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Abstract— Turbo codes play a major role in channel error 
correction schemes used in wireless communications. Turbo 
codes emerged in 1993 and since that time they dominate the 
research in error control coding together with low-density 
parity-check codes. Due to their remarkable performances, 
turbo code and low density parity check code have been 
accepted to a number of standards by many organizations 
which decide to include turbo code and low density parity 
check into their new standards after these codes were proven 
successful in a many of missions. In this paper, the calculation 
and comparison of performance versus complexity for those 
two techniques of channel coding was done. For a fair 
comparison, the performance and complexity should be 
compared together. The complexity was calculated by counting 
the number of clock cycles need to complete the decoding 
algorithm.  This comparison is used as a guiding lines of using 
either turbo code or the low density parity check in specific 
communication applications, The performance comparison of 
turbo code and low density parity check were computed for 
rates 1/2 and 7/8. The complexity for the two codes were 
calculated for different code rates like (1/2, 1/3, 3/4, 7/8), the 
evaluation study concludes that the turbo code was 
recommended for moderate rate, while the LDPC is 
recommended for higher code rates. 
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I.  INTRODUCTION 
Turbo code is a powerful error correcting code used in 

wireless communication. Turbo code emerged in 1993 [1] 
and since this year, it becomes a popular area of 
communications research. Turbo code has a performance 
near to Shanon limit, and it is stable for long time and now 
being accepted as standard forward error correction 
technique by many organizations such as CCSDS, but turbo 
code still facing high complexity problem, on the other hand 
Low-density parity-check (LDPC) codes are forward error-
correction codes, first proposed in the 1962 by Gallager in 
his dissertation at MIT [2], at that time it was unpractical to 
be implemented, but then largely neglected for over 35 years. 
After that, it is rediscovered again by MacKay and Neal in 
their work [3]. Because LDPC shares the main concept of 
message passing algorithm as the turbo code and its 
performance is also very close to Shannon limit. However, in 
the last few years, the advances in low-density parity-check 

codes have prove that the LDPC beat turbo code in terms of 
error floor and performance for the higher code rates. In this 
paper, we analyze the decoding algorithm for turbo code and 
calculating its complexity under different code rates, and 
then the same scenario was applied for the LDPC to 
calculate its complexity and performance for different code 
rates. 

A similar work was made at Stravanger University [4], 
but the comparison was made for rate 1/2 only, in this paper 
a complete comparison of turbo code and LDPC was made 
for different code rates. Also, because the complexity of 
LDPC is a function of code rate, the complexity was studded 
for different code rates. It is concluded from this research 
work that the Turbo code is recommended for moderate code 
rate because of its better performance, while the LDPC is 
recommended for higher code rates because of its better 
performance besides lower complexity compared with turbo 
code.  

This paper is organized as follows; the turbo code 
decoding algorithm is reviewed in Section II and Section III. 
The complexity calculations are made in Section IV. The 
LDPC code decoding algorithm is reviewed in Section V. its 
complexity calculation is made in Section VI. The 
comparison of performance and complexity was elaborated 
in Section VII and Section VIII. Tradeoff between 
performance and complexity was compared in Section IX; 
finally, conductive conclusions are done in Section X. 

II. TURBO CODE SCHEME 
Conventional turbo code consists of two (or more) 

convolutional codes connected in serial or in parallel via 
some pseudo-random interleavers.  

 

 
 

Figure 1.  Basic structure of the turbo encoder 
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Figure 1 presents a block diagram of an encoder of a 
systematic turbo code with an information block length K. 
The turbo code is composed of two Recursive Systematic 
Convolutional codes (RSC) [1]. 

The information bits are fed to the first RSC and after 
being interleaved are passed through the second constituent 
encoder.  The resulting codeword consists of the systematic 
bits, k (i) , and two parity check streams, r1(i),  r2(i),  i = 1, 2, 
. . . , K . The coding rate of this code is 1/3. Higher code 
rates can be achieved by puncturing some of the parity check 
bits, using more constituent codes result in codes with rates 
lower than 1/3 

