
Evaluation of Complexity Versus Performance for Turbo Code and LDPC Under
Different Code Rates

Alaa Eldin.S. Hassan
Dept. Space Science

National Authority for Remote sensing and Space
Science (NARSS)

 Cairo, Egypt.
E-mail: alaa_eldin@narss.sci.eg

Moawad Dessouky, Atef Abou Elazm and Mona
Shokair

Dept. Electrical Communication
Menoufiay University

Menouf, Egypt
atef_abuelazm@menofia.edu.eg,

i_shokair@yahoo.com, Dr_moawad@yahoo.com

Abstract— Turbo codes play a major role in channel error
correction schemes used in wireless communications. Turbo
codes emerged in 1993 and since that time they dominate the
research in error control coding together with low-density
parity-check codes. Due to their remarkable performances,
turbo code and low density parity check code have been
accepted to a number of standards by many organizations
which decide to include turbo code and low density parity
check into their new standards after these codes were proven
successful in a many of missions. In this paper, the calculation
and comparison of performance versus complexity for those
two techniques of channel coding was done. For a fair
comparison, the performance and complexity should be
compared together. The complexity was calculated by counting
the number of clock cycles need to complete the decoding
algorithm. This comparison is used as a guiding lines of using
either turbo code or the low density parity check in specific
communication applications, The performance comparison of
turbo code and low density parity check were computed for
rates 1/2 and 7/8. The complexity for the two codes were
calculated for different code rates like (1/2, 1/3, 3/4, 7/8), the
evaluation study concludes that the turbo code was
recommended for moderate rate, while the LDPC is
recommended for higher code rates.

Keywords-turbo code; LDPC; complexity.

I. INTRODUCTION
Turbo code is a powerful error correcting code used in

wireless communication. Turbo code emerged in 1993 [1]
and since this year, it becomes a popular area of
communications research. Turbo code has a performance
near to Shanon limit, and it is stable for long time and now
being accepted as standard forward error correction
technique by many organizations such as CCSDS, but turbo
code still facing high complexity problem, on the other hand
Low-density parity-check (LDPC) codes are forward error-
correction codes, first proposed in the 1962 by Gallager in
his dissertation at MIT [2], at that time it was unpractical to
be implemented, but then largely neglected for over 35 years.
After that, it is rediscovered again by MacKay and Neal in
their work [3]. Because LDPC shares the main concept of
message passing algorithm as the turbo code and its
performance is also very close to Shannon limit. However, in
the last few years, the advances in low-density parity-check

codes have prove that the LDPC beat turbo code in terms of
error floor and performance for the higher code rates. In this
paper, we analyze the decoding algorithm for turbo code and
calculating its complexity under different code rates, and
then the same scenario was applied for the LDPC to
calculate its complexity and performance for different code
rates.

A similar work was made at Stravanger University [4],
but the comparison was made for rate 1/2 only, in this paper
a complete comparison of turbo code and LDPC was made
for different code rates. Also, because the complexity of
LDPC is a function of code rate, the complexity was studded
for different code rates. It is concluded from this research
work that the Turbo code is recommended for moderate code
rate because of its better performance, while the LDPC is
recommended for higher code rates because of its better
performance besides lower complexity compared with turbo
code.

This paper is organized as follows; the turbo code
decoding algorithm is reviewed in Section II and Section III.
The complexity calculations are made in Section IV. The
LDPC code decoding algorithm is reviewed in Section V. its
complexity calculation is made in Section VI. The
comparison of performance and complexity was elaborated
in Section VII and Section VIII. Tradeoff between
performance and complexity was compared in Section IX;
finally, conductive conclusions are done in Section X.

II. TURBO CODE SCHEME
Conventional turbo code consists of two (or more)

convolutional codes connected in serial or in parallel via
some pseudo-random interleavers.

Figure 1. Basic structure of the turbo encoder

98Copyright (c) The Government of Egypt, 2012. Used by permission to IARIA. ISBN: 978-1-61208-194-6

SPACOMM 2012 : The Fourth International Conference on Advances in Satellite and Space Communications

Figure 1 presents a block diagram of an encoder of a
systematic turbo code with an information block length K.
The turbo code is composed of two Recursive Systematic
Convolutional codes (RSC) [1].

