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Abstract—This study investigates the cloud top height 

estimation using nonlinear methods to Meteosat imagery. The  

suggested approach aims to develop an integrated statistical 

methodology to estimate the cloud top height on a pixel basis 

using Meteosat Second Generation water vapor imagery. 

Radiosonde measurements are used as reference dataset and a 

spatio-temporal correlation with Meteosat images is performed 

in order to collect a representative sample for the statistical 

analysis. Here, we apply Multi Layer Perceptron (MLP) and 

Support Vector Machines (SVM) and we compare the results 

to the Linear Regression model. The best results are achieved 

using SVM for regression.  The proposed approach is very 

promising as it can be used for future in-depth analysis so as to 

develop a robust approach for geometrical height estimation 

on a pixel basis of the operational data of Meteosat imagery. It 

is noted that an accurate estimation of cloud top height can 

help to eliminate geometric restrictions (e.g. Parallax 

phenomenon) of the Meteosat satellite imagery, improving its 

usefulness in a wide area of applications and especially in 

satellite-based weather forecast. 
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I.  INTRODUCTION 

Geostationary satellites nowadays provide many different 
data about the parameters concerning land, ocean and 
atmosphere and they are used in numerous applications not 
only in detecting but also in monitoring (on a real-time basis) 
and short-range forecasting [1], [2].  

There are some limitations because of the geostationary 
satellite instrument field of view and their scanning mode 
that usually lead to inaccuracies about the exact location of 
some cloud features (especially convective cloud systems) 
on the Earth’s surface. These cloud systems are usually 
vertically extended at several kilometers in the atmosphere, 
with the cloud tops reaching the middle and upper 
troposphere [3-5]. The above-mentioned inaccuracies are 
caused by the parallax phenomenon, [6] which is more 
evident in the convective nature cloud systems that are 
depicted at satellite images and appears at mid-latitudes 

growing towards the poles and the edges of the field of view 
of the satellite instruments.  

The convective cloud systems have great importance 
because they are related to extreme weather phenomena and 
events like lightning, hail, strong winds and floods [5], [7] 
and [8].   

As a result, the accurate estimation of Cloud Top Height 
(CTH) is appropriate in order to calculate and eliminate the 
parallax effect and it can provide the real location of the 
convective systems above the Earth’s surface, more 
accurately. 

There are several studies that propose different 
approaches and methodologies to estimate the geometric 
CTH but they are mainly lacking in high accuracy or usually 
refer to small geographic areas [9-12].  

Our effort is to propose a robust, generalized and 
accurate methodology to estimate the geometrical height of 
different cloud features (especially convective ones) at a 
broad range of latitudes and longitudes. This methodology 
aims to improve on pixel basis the accuracy of clouds’ 
location above the Earth’s surface, so as to eliminate the 
parallax phenomenon in real-time monitoring applications 
based on Meteosat operational data. 

Section II provides all the relative information about  the 
data used and the area of interest. In Section III, the 
methodology was followed in order to estimate cloud top 
height, is provided. The Section IV presents the accuracy 
results of the proposed methodology and the Section V 
provides the conclusions of the the study.  

 

II. DATA AND AREA OF INTEREST 

Two different datasets were used in this study. Firstly, 

radiosonde observations (provided by the National Oceanic 

and Atmospheric Administration/Earth System Research 

Laboratory: NOAA/ESRL) of the greater area of the 

Mediterranean region (Fig. 1). Radiosonde data are suitable 

to measure vertical profiles of many important parameters 

like temperature, pressure and geometrical height. Secondly, 

Meteosat satellite images of two different channels (5 and 6) 

at spectral ranges of 5.35 - 7.15 μm (spectral center: 6.2 μm) 

and 6.85 - 7.85 μm (spectral center: 7.3 μm) respectively 
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(provided via the European Organization for the 

Exploitation of Meteorological Satellites: EUMETSAT). It 

is mentioned that the specific Meteosat channels have been 

chosen because they belong to the water vapor absorption 

spectral region and are used to detect water vapor levels 

especially in the middle and upper troposphere. All the data 

used were collected for a period between 5/6/2012 and 

14/6/2012. The area of interest covers the greater area of the 

Mediterranean basin (Fig. 1) because in this region the 

convective systems are developing frequently and especially 

during the warm period of the year [13] and [14] causing 

floods, strong winds and hail among others that affect 

importantly humans and properties. These cloud systems are 

vertical extended in several kilometers.  