III. TURBO CODE DECODING ALGORITHM 
A turbo decoder consists of two concatenated decoders, 

each using the received systematic stream and the 
corresponding received parity stream. Each decoder provides 
a soft output of the transmitted bits by using the received 
data and the information provided by the other decoder. The 
soft output is the a posteriori probability (APP) and consists 
of three components: the intrinsic information which is a 
function of the received signal for the corresponding bit 
position, the a priori (AP) probability of that bit position and 
the extrinsic information which comes from the received 
signal for other bit positions and their a priori probabilities, 
In each iteration the extrinsic information produced by the 
other constituent decoder is used to evaluate the a priori 
probabilities in that iteration. Repeating this procedure 
improves the estimation of the bit probability values and 
hence, reduces the probability of error. One efficient 
algorithm for soft output decoding, based on the trellis 
diagram of the code known as the BCJR algorithm, is 
presented in [5]. The suboptimal decoder introduced in [6] 
Finds the extrinsic information on the transmitted bits by one 
of the constituent decoders and passes it to the other decoder 
through the interleaver. The decoder can decode the received 
vector only if the iterative decoding converges. The output of 
the “symbol-by-symbol” Maximum a posteriori Probability 
(MAP) decoder is defined as the a posteriori log-likelihood 
ratio, that is, the logarithm of the ratio of the probabilities of 
a given bit being “+1”or“-1’ given the observation y, as in 
equation (1). The Max-log MAP algorithm for decoding the 
turbo code was used as it presented in [7] and it is based on 
the trellis of a convolutional encoder in Figure 3.  

 

 Figure 2.  Basic structure of an iterative turbo decoder 
 

 
Figure 3.  Trellis structure of systematic convolutional codes  

 
The log-likelihood ratio of (uk) is defined by [7] 
 

 
 

 
 
 

where uk is the information bit at time k, and α*k: is the 
Probability of path in the trellis going from state S’ (k-1) and 
terminating at state S (k) 

 

 
and β*k is the Probability of path in the trellis going from 

state S(k-1) and terminating at state S’(k) 
 

 
and γ*k is the branching Probability of path in the trellis 

going from state S (k-1) and terminating at state S’(k) 
 

 

IV. COMPLIXITY OF TURBO DECODING 
In this section, we have to have a specific formula for 

the complexity needed for Turbo code implementation by 
counting the number of processor cycles for mathematical 
operations needed for decoding, which related to the time 
needed to decode a frame of information encoded by Turbo 
code. From Equations (3), (4), and (5) for the Max-Log-
MAP algorithm, the α*, β*, and γ* have to be calculated. The 
calculation of α*

k (u) requires two multiplications and one 
addition for each state. Assuming the encoder with memory 
length M, so we have to multiply by the number of states 2M 
so, (2*2M) multiplications is needed and 2M addition. The 
same number of calculation is needed for β*

k (u). For the γ*
k 

we need (3* 2M) multiplications and (2 *2M) additions plus 
(1* 2M) divisions. 
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Let us take turbo code with M = 4 so, 2M = 16. The 
decoder has two operations per iteration, so, all number 
should be multiplied by two. 
The total number of additions is (4 * 2 * 16) = 128; 
Total number of multiplications is (7 * 2 * 16) = 224; 
Total number of divisions for branch metric is (2*16) = 32; 

Also, here we assume that max* (a,b) ≈ max (a,b) 
because the correction factor is small and will reduce the 
complexity, but  its effect on the performance is less than 0.2 
dB [7].  

So, Max* operation need two cycle per state per iteration. 
The total operations per bit is (2*2 *2M) = 64; 
For the logarithm operation, a look up table was used 

which need one operation per state per iteration. 
The total operations per bit is (1*2 *2M) = 32 
Finally, the divisions needed to calculate final L (uk) is 

per bit. 
Here, it is assumed that 3 clock cycles needed for an 

addition, 5 clock cycles needed for multiplication operation, 
and 17 clock cycles for a division operation as in the case for 
a typical Pentium processor [8]. The ratio of calculation 
complexity is assumed to be as follows: Addition: 
multiplication: division= 1:1.5:5. 
 

 

Table I summarizes the processor cycles for decoding of 
Turbo code for different code rates, the number of iterations 
per frame length “K” is 10; as we mention before, the 
complexity of turbo code is the same as the mother code rate, 
e.g., rates 1/2 and 3/4 can be obtained from the mother code 
1/3, so all of them has the same complexity as the mother 
code 1/3.  

TABLE I.   COMPLEXITY OF TURBO CODE FOR DIFFERENT CODE 
RATES 

Code Rate Processor cycles/ 
iteration/Frame length 

For 10 iterations 
/Frame length 

Rate 1/3 425/ Frame length 7250
Rate 1/2 725/ Frame length 7250 
Rate 3/4 725/ Frame length 7250 
 

V. LDPC DECODING PRINCIPLES 
Decoding of LDPC used message passing algorithms, 

these algorithms interpreted by bipartite graph representation 
of the LDPC code [7], where variable nodes and check nodes 
are connected through edges.  The variable nodes and check 
nodes exchange the messages along their edges in an 
iterative fashion, thereby cooperating with each other in the 
decoding process. 

The operations in an LDPC decoder comprises of two 
steps; first, is how the messages are generated at the check 
nodes and variable nodes (called “node processing”); second, 
which determine how the generated messages are passed 
between each other (called “scheduling”). These two 
operations determine the decoding complexity of LDPC. 