The information bits are fed to the first RSC and after
being interleaved are passed through the second constituent
encoder. The resulting codeword consists of the systematic
bits, k (i) , and two parity check streams, r1(i), r2(i), i = 1, 2,
. . . , K . The coding rate of this code is 1/3. Higher code
rates can be achieved by puncturing some of the parity check
bits, using more constituent codes result in codes with rates
lower than 1/3

III. TURBO CODE DECODING ALGORITHM
A turbo decoder consists of two concatenated decoders,

each using the received systematic stream and the
corresponding received parity stream. Each decoder provides
a soft output of the transmitted bits by using the received
data and the information provided by the other decoder. The
soft output is the a posteriori probability (APP) and consists
of three components: the intrinsic information which is a
function of the received signal for the corresponding bit
position, the a priori (AP) probability of that bit position and
the extrinsic information which comes from the received
signal for other bit positions and their a priori probabilities,
In each iteration the extrinsic information produced by the
other constituent decoder is used to evaluate the a priori
probabilities in that iteration. Repeating this procedure
improves the estimation of the bit probability values and
hence, reduces the probability of error. One efficient
algorithm for soft output decoding, based on the trellis
diagram of the code known as the BCJR algorithm, is
presented in [5]. The suboptimal decoder introduced in [6]
Finds the extrinsic information on the transmitted bits by one
of the constituent decoders and passes it to the other decoder
through the interleaver. The decoder can decode the received
vector only if the iterative decoding converges. The output of
the “symbol-by-symbol” Maximum a posteriori Probability
(MAP) decoder is defined as the a posteriori log-likelihood
ratio, that is, the logarithm of the ratio of the probabilities of
a given bit being “+1”or“-1’ given the observation y, as in
equation (1). The Max-log MAP algorithm for decoding the
turbo code was used as it presented in [7] and it is based on
the trellis of a convolutional encoder in Figure 3.

 Figure 2. Basic structure of an iterative turbo decoder

Figure 3. Trellis structure of systematic convolutional codes

The log-likelihood ratio of (uk) is defined by [7]

where uk is the information bit at time k, and α*k: is the
Probability of path in the trellis going from state S’ (k-1) and
terminating at state S (k)

and β*k is the Probability of path in the trellis going from

state S(k-1) and terminating at state S’(k)

and γ*k is the branching Probability of path in the trellis

going from state S (k-1) and terminating at state S’(k)

IV. COMPLIXITY OF TURBO DECODING
In this section, we have to have a specific formula for

the complexity needed for Turbo code implementation by
counting the number of processor cycles for mathematical
operations needed for decoding, which related to the time
needed to decode a frame of information encoded by Turbo
code. From Equations (3), (4), and (5) for the Max-Log-
MAP algorithm, the α*, β*, and γ* have to be calculated. The
calculation of α*

k (u) requires two multiplications and one
addition for each state. Assuming the encoder with memory
length M, so we have to multiply by the number of states 2M
so, (2*2M) multiplications is needed and 2M addition. The
same number of calculation is needed for β*

k (u). For the γ*
k

we need (3* 2M) multiplications and (2 *2M) additions plus
(1* 2M) divisions.

