments conducted in this
paper, bundles were stored to disk when they were received.

Figure 1. High Level Network Components.

This paper is structured logically to answer these questions
regarding continuous data transmission at nodes’ capacities.
It first mentions the SDN development procedure in Section
II. This area lays out the P4 code behind the scenes. Then in
Section III, testing starts with placing the SDN switch between
two ION nodes to test a small scale load balancing effort.
Section IV enhances this effort to balancing multiple DTN
nodes with HDTN. And finally, Section V summarizes and
concludes the work presented.

II. SDN DEVELOPMENT PROCEDURE

The Aurora 710 networking switch was provided blank,
that is, without any inherent protocol support. The switch
was first coded in P4 to perform packet switching on Layer
3/Internet Protocol (IP) logical addressing. Once completed,
Layer 4 was taken into account. Because bundles were sent
over UDP to port 4556, which is normal for DTN, the switch

can easily determine if incoming packets were bundles or not.
The network design was straight-forward, and is illustrated in
Figure 2. Recall that in ION, node names are numbers; in our
case these are the final octets of the node’s IP address. Hence
Rho, which has IP 10.10.10.1, is node ipn:1.

After basic Layer 3 switching and packet header checks,
Network Address Translations (NAT) happen next. To start
with, if the final octet of the IP address ends in 10 to 19,
its original destination will remain unchanged. However, to
load balance the traffic, if the source IP address’s final octet is
between 20 and 29, then the destination IP will change to the
first non-zero digit. For example, if the source IP ends in .20,
then its destination IP end is changed from .1 to .2. When
reversing the traffic flow, source IP address will be analyzed.
If the source IP address does not end in a .1, the source
IP address will change back to the original 10.10.10.1
address. See Table I for the NAT rules for traffic on port 4556.
All the IP address renaming happens on the networking switch
in real time. The checksums were then checked before the
packet left the switch and were updated if necessary.

TABLE I
NAT RULES FOR TRAFFIC ON PORT 4556

Original ModificationIP Source IP Destination
10.10.10.[10-19, 100] 10.10.10.1 No change
10.10.10.[20-29, 100] 10.10.10.1 Destination → 10.10.10.2
10.10.10.[30-39, 100 10.10.10.1 Destination → 10.10.10.3

10.10.10.1 10.10.10.[10-19, 100] No change
10.10.10.2 10.10.10.[20-29, 100] Source → 10.10.10.1
10.10.10.3 10.10.10.[30-39, 100] Source → 10.10.10.1

Once the P4 code was compiled and uploaded to the SDN
switch, we were ready to start. We enabled the hardware
ports, wrote the switching tables, and manually configured the
Address Resolution Protocol (ARP) tables (statically) between
the machines. An example of the hardware ports and switching
tables are shown in Figures 3 and 4. Each port shown in
Figure 3 connects to another computer with a corresponding
IP address to Table I. For example, port 1 could be connected
to the machine with IP address 10.10.10.100 and port
2 is connected to machine with IP address 10.10.10.1.
These addresses might change per test group performed due
to computer malfunctions and/or limitations. Figure 4 tells the
switch where to send the packet depending on its destination
address via port number. Terminology overlaps here where
the port number in Figure 3 is the hardware cage and lane
number used. The port number in Figure 4 connects with the
D P column for Device Port (logical pipe) in Figure 3.

Figure 3. Aurora 710 Hardware Port Diagnostics.

2Copyright (c) IARIA, 2022. ISBN: 978-1-61208-939-3

SPACOMM 2022 : The Fourteenth International Conference on Advances in Satellite and Space Communications

Figure 2. DTN to DTN Roadmap.

Figure 4. P4 Switching Table for Table Labeled ipv4 host.

Once operational, preliminary tests were conducted of the
P4 software using a packet creation software called Scapy via
[6] before adding in the DTN implementation. Following Table
I, the results showed that the code alters packets only if it was
a UDP bundle on port 4556 and all other UDP and TCP
packets were switched as normal.

III. SDN MANUALLY LOAD BALANCING ION TO ION
The users from each endpoint should be hidden from the

knowledge that their packet destination was altered in the
middle of its way to the destination. Hence, between IP
addresses ending between .1 and .10, packets are switched
without modification. Between .2 and .20 the switch changes
the source of .2 to .1 or the destination (if packet is coming
from .20) to .1. For a visual of this, see Figure 5. Here, the
switch shows that it can manually load balance based on what
IP address it came from by changing the destination address.
However, due to how Linux’s TCP/IP stack is designed and a
computer malfunctioning, the DTN implementation tests were
broken up between simple switching and modified switching;
see Figure 2 for details of each DTN implementation link
tested.