The accurate detection of their spatial extent on the Earth’s 

surface of the field of view of a geostationary satellite like 

Meteosat, needs an accurate estimation of the CTH in order 

to eliminate the parallax phenomenon that is evident in such 

convective cloud systems [6], [12]. 

 

 
Figure. 1. Locations of radiosonde stations that are used in this study. 

III. METHODOLOGY 

A representative training sample was needed in order to 

determine the non-linear functions that combine the 

Meteosat pixel values with the cloud geometrical height that 

is recorded by the radiosonde measurements (Fig. 2). For 

this reason, a spatiotemporal correlation between radiosonde 

measurements and satellite images was implemented. 

More specifically, the radiosonde balloons are usually 

released twice a day at times 00:00 UTC and 12:00 UTC. 

For the selected time period, a database was gathered with 

all the satellite images that have 90-min time distance from 

the point where radiosonde balloons were released. The 90-

min time gap was chosen because our intention is to 

estimate optically thick and vertically extended cloud 

systems that are related to severe weather. These are 

generally called convective cloud systems where the cloud 

tops existed usually in the middle or the upper troposphere. 

The balloons reach these atmospheric levels at about 90 

minutes after their release according to [15]. So, for each 

satellite image obtained 90 minutes after the radiosonde 

balloon release, a 5 x 5 kernel window (~25 x 25 km 

according to the Meteosat image pixel size at mid-latitudes) 

was created and implemented around the coordinates of 

every available Radiosonde point (Fig. 3). The mean 

Brightness Temperatures (BT) value of the two used 

channels and their mean value of BT differences of the 

kernel window pixels, are finally associated with the 

radiosonde measurement that was considered just above the 

cloud top (Fig. 2). In order to determine, if the radiosonde 

passed through a cloud and which is the height of its cloud 

top, we used the criterion of Relative Humidity level as it 

was proposed in [16]. If the value of the RH was higher than 

85% (maximum value is the saturation level: 100%) then we 

consider that the balloon was in a cloud. More analytically, 

the higher (in km) measurement of a radiosonde balloon 

recordings that has RH lower than 85% and at least the three 

previous and consecutive measurements with RH higher 

than 85%, was considered as cloud top measurement (Fig. 

2). 
 

 
Figure 2. Schematic representation of a representative cloud system  and 

its cloud top height, as it is calculated with the proposed methodology. 

 
It is mentioned that the size of the kernel window was 

chosen because the radiosonde balloons during their ascent 

can reach more than 20 km horizontal distance from their 

initial location as it was mentioned in [15]. 
 

 
Figure 3.  The kernel window of Metosat pixels that was implemented 

around the location of a radiosonde station. 

 
The spatio-temporal correlation considering all the 

above-mentioned criteria was implemented in an automated 
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way using an algorithm developed for this purpose in the 
VB.NET programming language.  

Using the above mentioned spatio-temporal correlation 
methodology for the radiosonde and Meteosat data, a final 
dataset of 181 cases in the area of interest for the selected 
time period, was collected. Each case is a given radiosonde 
dataset that satisfies the RH criteria. For each case, the 
geometric height above the ground was recorded (as it was 
measured from the radiosonde) along with the mean BT in 
the channels 5 and 6 of the kernel window Meteosat pixels 
and their mean BT difference. These samples (of 181 cases) 
comprised our final data set for the regression analysis. 

More specifically, we defined our dataset as 
1 2 3{ , , , }, 1, ,i i i ix x x y i n  where n  is the number of 

measured samples (181 cases), the 1

ix  is the mean BT value 

of Meteosat kernel window pixels in the channel 5, 2

ix  is the 

mean BT value of Meteosat kernel window pixels in the 

channel 6,  3

ix  is the BT difference between them and 
iy  is 

the measured height of the balloon for each one of  the 
collected cases.  

This is a classical regression problem where the variable 

that we have to predict is
iy . Here, we examine a Linear 

Regression model and two non-linear methods: Multi-Layer 
Perceptron (MLP) Neural Network and Support Vector 
Machines (SVM) , in order to predict this value. 

A. Linear Regression 

A linear regression model assumes that the relationship 
between the dependent variable yi and the p-vector of 
observed xi is linear. Thus, the model has the general form: 

 

 Y = βX+ε , (1) 

 

where  
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X : is the observation matrix and 

 

 1 2

T

p  ε :are the error terms. 

 

The parameters β  are estimated using the Least Squares 

method and a standard solution is obtained [4]. 

B. MLP 

Neural networks are used as a direct substitute for 
multivariable regression and other statistical analysis 
techniques. A neural network is used to represent a nonlinear 
mapping between input and output vectors [2, 18].  