ሺû݇ሻܮ ൌ ݈݊
ܲሺ݇ݑ ൌ ൅1|ݕሻ
ܲሺ݇ݑ ൌ െ1|ݕሻ

ൌ ݈݊
∑ ܲሺݏԢ , ,ݏ Ԣݏሻሺݕ ሻݏ,
ൌ൅1݇ݑ

∑ ܲሺݏԢ , ,ݏ Ԣݏሻሺݕ ሻݏ,
ൌെ1݇ݑ

ሺ1ሻ

ሺû݇ሻܮ ൌ ݈݊
∑ Ԣݏെ1ሺ݇כߙ ሻ. ݏሺ݇כߛ

Ԣ , .ሻݏ ሻݏሺ݇כߚ
ሺݏԢ ሻݏ,
ൌ൅1݇ݑ

∑ Ԣݏെ1ሺ݇כߙ ሻ. Ԣݏሺ݇כߛ , .ሻݏ ሻݏሺ݇כߚ
ሺݏԢ ሻݏ,
ൌെ1݇ݑ

 ሺ2ሻ

ሻݏሺ݇כߙ ൌ ෍ ݏሺ݇כߛ
Ԣ , ሻݏ

ሺݏ,ݏԢ ሻ

Ԣݏെ1ሺ݇כߙ ሻ ሺ3ሻ

ݏെ1ሺ݇כߚ
Ԣ ሻ ൌ ෍ ݏሺ݇כߛ

Ԣ , ሻݏ
ሺݏ,ݏԢ ሻ

 ሻݏሺ݇כߚ ሺ4ሻ

ݏሺ݇כߛ
Ԣ , ሻݏ ൌ

1
2
. ݇ݔ . ܽܮ . ሺ݇ݔሻ ൅ ݇ݔ . ܿܮ . Ԣݔ ݇ ൅ ݇݌ . ܿܮ . Ԣ݌ ݇ ሺ5ሻ

99Copyright (c) The Government of Egypt, 2012. Used by permission to IARIA. ISBN: 978-1-61208-194-6

SPACOMM 2012 : The Fourth International Conference on Advances in Satellite and Space Communications

][+

Let us take turbo code with M = 4 so, 2M = 16. The
decoder has two operations per iteration, so, all number
should be multiplied by two.
The total number of additions is (4 * 2 * 16) = 128;
Total number of multiplications is (7 * 2 * 16) = 224;
Total number of divisions for branch metric is (2*16) = 32;

Also, here we assume that max* (a,b) ≈ max (a,b)
because the correction factor is small and will reduce the
complexity, but its effect on the performance is less than 0.2
dB [7].

So, Max* operation need two cycle per state per iteration.
The total operations per bit is (2*2 *2M) = 64;
For the logarithm operation, a look up table was used

which need one operation per state per iteration.
The total operations per bit is (1*2 *2M) = 32
Finally, the divisions needed to calculate final L (uk) is

per bit.
Here, it is assumed that 3 clock cycles needed for an

addition, 5 clock cycles needed for multiplication operation,
and 17 clock cycles for a division operation as in the case for
a typical Pentium processor [8]. The ratio of calculation
complexity is assumed to be as follows: Addition:
multiplication: division= 1:1.5:5.

Table I summarizes the processor cycles for decoding of
Turbo code for different code rates, the number of iterations
per frame length “K” is 10; as we mention before, the
complexity of turbo code is the same as the mother code rate,
e.g., rates 1/2 and 3/4 can be obtained from the mother code
1/3, so all of them has the same complexity as the mother
code 1/3.

TABLE I. COMPLEXITY OF TURBO CODE FOR DIFFERENT CODE
RATES

Code Rate Processor cycles/
iteration/Frame length

For 10 iterations
/Frame length

Rate 1/3 425/ Frame length 7250
Rate 1/2 725/ Frame length 7250
Rate 3/4 725/ Frame length 7250

V. LDPC DECODING PRINCIPLES
Decoding of LDPC used message passing algorithms,

these algorithms interpreted by bipartite graph representation
of the LDPC code [7], where variable nodes and check nodes
are connected through edges. The variable nodes and check
nodes exchange the messages along their edges in an
iterative fashion, thereby cooperating with each other in the
decoding process.

The operations in an LDPC decoder comprises of two
steps; first, is how the messages are generated at the check
nodes and variable nodes (called “node processing”); second,
which determine how the generated messages are passed
between each other (called “scheduling”). These two
operations determine the decoding complexity of LDPC.

A. Node processing
Node processing consists of variable node update (VNU)

and check node update (CNU). In the VNU, incoming
messages from the check nodes are processed at each VN,
and the outgoing messages are generated and passed to the
check nodes. Similarly, in the CNU, incoming messages
from the variable nodes are processed at each CN, and the
outgoing messages are generated and fed back to the variable
nodes. Thus, the messages are passed between the variable
nodes and check nodes iteratively.

Let C(n) denote the set of check nodes connected to
variable node n, and V(m) denote the set of variable nodes
connected to check node m, where 0 ≤ n ≤ N-1, and
0 ≤ m ≤ M-1. C(n)\m refers to exclusion of m from set C(n),
and similarly V(m)\n refers to exclusion of n from set V(m).

