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Abstract — This paper presents the development of a fuzzy
logic function trained by an artificial neural network to
classify the system noise temperature (SNT) of ampas in
the NASA Deep Space Network (DSN). The SNT data vee
classified into normal, marginal, and abnormal clases. The
irreqgular SNT pattern was further correlated with link
margin and weather data. A reasonably good corretion is
detected among high SNT, low link margin and the &ct of
bad weather; however we also saw some unexpectednno
correlations which merit further study in the futur e.
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I. INTRODUCTION

The communication between NASA space mission
operations teams and their respective spacecrafisiter
space is accomplished via the Deep Space Network
(DSN). To ensure proper operations in returningrhatry
data to mission operations, sending commands to
spacecraft and providing radiometric data for natitm
purposes, the DSN equipment generates a largd self-o
monitor data. These include key metrics of system
performance such as antenna pointing, operatinterays
noise temperature, receiver and decoder lock itidits,
received telemetry symbol signal-to-noise ratitertetry
frame quality, etc. These data statistics are rgdee
periodically, in the order of a few seconds, thitougf the
spacecraft tracking passes. With roughly 1500 track
passes a month, there is a lot of monitored datheto
evaluated.

The DSN recently developed the capability to
automatically quantify key metrics through a set of
automated performance dashboards, as reported].in [1
These dashboards enable a quick detection of pastes
anomalous performance — compared to those that are
nominal. One of the tools used to classify théguerance
of the passes is the fuzzy logic function describethis
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paper. This function is trained by an artificiadunal
network to classify the system noise temperatuRT{S

The SNT reflects the amount of noise that existed i
the communications system. Given that the signedes
from a far-away spacecraft at planetary distanbe, t
received power is very weak. The ability to dettuwt
signal is affected by the system noise temperatile;
lower the noise, the better chance the system ettidthe
signal. Thus, there is a strong interest in moimtprand
classifying the SNT.

The next section describes key features that @@ tas
distinguish various classes of SNT profiles. Stre of
the neural network model employed in the data
classification and the recognition training proces®
presented in Section Ill. Section IV provides tesults of
the SNT classification, in terms of the impact he link
conditions (e.g., good, bad, marginal). Furtheredation
between SNT categories and the link margin of the
communications channel with spacecraft is shown in
Section V. Section VI further extends the coriefat
between the SNT and weather — one of the key factor
impacting the link margin. The final section summiznes
and discusses future direction of this effort.

IIl. SYSTEM NOISE TEMPERATURE FEATURES

Figure 1 shows a typical sample of SNT measurement
for a given pass, in this case with Voyager spafton
day-of-year (DOY) 320/2007. Within the figure aretp
of predicted SNT (labeled as 810-5, per referenica o
JPL-internal document number that reflects suctodet),
observed SNT, and antenna pointing elevation.
antenna elevation is one of the parameters thattaffie
SNT. At low elevation, there are more atmosphlayers
in the signal path; resulting in a higher noiseferature.
The effect of elevation is built into the modelin§ the
predicted SNT. In this particular pass, the mess@NTs
(Blue line) closely follow the predicted curve (@réne,
810-5).

The
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SNT for SCID 32 DSS:45 DOY:320 Pass: 1512 DCO3 (System Noise Temperature)
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Figure 1: SNT observed and predicted measurerdé@y, 320/2007.

However, sometimes the measured SNT curve would

deviate from the predicted performance slightlysiaswn
in Figure 2(a). At times, there could be very datim
deviation, as shown in Figures 2(b) and (c). Sofrtbese
are known, such as the variation in Figure 2(b$ likely
caused by weather conditions. Other variations sisctine
periodic structure in Figure 2(c) are not fully enstood.
Our goal is to use the pattern recognition tooktdbed in
this paper to find those irregular patterns anch tbeeidy
the causes in details.

SNT for SCID 53 DSS:43 DOY:295 Pass: 295 DCO2 (System Noise Temperature)
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Figure 2: Irregular SNT measurement data from varjgasses.