Multi-Layer Perceptron (MLP) neural network is the 
most widely used neural network architecture for 

classification and/or regression problems. MLP networks 
consist of an input layer, one or more hidden layers and an 
output layer (Fig. 4 represents an MLP architecture with one 
hidden layer). Each layer has a number of units and each unit 
is fully interconnected with weighted connections to units in 
the subsequent layer.  

The output of MLP is defined as a linear combination of 
the outputs of the hidden layer nodes where every neuron 
uses a weighted average of the inputs through a function (e.g. 
sigmoid function).  
 

 
Figure 4. MLP network consisting of the input layer, one hidden layer and 

the output layer. 

 

The MLP transforms p  inputs to l  outputs through 

some nonlinear functions. The output of the network is 
determined by the activation of the units in the output layer 
as follows: 

 

 0 0( )h h

h

g f g w  , (2) 

 

where ()f  is the activation function, 
hg  is the activation of 

h -th hidden layer node and 
0hw  is the weight of the 

connection between the h -th hidden layer node and 0-th 

output layer node. The most used activation function is the 
sigmoid and it is given as follows: 
 

 
0

0

1

1
h h

h
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g

e

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

. (3) 

 
The activation level of the nodes in the hidden layer is 

determined in a similar fashion. The error function is defined 
as the difference between the calculated value and the target 
value, as follows: 

 

 
( ) ( )

0 0

0

1
( )

2

n l
i i

i

E y g  ,  (4) 

 

where n  is the number of pattern in data set and l  is the 

number of output nodes. 
The aim is to reduce the error by adjusting the 

interconnections between layers. The weights are adjusted 
using the Back Propagation (BP) algorithm. The algorithm 

68Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-264-6

SPACOMM 2013 : The Fifth International Conference on Advances in Satellite and Space Communications



requires a training data that consists of a set of corresponding 

input and target pattern values
iy . During the training 

process, MLP starts with a random set of initial weights and 

then training continues until the set of 
ihw and 

0hw  are 

optimized so that a predefined error threshold is met between 

0g and 
0y [3]. 

C. SVM for regression 

Support Vector Machines are applied not only to 
classification problems but also to regression ones. SVM 
contain all the main features that characterize maximum 
margin algorithms: a nonlinear function is learned by linear 
learning machine mapping into high dimensional kernel 
induced feature space. 

In SVM regression, the input x is firstly mapped onto a 

m -dimensional feature space using nonlinear mapping, and 

then a linear model is constructed in this feature space. The 
linear model is given by: 

 

 
1

( , ) ( )
m

j j

j

f x w w g x b


  , (5) 

 

where 1, ...,( ), j mjg x   denotes a set of nonlinear 

transformations and b  is the bias term. 

SVM regression uses a new type of loss function called -
insensitive loss function based on [5,6]:  

 

 
0, ( , )

( , ( , ))
( , ) ,

if y f x w
L y f x w

y f x w otherwise






    
  
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SVM regression performs linear regression in the high-

dimension feature space using  -insensitive loss and tries to 

reduce model complexity by minimizing 
2

w . This can be 

described by introducing slack variables *, , 1, ,i i i n   , to 

measure the deviation of training samples outside  - zone. 

  

 
Figure 5. Epsilon zone with slack variables and selected data points. 

 
Thus SVM regression is formulated as minimization of 

the following functional [6]: 
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IV. RESULTS 

We have tested and evaluated the above-mentioned 
regression models using a dataset of 181n   samples. 80% 

of the dataset was randomly selected and used as the train set 
and the rest (20%) of the dataset was used as test set. 

 

TABLE I.  THE AVAILABLE DATASET DIVIDED INTO TRAIN AND TEST SET. 

 Number of 

Instances 

(%) 

Number of 

Instances  

(#) 

Train Set 80 145 

Test Set 20 36 

Data Set 100 181 

A. MLP architecture 

In order to determine the best architecture for the MLP 

Neural Network, we tested different formulations consisting 

of one or two hidden layers, with 3 up to 20 neurons in each 

one. Table II, presents the best architectures for one and two 

hidden layers respectively in terms of R-coefficient and 

Mean Absolute Error. 

TABLE II.  BEST MLP ARCHITECTURES FOR ONE AND TWO HIDDEN 

LAYERS. 

 

B. SVM parameter selection 

In order to suggest the most appropriate values for the 
parameters C ,   of SVM, we applied a GridSearch method 

[7]. Table III, presents the results in terms of the correlation 
coefficient and MAE for the determined parameters that 
reported with the maximum correlation coefficient. 