In the VNU, variable node “n” has messages Rm′n coming
in from all check nodes m′ connected to it and its channel
Lch(n). Hence, the outgoing message (“extrinsic”) Qnm on an
edge n→m is the sum of all messages except Rmn. at iteration
i, each variable node “n” calculates messages Qnm(i), which
is sent from variable node “n” to each check node m∈C(n).
Message Qnm(i) is the LLR of variable node “n” based on all
check nodes in C(n)\m, and is calculated as defined by [7]

where Lch(n) is the channel LLR of variable node “n”.

The computation is shown in Fig. 4-a, assuming that the
variable node has degree = 3. The a posteriori LLR for a
variable node is obtained by adding all the incoming
messages at the variable node.

where “m” can be any check node in C(n). The above
expression indicates that the variable-to-check message
Qnm(i) in a current iteration can be directly calculated from
the previous iteration and the check-to-variable message
Rmn(i-1) on the same edge from the previous iteration.

 (a) (b)

Figure 4. Operations in a belief propagation decoder: (a) Variable Node
Update for a degree-3 variable node and (b) Check Node Update for a
degree-4 check node. Only message update on one edge (marked with solid
arrow) is illustrated but the similar operations are used to update messages
on all the edges.

224 ൅ 224 * 1.5 ൅ 33 * 5 ൌ 725 cycles/iteration/ frame length ሺ6ሻ
 ܳ݊݉ ሺ݅ሻ ൌ ሺ݊ሻ݄ܿܮ ൅ ෍ ܴ݉Ԣ ݊

݉Ԣڱ ܿሺ݊ሻ\݉

ሺ݅ െ 1ሻ ሺ7ሻ

෍ Ԣ݊ݔْ
݊Ԣ ڱ ሺ݉ሻݒ

ൌ 0 ሺ8ሻ

݊ݔ ൌ ෍ Ԣ݊ݔْ
݊Ԣ ڱ ݊\ሺ݉ሻݒ

 ሺ9ሻ

100Copyright (c) The Government of Egypt, 2012. Used by permission to IARIA. ISBN: 978-1-61208-194-6

SPACOMM 2012 : The Fourth International Conference on Advances in Satellite and Space Communications

In the CNU, check node “m” has messages Qn’m coming
in from all variable nodes “n′” connected to it. Each check
node “m” calculates messages Rmn(i), which is sent from
check node m to each variable node “n” ∈ V(m). Message
Rmn(i) is the LLR of variable node “n” based on all the
variable nodes in V(m)\n.

B. Scheduling
Scheduling involves communicating messages from one

node to another as dictated by the edge connections in the
bipartite graph. There are two typical schedules of belief
propagation: flooding and layered schedule [9]. In flooding,
the entire bipartite graph is flooded with messages that are
passed back and forth along all the edges, as illustrated in
Fig. 5-a. However, this ‘flooding’ increases the complexity
especially for longer block-sizes when the number of edges
becomes large.

(a)

(b)

Figure 5. Message passing in the a) flooding schedule of the belief
propagation algorithm, the shaded boxes indicate the CNU and VNU and
block arrows indicate direction of message passing. Message passing
occurs on a per-iteration basis b) layered BP, Shaded boxes indicate CNU
and VNU and block arrows indicate direction of message passing. In the
example, one CNU is done per sub-iteration. The edges that are updated in
each sub-iteration are shown with thick solid lines.

In the layered algorithm, only a small fraction of the

variable nodes and check nodes are updated per sub-
iteration, as illustrated in Fig. 5-b. The messages generated in
a sub-iteration of a current iteration are immediately used in
subsequent sub-iterations within the same iteration. This
leads to a faster flow of information and helps improve
decoding speeds for the structured LDPC codes.