A simple threshold method may not be able to
sufficiently characterize the SNT data since treeneld be
sudden perturbations as shown in the right sidEigdire
2(b). The SNT measurement follows the predictedeh
nicely between 15:00-20:00 GMT, but there are ti@ b
peaks around 21:00 and 22:00 GMT, likely causetdry
weather. A simple threshold or mean/standardadievi
method could have missed this event. A more igeeti
signal processing method, such as neural netwaaly, e
able to detect the abnormal patterns of SNT.

In order to capture various irregular patterns TS
data, we have designed a set of features of thecBINES:
mean values, standard deviations, peak numberk;tpea
valley variations, and slope of the peaks. Thd $ldta
for various passes are processed to extract the csiNE
feature vectors; each pass is represented by ardeat
vector. Each feature vector consists of six elgme
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1) Average SNT Difference (from model):

D (SNT,, - SNT,)

ASNT,,, = 1)
n

where SNT,, is the measured SNT sequence of
pass m with length nSNT, is the corresponding
predicted values for that m pass.

2) Standard Deviation:

n )
n
3) Estimated 1-sigma higher bound of variation

3 ((SNT, —SNT,) — ASNT,.
STD =

ASNT, = ASNT,e + STD; (3)

4) Estimated 1-sigma lower bound of variation:
ASNT, = ASNT,e - STD; 4)

5) SNT Peak Number:
K = Number of peak and valley pairs; (5)
where Peak-to-Valley DifferenceSTD;

6) SNT Peak Slope:
Sope = Max(Peak, —Valley,); (6)
K

We need to define the criteria for the SNT
irregularities. Since there is no known set rule,choose
the following definition based on observation and
experience.

1) Averaged SNT is more than 10 K above the
performance model, i.e., Averaged SNT Difference,

ASNT,,, > 10K;

2) Averaged SNT is more than 10 K below the
performance model, i.e., Averaged SNT Difference,

ANT,,, <-10K;

3) Peak to valley variation > 20 K;
4) Slope > 5 K/minute or Slope < -5K/minute.

Since the criteria are not simple Boolean operation
and that there may be a need for adding non-thigsho
criteria in later analysis, we were concerned ¢hatmple
threshold approach may not be suitable for claissjfthe
SNT patterns. Therefore we decided to design ayruz
logic to classify the SNT patterns. A neural reatwis
then used to train the fuzzy logic.
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IIl. NEURAL NETWORK TRAINING

An artificial neural network is an adaptive
computational model inspired by the study of bidday
neural networks [2]. It mimics human biological relu
functions that learn by example. The neural nedus
this system is a feed-forward back-propagation maae
illustrated in Figure 3. It is composed of sepafayers of
connected units called neurons. Every neuron oflayer
is connected to every neuron of the next layer eamch
connection has an assigned weight vaiudhe output of
a neurory in the +1)th layer is calculated by a weighted
sum of the inputs, in thekth layerinto that neuron [3]:

kel N kok Lk (7)
Yi =f(Z:Wini +bj)
i1

wheref is a Sigmoid transfer function which maps the
input-output relationship into a range [0, 1].

The feature vector serves as the initial input itte
neurons of the first hidden layer. The output ofiro@s
from one layer then feeds into the neurons of the layer
until the output layer returns a confidence valeéneen
[0, 1]. This architecture is known as feed-forwaeliral
net.

Input Feature vectors

Output Classification

Figure 3: Multi-layer feed-forward neural netwonlchitecture.

The neural network classifies an input data to atput
class, giving a confidence value between the prititab
from 0 — 100%. Thus a Fuzzy logic is formed betwe
the input data and the output classes [4].

Figure 4 illustrates the neural network traininggass.
A person with domain knowledge first picks a set of
training SNT data. The expert must assign the Shia
(training inputs) into correct classes (target atgp The
feature vector is extracted from a set of SNT data,
presented to the input neurons of the neural nétvwbe
neural network feed-forwards the signal and makes a
attempt to classify the input to an output clabs; dutput
result is compared to the target output; the ougprdr is
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used to back-propagate through the network to thee
weights. The learning process is repeated mangstim
until the output error of the neural network issléban a
set value [5-7].