 

TABLE III.   SVM PERFORMANCE FOR THE PARAMETERS 25C  , 

0.1  . 

Layers Architecture 
(Input- 
Hidden-

output) nodes 

Correlation 

coefficient 

Mean 

Absolute 

Error 

(MAE) 

One Hidden 
Layer 

3-18-1 0.7272 1541.05 

Two Hidden 

Layers 
3-18-2-1 0.7372 1399.21 

Layers Correlation 

coefficient 

Mean Absolute Error 

(MAE) 

SVM 0.7238 1286.97 
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C. Comparison of the Regression models 

Table IV presents a comparison of the results of the three 
models used in our experiments including the Linear 
Regression method.  

TABLE IV.  COMPARISON OF THE THREE MODELS. 

 
 
Fig. 6 illustrates the SVM predicted values and the actual 

values for the test set.  

 
Figure 6. The SVM predictions and the actual values. 
 
Fig. 7 displays the error of the predicted height versus the 

actual height in meters for the test set. As one can observe as 
the altitude rises from 8000 to 11000 km, the error becomes 
significantly large.  

This is mainly due to the lack of a sufficient number of 
cloud tops (as they are defined with the RH criterion) in 
heights between 8000 and 1200 km in the selected time 
period. This fact led to a small number of collected cases and 
consequently to significant errors of the regression 
procedures at these heights. Increasing the time period of 
study, the number of the convective cases in the study area 
and consequently the number of convective cloud tops above 
8000m will be increased. This goes beyond the scope of this 
study and it will be our first priority in the our future work. 

In this study, all three recorded features were used in 
order to estimate the height; it would be interesting to study 
the effect of each one. For this reason we conducted the same 
experiments with all the combinations of the features and we 
present the results in terms of the correlation coefficient and 
MAE in Table V.  

 

 
Figure 7. Absolute error of the prediction versus height (in meters). 

 
It is concluded that the most powerful feature is the mean 

BT value of Meteosat kernel window pixels in channel 5, 
then is the BT difference between channels 5 and 6 and last 
is the mean BT value of Meteosat kernel window pixels in 
channel 6.  

 

TABLE V.  SVM REGRESSION USING EACH FEATURE. 

 BTchannel 5 BTchannel 6 BTchannel 5 - BTchannel 6 

Corr. Coef. 0.6979 0.3348 0.4017 

MAE 1524.3 1975.2 1813.6 

 

V. CONCLUSIONS AND FUTURE WORK 

In this study, some preliminary results regarding the 
cloud height estimation from Meteosat water vapor imagery 
were presented. An analytical and automated spatio-temporal 
methodology is suggested to investigate the correlation of 
radiosonde measurements and Meteosat Brightness 
Temperature values. For the estimation of geometrical cloud 
top height, three methodologies were examined: a linear one 
and two nonlinear algorithms, MLP and SVM. 

Our purpose is to gradually develop a robust and accurate 
algorithm for CTH estimation for different cloud features 
(and especially the convective ones) as they are depicted in 
Meteosat infrared imagery. Our final intention is to cover the 
operational needs of CTH estimation in large geographic 
areas, with a simple, accurate and easy to use dataset. Using 
accurate estimations of the CTH, we intend in the near future 
to estimate (and reduce) the parallax phenomenon which is 
evident in the geostationary orbit satellite imagery, mainly 
used in the satellite-based weather forecasting.     

The first results showed that mean errors vary in general 
between 1000 m and 1500 m and there are significant errors 
especially after the height of 8000 m in the atmosphere. 
These errors could be explained due to the lack of data for 
height above 8000 m in the selected time period. These 
findings require further investigation which is beyond the 
scope of this study. Nevertheless, the correlation coefficients 

Layers Correlation 

coefficient 

Mean Absolute Error 

(MAE) 

Linear Regression 0.7200 1401.93 

MLP 0.7372 1399.21 

SVM 0.7238 1286.97 
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were considered quite satisfactory and promising for all the 
used algorithms and their parameterizations. 

Future work will concern a categorization of the different 
types of clouds in order to study separately every discrete 
category of the cloud features that are depicted in the 
Meteosat satellite imagery. The handling of high cloud tops 
that penetrate the lower stratosphere is an additional topic 
that we are planning to study, too. 

What is of great importance also, is the collection of a 
larger dataset that will allow more robust results and the use 
of additional channels of Meteosat imagery in the infrared 
region in order to evaluate their performance in the 
geometric height estimations.  

In addition to this, other approaches such as Random 
Forests [18], could be used to try to test and improve the 
accuracy of the cloud height estimations. 
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