The ION implementation’s version of bpchat was used to
test link connection but was also verified with Wireshark via
[7]; this software is often used diagnostically to send text mes-
sages over bundles. Because the ARP was not implemented in
P4, the ARP tables were manually edited to establish the links.
The first test completed used simple UDP switching with an

UDP destination port equaling 4556. This test had no changes
to the IP and hardware addresses as expected. See results in
Figure 6.

Figure 5. DTN to DTN Load Balancing Overview.

Figure 6. Simple Switching with the SDN Switch.

3Copyright (c) IARIA, 2022. ISBN: 978-1-61208-939-3

SPACOMM 2022 : The Fourteenth International Conference on Advances in Satellite and Space Communications

Figure 7. Modified Switching with the SDN Switch.

The second test required the SDN switch to modify the
packets and kept the UDP destination port as 4556. For
bpchat to work, it required IPv4 and UDP checksums to be
correct at the receiving node. The address changes are shown
in Figure 7 and follow Table I.

The last test of the manual load balancing efforts with
the Aurora 710 network switch found throughput limitations
for each DTN link. This was to give a baseline prior to
sending traffic from two DTN nodes to a single recipient DTN
node with HDTN. Typical performance-measuring tools for
DTN, and particularly ION, include bpdriver and bpsink,
which can send fixed numbers of bundles or stream bundle
continuously. Both are designed to work as quickly as possible.

These results are shown in Table II. At 1000 bundles the
TTL value was hit. We recall that in the context of DTN, TTL

TABLE II
PRELIMINARY DTN TO DTN BASELINE RESULTS

Tx Computer Rx Computer Status
Rho Eta

Stopping bpdriver. Stopping bpcounter; bundles received: 100
Total bundles: 100 Time (seconds): 9.486

Time (seconds): 0.535 Total bytes: 100000 PASS
Total bytes: 100000 Throughput (Mbps): 0.084

Throughput (Mbps): 1.495
Stopping bpdriver. Stopping bpcounter; bundles received: 438

Total bundles: 1000 Time (seconds): 20.130
Time (seconds): 5.338 Total bytes: 438000 FAIL
Total bytes: 1000000 Throughput (Mbps): 0.174

Throughput (Mbps): 1.499
Omicron Eta

Stopping bpdriver. Stopping bpcounter; bundles received: 100
Total bundles: 100 Time (seconds): 12.765

Time (seconds): 0.558 Total bytes: 100000 PASS
Total bytes: 100000 Throughput (Mbps): 0.063

Throughput (Mbps): 1.433
Stopping bpdriver. Stopping bpcounter; bundles received: 810

Total bundles: 1000 Time (seconds): 23.921
Time (seconds): 2.656 Total bytes: 810000 FAIL
Total bytes: 1000000 Throughput (Mbps): 0.271

Throughput (Mbps): 3.012

is not hop-based, but rather time-based. The tool bpdriver
uses a default value of 30 seconds. The SDN switch was able
to send each packet through but the destination DTN node
could not process as many before the TTL expired. This shows
that the DTN implementation used is asymmetric with itself
and that in this scenario for 1000 bundles, a node to node
link fails. In addition, the results show that the network works
loss-free when the nodes are not at their maximum capacity.
We will be using the 1000 bundle case, which fails here, to
compare against HDTN.

IV. BALANCING MULTIPLE DTN NODES WITH HDTN

The DTN implementation transmitting machine names for
these tests are named Rho (with IP address ending in .1) and
Omicron (with IP address ending in .2). The HDTN node
resides on Eta with an IP address of 10.10.10.100. The
Aurora 710 network switch will be between the ION nodes
and the HDTN node. Here the HDTN node should only see
packets from 10.10.10.1 and therefore will be listening for
only that IP, as shown in Figure 8.

Figure 8. DTN to HDTN Load Balancing Overview.

The HDTN node was configured first to non-volatile stor-
age. Once results were received, bpsink capabilities were
tested. No differences of the results proved one configuration
was more ideal than the other for these tests with ION.

For a preliminary test of DTN to HDTN, the same test of
Table II was conducted except Eta was configured with HDTN.
The results brought forth all successes for both ION node
links. In addition, when both ION nodes were transmitting
1000 bundles, the HDTN node received all as shown in Table
III. Since the previous results of the DTN implementation used
had failures (as described in Section III), the PASS results for
HDTN under the same conditions are prodigious.

The ION’s bpdriver sends its first bundle twice
which does not pose counting issues with its counterpart,
bpcounter. Since HDTN counts every packet going to
storage, even if it is a duplicate, it counts that first packet
from both transmitting DTN nodes. This results in the extra
two packets counted at the receiver.