SNT Expert
Y orN
Feature
Neural |—» Compare
Network
A N
Training

Figure 4: lllustration of neural network trainingppess.

We used a set of SNT data from DOY 001-065 in 2007
as the training and testing data. There wereah ¢6t1950
SNT data in the test set. Among them, there w8291
(68.2%) valid SNT data to classify. The SNT data
classified into six categories based on observatiothe
patterns, as shown in Table I. Category 1 repredange
SNT deviation with large peaks and slopes; Categdrsis
large but smooth positive deviations; Category 8 ¢$raall
deviations and small perturbations; Category dbfudl the
predicted SNT consistently; Category 5 has smatl an
smooth deviations; Category 6 has large and smooth
negative deviations.

TABLE I. DEFINITION OF SNT CATEGORIES
SNT Features
Category

1 ASNT,, > 10K or ASNT,, <-10K or Slope >
5K/min or Peak No > 5

2 ASNT,,, > 10K, Slope < 5K/min, Peak No <5

3 ASNT, < +/-10K, STD <= 3K, Slope < 5K/min
Peak No <5

4 ASNT,, <= +/-5K, STD <= 3K, Slope < 5K/min,
Peak No < 0

5 ASNT,, <= +/-5K, STD <= 3KASNT,andASNT,
< +/-5K, Slope < 5K/min, Peak No < 2

6 ASNT,, < -10K, STD <= 3K, , Slope < 5K/min,
Peak No <5

To form the training data, we randomly picked 39
samples for Category 1; 33 samples for Categorg12;
samples for Category 3; 69 samples for Categorg4;
samples for Category 5; and 26 samples for Cate§ory
The training samples are hand picked to represaraties
of feature differences in all six categories. \V@astructed
a three-layer feed-forward neural network, eacheday
consists of six neurons: six input neurons forgixeinput
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features; six output neurons for the six categpaes six
hidden layer neurons are chosen to accommodate non-
linear boundaries. The training data is fed i@ neural

net in the Matlab program. The neural net conwérge
rather quickly; it took less than two minutes on a
Windows-based computer with Intel dual-core runnétig
2GHz. After the training, the tool is ready foreus
classify the SNT data.

IV. CLASSIFICATION OF SNT DATA

Table Il shows the initial classification of the BN
data. The features were extracted based on ejs.The
six feature elements were fed into the neural né¢wo
When one or more of the six output neurons exceeded
preset threshold (nominally, 50%), the neural netila
classify the input SNT as belonging to the output
categories. An input could be classified in mdvantone
category, as long as all possible likelihoods vaetected.
This is reflected in Table Il where there is anrtag in
the percentage of each category, relative to thmitin
samples.

It is often difficult to have a clear cut set ofeth
boundaries between categories; for example, itis ho
define a priori of the number of peaks or the psiaipe
value in each category. A Boolean classificatippraach
would require such parameters be defined aheauhef t
With neural net approach, it is not necessary tsaoWe
can pick the training samples that we believe are
representative to each category, use them tottraifuzzy
logic, and let the neural net feedback do the detec

TABLE I1. INITIAL CLASSIFICATION OFSNTDATA
SNT Category No. of SNT Data Percentage

1 170 12.9%

2 1158 87.1%

3 1030 77.5%

4 1017 76.5%

5 1004 75.5%

6 851 64.0%

In Table Ill, we further reduce the classes intre¢h
major classes: “Good”, “Marginal” and “Bad”. Theunal
network is constructed as six inputs, six hiddew toree
output neurons. In this case, for each input dagapnly
pick the highest output neuron that is greater %@ as
the category. For the dates between DOY 1-65/20@Y7,
neural network classified 67.7% of data as “god®.9%
“Marginal”’, and 12.3% “Bad” data. This is a quative
classification. Not all “Bad” SNT data result ieverely
impacted link performance. Further investigation i
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warranted to further study the behavior of the Siditern
related to the DSN data quality.