VI. LDPC COMPLEXITY CALCULATION
While actual decoding complexity depends on many

factors such as hardware architecture, the decoding
complexity as estimated in [9], based on operations count,
the LDPC decoder computational complexity for Layered BP
decoding per-iteration to be as follows

For the Check node update

For the Variable node update

So, the Total complexity/ iteration

Total complexity

where R=K/N is the code rate, N is the decoded frame

length, dc is the average row weight and dv is the average
column weight,

Table II uses the form of equation (10) which manifests
the complexity as a function of code rates for different code
rates per frame length and 20 iterations.

TABLE II. COMPLEXITY OF LDPC CODES FOR DIFFERENT CODE
RATES FOR FRAME LENGTH “K”

From Table II, it is concluded that the complexity is
decreased as the code rate increased.

VII. LDPC AND TC PERFORMANCE COMPARISON

For the performance of these codes, a simulation is made
for 7/8 turbo code and compared with the performance of
QC-LDPC 7/8 (8176, 7156) in [10] and the result of
comparison is depicted in Fig. 6. The results show that the
performance of LDPC is better than the turbo code for
higher rates. Another simulation is made for turbo code rate
1/2 and compared with the performance of LDPC rate 1/2 in
[11] and the result of comparison is depicted in Fig. 7. The
results show that the performance of turbo code is better
than the LDPC for moderate code rates. LDPC is better in
performance for high code rates (rate 7/8) than the Turbo
Code, Beside that the iterations in LDPC can be done in
parallel but for turbo code is in serial. Here, the Turbo code
is better in performance for moderate code rate than the
LDPC.

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

 ሺܰ݀v ൅ 2ሻሺܰ െ ݇ሻ ݏ݊݋݅ݐ݅݀݀ܣ

 ሺ2݀c െ 3ሻሺܰ െ ݇ሻ ݏ݊݋ݏ݅ݎܽ݌݉݋ܥ

 ሺܰ כ ݀vሻ ݏ݊݋݅ݐ݅݀݀ܣ

 ሺܰ െ ݇ሻሺ2݀c ൅ 1ሻ ൅ 2ܰ݀v ݏ݊݋݅ݐܽݎ݁݌݋

ܭ ൬

1
ܴ െ 1൰ ൅ ሺ4݀c ൅ 1ሻ ሺ10ሻ

101Copyright (c) The Government of Egypt, 2012. Used by permission to IARIA. ISBN: 978-1-61208-194-6

SPACOMM 2012 : The Fourth International Conference on Advances in Satellite and Space Communications

Figure 6. Performance comparison between Turbo code (Ο) and LDPC (□)

for rate 7/8

Figure 7. Performance comparison between Turbo code(Ο) and LDPC (□)

for rate 1/2 and coded frame length 4000 bit

So, it is concluded that from the point of view of
performance, the LDPC is recommended for higher code
rates for communication systems applications, while in the
low code rates it is better to use the turbo code. In the next
section, a complexity comparison for turbo code and LDPC
for different code rates will take place.

VIII. LDPC AND TC COMPLEXITY COMPARISON
For the LDPC codes, the decoding converges within 15 to

20 iterations, while it is well-known that ten turbo-decoding
iterations are sufficient for convergence. Therefore, for a fair
comparison between LDPC and turbo-decoding algorithms,
the number of iterations is chosen to be 20 and 10,
respectively. also we have to notice that the LDPC is error
detection and correction code, so, when we reach error-free
frame before we reach the 20 iteration the decoding will
stops, while in Turbo code the decoding has to continue to
the total number of iteration even if no more improvement.
The operations count of LDPC and turbo decoding
algorithms are listed in Table III. The calculation of
complexity for Turbo code and LDPC was calculated for

different code rates. the complexity of the turbo code is
constant and does not depend on the code rate because
different rates comes from the puncturing of the mother code
rate, while in the LDPC the complexity is based on the code
rate, the higher the code rate the lower the complexity and
vice versa.

The calculation is made for rates 1/3, 1/2, and 3/4. The
summary of calculations is in Table III.