4Copyright (c) IARIA, 2022. ISBN: 978-1-61208-939-3

SPACOMM 2022 : The Fourteenth International Conference on Advances in Satellite and Space Communications

TABLE III
DTN TO HDTN TEST RESULTS

Tx Computer Rx Computer Status
Rho -hdtn host1.rc Eta ./runscript.sh

Omicron -hdtn benchmark1.rc Only to Storage
@rho:

bpdriver 100 ipn:1.1 ipn:2.1 -1000 t30
Stopping bpdriver.
Total bundles: 100

Time (seconds): 0.580 @eta: hdtn
Total bytes: 100000 m bundleCountStorage: 302

Throughput (Mbps): 1.378 m bundleCountEgress: 0 PASS
@omicron: m bundleCount: 302

bpdriver 200 ipn:1.1 ipn:2.1 -1000 t30 m bundleData: 312083
Stopping bpdriver.
Total bundles: 200

Time (seconds): 0.782
Total bytes: 200000

Throughput (Mbps): 2.046
@rho:

bpdriver 1000 ipn:1.1 ipn:2.1 -1000 t30
Stopping bpdriver.

Total bundles: 1000
Time (seconds): 2.565 @eta: hdtn
Total bytes: 1000000 m bundleCountStorage: 2002

Throughput (Mbps): 3.119 m bundleCountEgress: 0 PASS
@omicron: m bundleCount: 2002

bpdriver 1000 ipn:1.1 ipn:2.1 -1000 t30 m bundleData: 2083906
Stopping bpdriver.

Total bundles: 1000
Time (seconds): 3.109
Total bytes: 1000000

Throughput (Mbps): 2.573

V. CONCLUSION

With increasing network throughput and capability needs,
bottlenecks are important to avoid. Therefore, it is crucial to
circumvent performance restrictions of the network. Thank-
fully, some options have been found for DTN implementation
nodes. Manually load balancing packets with a SDN switch
and/or using an HDTN receiver node instead are both viable
options for the modern network system.

A benefit to utilizing a SDN switch is that it can handle
many different types of networking protocols at line rates.
This would enable current and future networks in space to
be harnessed with one simple device. The downside is that a
SDN switch is not an all-in-one solution since it is unable to
create packets to be sent. This would be where a HDTN node
plays a key role. It is designed to work with the long latencies
and intermittent connections in space. Since its framework
is light, it can process and send much faster than current
DTN implementations i.e. ION. However, HDTN is a newer
implementation that is still in the process of interoperability
testing with other DTN implementations such as ION and
DTNME. While HDTN is a complete bundle agent, there
is a smaller subset of applications and features compared
to the larger implementations that have been in use longer.
Due to HDTN being still new, it uses modern dependencies
and programming techniques. An ideal scenario would be to
make use of both, a HDTN and a SDN switch, at each node.
This will enable a very intelligent, fast, and expansion-enabled
network.

SDN development continues to provide solutions to
100Gbps data rates for HDTN. Current research in teaching
the Aurora network switch platform how to automatically
load balance traffic between ports without the need of the IP

changes hard-coded into the P4 code continues. In addition,
future work will incorporate the bundle egress to neighboring
node and finding limitations to HDTN’s capabilities.

REFERENCES

[1] A. Hylton, D. Raible, and G. Clark, “A delay tolerant networking-
based approach to a high data rate architecture for spacecraft,”
IEEE Aerospace Conference, pp. 1–10, 2019.

[2] NASA, “Interplanetary overlay network additional
information,” accessed: April 2022. [Online]. Available: https:
//www.nasa.gov/directorates/heo/scan/engineering/technology/
disruption tolerant networking software options ion

[3] Netberg, “Aurora 710,” accessed: February 2022. [Online].
Available: https://netbergtw.com/products/aurora-710/

[4] Open Networking Foundations ONF. (2021) P4 open source
programming language. Accessed: April 2022. [Online].
Available: www.p4.org

[5] A. Hylton et al., “New horizons for a practical and performance-
optimized solar system internet,” IEEE Aerospace Conference,
pp. 1–15, 2022.

[6] Scapy. Accessed: April 2022. [Online]. Available: https:
//scapy.net/

[7] Wireshark. Accessed: April 2022. [Online]. Available: https:
//www.wireshark.org/

5Copyright (c) IARIA, 2022. ISBN: 978-1-61208-939-3

SPACOMM 2022 : The Fourteenth International Conference on Advances in Satellite and Space Communications

https://www.nasa.gov/directorates/heo/scan/engineering/technology/disruption_tolerant_networking_software_options_ion
https://www.nasa.gov/directorates/heo/scan/engineering/technology/disruption_tolerant_networking_software_options_ion
https://www.nasa.gov/directorates/heo/scan/engineering/technology/disruption_tolerant_networking_software_options_ion
https://netbergtw.com/products/aurora-710/
www.p4.org
https://scapy.net/
https://scapy.net/
https://www.wireshark.org/
https://www.wireshark.org/

	Introduction
	SDN Development Procedure
	SDN Manually Load Balancing ION to ION
	Balancing Multiple DTN nodes with HDTN
	Conclusion
	References