A. Node processing 
Node processing consists of variable node update (VNU) 

and check node update (CNU). In the VNU, incoming 
messages from the check nodes are processed at each VN, 
and the outgoing messages are generated and passed to the 
check nodes. Similarly, in the CNU, incoming messages 
from the variable nodes are processed at each CN, and the 
outgoing messages are generated and fed back to the variable 
nodes. Thus, the messages are passed between the variable 
nodes and check nodes iteratively.  

Let C(n) denote the set of check nodes connected to 
variable node n, and  V(m) denote the set of variable nodes 
connected to check node m, where 0 ≤ n ≤ N-1, and 
0 ≤ m ≤ M-1. C(n)\m  refers to exclusion of m from set C(n), 
and similarly V(m)\n  refers to exclusion of n from set V(m).  

In the VNU, variable node “n” has messages Rm′n coming 
in from all check nodes m′ connected to it and its channel 
Lch(n). Hence, the outgoing message (“extrinsic”) Qnm on an 
edge n→m is the sum of all messages except Rmn. at iteration 
i, each variable node “n” calculates messages Qnm(i), which 
is sent from variable node “n” to each check node m∈C(n). 
Message Qnm(i) is the LLR of variable node “n” based on all 
check nodes in C(n)\m, and is calculated as defined by [7] 

 

 
where Lch(n) is the channel LLR of variable node “n”. 

The computation is shown in Fig. 4-a, assuming that the 
variable node has degree = 3. The a posteriori LLR for a 
variable node is obtained by adding all the incoming 
messages at the variable node. 

where “m” can be any check node in C(n). The above 
expression indicates that the variable-to-check message 
Qnm(i) in a current iteration can be directly calculated from 
the previous iteration and the check-to-variable message 
Rmn(i-1) on the same edge from the previous iteration.  

 

 
 

 

 
                    (a)                                             (b) 
 
Figure 4.  Operations in a belief propagation decoder:  (a) Variable Node 
Update for a degree-3 variable node and (b) Check Node Update for a 
degree-4 check node. Only message update on one edge (marked with solid 
arrow) is illustrated but the similar operations are used to update messages 
on all the edges. 
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In the CNU, check node “m” has messages Qn’m coming 
in from all variable nodes “n′” connected to it. Each check 
node “m” calculates messages Rmn(i), which is sent from 
check node m to each variable node “n” ∈ V(m). Message 
Rmn(i) is the LLR of variable node “n” based on all the 
variable nodes in V(m)\n.  

B.  Scheduling 
Scheduling involves communicating messages from one 

node to another as dictated by the edge connections in the 
bipartite graph. There are two typical schedules of belief 
propagation: flooding and layered schedule [9]. In flooding, 
the entire bipartite graph is flooded with messages that are 
passed back and forth along all the edges, as illustrated in 
Fig. 5-a. However, this ‘flooding’ increases the complexity 
especially for longer block-sizes when the number of edges 
becomes large.  

 

 
(a) 

 
(b) 

Figure 5.  Message passing in the a) flooding schedule of the belief 
propagation algorithm, the shaded boxes indicate the CNU and VNU and 
block arrows indicate direction of message passing. Message passing 
occurs on a per-iteration basis b) layered BP, Shaded boxes indicate CNU 
and VNU and block arrows indicate direction of message passing. In the 
example, one CNU is done per sub-iteration. The edges that are updated in 
each sub-iteration are shown with thick solid lines. 

 
In the layered algorithm, only a small fraction of the 

variable nodes and check nodes are updated per sub-
iteration, as illustrated in Fig. 5-b. The messages generated in 
a sub-iteration of a current iteration are immediately used in 
subsequent sub-iterations within the same iteration. This 
leads to a faster flow of information and helps improve 
decoding speeds for the structured LDPC codes. 
 

VI. LDPC COMPLEXITY CALCULATION 
While actual decoding complexity depends on many 

factors such as hardware architecture, the decoding 
complexity as estimated in [9], based on operations count, 
the LDPC decoder computational complexity for Layered BP 
decoding per-iteration to be as follows 

 
For the Check node update 

 

 
 

For the Variable node update 

 
So, the Total complexity/ iteration 

  

 
Total complexity 

 
where R=K/N is the code rate, N is the decoded frame 

length, dc is the average row weight and dv is the average 
column weight,  

Table II uses the form of equation (10) which manifests 
the complexity as a function of code rates for different code 
rates per frame length and 20 iterations.  

TABLE II.   COMPLEXITY OF LDPC CODES FOR DIFFERENT CODE 
RATES FOR FRAME LENGTH “K” 

 
 
From Table II, it is concluded that the complexity is 
decreased as the code rate increased.  