TABLE III. COMPLEXITY COMPARISON FOR LDPC AND TURBO CODE
FOR DIFFERENT CODE RATES

 LDPC TC Complexity
reduction

Ratio
Number of
Iterations

20 10

Rate 1/3 50*20*K=1000 K 725*10*K=
7250K

13%

Rate 1/2 25*20*K=500K 7250K 7%
Rate 3/4 16.3*20*K= 326K 7250K 5%

 Complexity decreased
for higher rates

Complexity
is constant

IX. COMPLEXITY VS. PERFORMANCE
The simulation results for Turbo code and LDPC are

shown in Fig. 6 and 7 for different code rates (1/2 and 7/8),
and the complexity calculation is tabulated in Table-III
which has the complexities at different code rate. So, it is
concluded that for higher code rates, LDPC has better
performance and lower complexity, while for rate 1/2 the
turbo code has better performance so it should be used even
it is more complex because the performance is an important
issue. The brief of recommendations for applications for
different code rate is summarized in Table IV.

TABLE IV. RECOMMENDED DECODING ALGORITHM AT DIFFERENT
CODE RATES FOR LDPC AND TURBO CODE

Code Rate Complexity/
Iteration

Recommended
Coding Technique

Low Code Rates 1/2, 1/3, 1/4, 1/6 Turbo code
High Code Rates 2/3, 3/4, 7/8 LDPC

X. CONCLUSION AND FUTURE WORK
In this paper, a complexity needed to decode a Turbo code

and LDPC were calculated; besides, the simulation of their
performance was made. A comparison between two codes
should compare the complexity and performance before
applied in any communication system for specific
application. The performance comparison of turbo code and
LDPC were computed for rates 1/2 and 7/8. And the
complexity for the two codes were calculated for code rates
(1/2, 1/3, 3/4). The performance and complexity were based
on ten decoding iterations for turbo code, while it is 20
iterations for LDPC.

It is concluded that the turbo code has better performance
in moderate code rate (Rate 1/2) while the LDPC is
recommended for higher code rates (3/4,7/8) because it has
better performance beside less complexity compared with

102Copyright (c) The Government of Egypt, 2012. Used by permission to IARIA. ISBN: 978-1-61208-194-6

SPACOMM 2012 : The Fourth International Conference on Advances in Satellite and Space Communications

turbo code. For turbo code, all code rates require the same
decoding complexity since all code rates are obtained from
the mother code via puncturing. In contrast, the LDPC
decoding complexity decreases as the code rate increases.

REFERENCES
[1] C. Berrou and A. Glavieux, “Near Optimum Error Correcting Coding

and Decoding:Turbo Codes”, IEEE Transactions on Communications,
vol. 44, pp. 1261-1271, Oct. 1996.

[2] R. G. Gallager, “Low Density Parity Check Codes,” Monograph,
M.I.T. Press, 1963.

[3] D. MacKay and R. Neal, “Near Shannon Limit Performance of Low
Density Parity Check Codes,” Electronics Letters, July 1996

[4] K. Fagervik and S. Larssen, “Performance and Complexity
Comparison of Low Density Parity Check Codes and Turbo Codes,”
Stravanger University Website.

[5] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. on
Information Theory, vol. 20, pp. 284-287, March 1974.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding Turbo-codes,” in IEEE
International Conference on Communications, Geneva, Switzerland,
May 1993, pp. 1064-1070.

[7] S. Lin and D. Castello, “Error Control Coding” 2nd ed. New Jersey:
Pearson Prentice Hall, Chapter 16 and 17, 2004.

[8] T. Kwon, J. Sondeen and J. Draper, “Floating-Point division and
square root implementation using a Taylor-series expansion algorithm
with reduced look-up tables,” in Proceedings of the IEEE Symp.
Circuits and Systems, 2008, pp. 954-957.

[9] Y. Blankenship, Stephen Kuffner “LDPC Decoding for 802.22
Standard” IEEE P802.22, 2007.

[10] CCSDS , “Low Density Parity Check Codes for Use in Near –Earth
and deep space communications” 131.1-O-2, 2007.

[11] Michael Yang, William E. Ryan and Yan Li, “Design of Efficiently
Encodable Moderate-Length High-Rate Irregular LDPC Codes” IEEE
Transaction on Communication, Vol. 52, No. 4, April 2004.

103Copyright (c) The Government of Egypt, 2012. Used by permission to IARIA. ISBN: 978-1-61208-194-6

SPACOMM 2012 : The Fourth International Conference on Advances in Satellite and Space Communications