VII. LDPC AND TC PERFORMANCE COMPARISON 
 

For the performance of these codes, a simulation is made 
for 7/8 turbo code and compared with the performance of 
QC-LDPC 7/8 (8176, 7156) in [10] and the result of 
comparison is depicted in Fig. 6. The results show that the 
performance of LDPC is better than the turbo code for 
higher rates. Another simulation is made for turbo code rate 
1/2 and compared with the performance of LDPC rate 1/2 in 
[11] and the result of comparison is depicted in Fig. 7. The 
results show that the performance of turbo code is better 
than the LDPC for moderate code rates. LDPC is better in 
performance for high code rates (rate 7/8) than the Turbo 
Code, Beside that the iterations in LDPC can be done in 
parallel but for turbo code is in serial. Here, the Turbo code 
is better in performance for moderate code rate than the 
LDPC.  
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Figure 6.  Performance comparison between Turbo code (Ο) and LDPC (□) 

for rate 7/8 

 
Figure 7.  Performance comparison between Turbo code(Ο) and LDPC (□) 

for rate 1/2 and coded frame length 4000 bit 
 

So, it is concluded that from the point of view of 
performance, the LDPC is recommended for higher code 
rates for communication systems applications, while in the 
low code rates it is better to use the turbo code. In the next 
section, a complexity comparison for turbo code and LDPC 
for different code rates will take place. 

VIII. LDPC AND TC COMPLEXITY COMPARISON 
For the LDPC codes, the decoding converges within 15 to 

20 iterations, while it is well-known that ten turbo-decoding 
iterations are sufficient for convergence. Therefore, for a fair 
comparison between LDPC and turbo-decoding algorithms, 
the number of iterations is chosen to be 20 and 10, 
respectively. also we have to notice that the LDPC is error 
detection and correction code, so, when we reach error-free 
frame before we reach the 20 iteration the decoding will 
stops, while in Turbo code the decoding has to continue to 
the total number of iteration even if no more improvement. 
The operations count of LDPC and turbo decoding 
algorithms are listed in Table III. The calculation of 
complexity for Turbo code and LDPC was calculated for 

different code rates. the complexity of the turbo code is 
constant and does not depend on the code rate because 
different rates comes from the puncturing of the mother code 
rate, while in the LDPC the complexity is based on the code 
rate, the higher the code rate the lower the complexity and 
vice versa.  

The calculation is made for rates 1/3, 1/2, and 3/4. The 
summary of calculations is in Table III. 

TABLE III.  COMPLEXITY COMPARISON FOR LDPC AND TURBO CODE 
FOR DIFFERENT CODE RATES 

 LDPC TC Complexity 
reduction 

Ratio 
Number of 
Iterations 

20 10  

Rate 1/3 50*20*K=1000 K 725*10*K= 
7250K 

13% 

Rate 1/2 25*20*K=500K 7250K 7% 
Rate 3/4 16.3*20*K= 326K 7250K 5% 

 Complexity decreased 
for higher rates 

Complexity 
is constant 

 

IX. COMPLEXITY VS. PERFORMANCE 
The simulation results for Turbo code and LDPC are 

shown in Fig. 6 and 7 for different code rates (1/2 and 7/8), 
and the complexity calculation is tabulated in Table-III 
which has the complexities at different code rate. So, it is 
concluded that for higher code rates, LDPC has better 
performance and lower complexity, while for rate 1/2 the 
turbo code has better performance so it should be used even 
it is more complex because the performance is an important 
issue. The brief of recommendations for applications for 
different code rate is summarized in Table IV. 

TABLE IV.  RECOMMENDED DECODING ALGORITHM AT DIFFERENT 
CODE RATES FOR     LDPC AND TURBO CODE 

Code Rate Complexity/ 
Iteration 

Recommended 
Coding Technique  

Low Code Rates 1/2, 1/3, 1/4, 1/6 Turbo code 
High Code Rates 2/3, 3/4, 7/8 LDPC 

 

X. CONCLUSION AND FUTURE WORK 
In this paper, a complexity needed to decode a Turbo code 

and LDPC were calculated; besides, the simulation of their 
performance was made. A comparison between two codes 
should compare the complexity and performance before 
applied in any communication system for specific 
application. The performance comparison of turbo code and 
LDPC were computed for rates 1/2 and 7/8. And the 
complexity for the two codes were calculated for code rates 
(1/2, 1/3, 3/4). The performance and complexity were based 
on ten decoding iterations for turbo code, while it is 20 
iterations for LDPC. 

It is concluded that the turbo code has better performance 
in moderate code rate (Rate 1/2) while the LDPC is 
recommended for higher code rates (3/4,7/8) because it has 
better performance beside less complexity compared with 
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turbo code. For turbo code, all code rates require the same 
decoding complexity since all code rates are obtained from 
the mother code via puncturing. In contrast, the LDPC 
decoding complexity decreases as the code rate increases. 
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