The neural net/fuzzy logic provides an effectivelto
for the SNT quality assessment. Figure 5 shows the
performance of various antennas (designated as DSS)
based on the SNT classification. Good SNT vaniemf
an average of 43% (DSS-63) to 96% (DSS-14).

TABLE llI. USING Fuzzy LOGIC TO CLASSIFY SNTDATA INTO

THREECATEGORIES

CategonyClassification | Feature Extraction No. dfPercentag

SNT Datsg

4%

1 |Good: 853 67.7%
SNT matches
performance

model

ASNT,, <+-5K,

ASNT, andASNT, < +/-
5K, Slope <= 5K/min,
Peak No <=2

251 19.9%

2 Marginal:
SNT has mino
deviation from
performance
model

ASNT,, <= +- 10K,

ASNT,andASNT; <=+/
10, Slope <= 5K/min,
Peak No <=5

3 Bad:

SNT has majo
deviation from
performance
model

155 12.3%

ASNT,,, > +/-10,
ASNTLandASNT, > +/-
10, Slope > 5K/min,
Peak No > 5

SNT Feature Classification vs. DSS
DSN Wide Average Good SNT= 68%, Maringal = 20%, Bad = 12%
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Figure 5: Classification of SNT data for variousND&ntennas (DSS),
DOY 1 - 65, 2007.

V. CORRELATION BETWEEN SNT AND LINK
MARGIN

The Link Margin (LM) is one of the major indicators
of the data communication quality. It is defined the
difference between the received symbol SNR (si¢gmal-
noise ratio) and the decoder threshold required for
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successfully decoded data. A positive link margmplies

a good communications channel condition; the higher
margin, the less likely the link encounters dataugation.

A negative margin, on the other hand, indicatesliiood
with data demodulation and decoding; thus, would
negatively affect the data return to missions. r&hie an
inverse relationship between the SNT and link nmargin
increase in noise temperature would reduce theiveate
signal-to-noise ratio (SNR) and subsequent link gimar
and vice versa. The correlation coefficient isrkd as:

D ASNT,,,()LM()) (8)

CorrCoef =
AT, ()Y LM(j)?

where LM is the average link margin of a given pass
and where both thaSNT, .and LM data are normalized

to be within (-1, 1).

The correlation coefficient shows the relationship
between the SNT and LM:

e |If the ASNT and LM are positively correlated,
then Corr Coef > 0;

e |If the ASNT and LM are negatively correlated,
then Corr Coef < 0;

e |f the SNT and LM are uncorrelated, then Corr
Coef=0;

Figure 6 shows thaSNT-LM correlation at DSS-45
antenna for Voyager (VGR2) passes. From the gnaph,
can see theASNT and LM data from VGR2 data are
strongly negatively correlated, with Corr Coef =64 It
means that if the average SNT difference from the
performance model increases, it will cause the tivdegin
to drop, as expected.

Correlation of SMT and Link Margin, DS545, SCID32(VGR2)
Corr Coef = -0.64, DOY1-227 2007
=in] T T T T T

{2 t] L]

| ———snr D

B S - s
Awve Link Margin

0

K & dB

20 40 50 a0 0 12 140 180
Pass
Figure 6: Correlation between SNT and Link MardiM} of VGR2 on
DSS45 shows strong negative correlation (Corr Go€f.64).
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We further analyze the relationship betweenABNT
and LM in the three spikes (#1, #2, and #3) in Fadi

In Figure 7, we can see an increased slope of e S
between 7:47 and 9:08 GMT caused a drop in the link
margin. In both Figures 8 and 9 for VGR2 passeBOIY
54 and DOY 117, we also see an increased slophbeof t
SNT matched with a drop in link margin.

DOY018/2007, DSS-45, VGR2
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Figure 7: Negative correlation between SNT and Nfdegin seen in
VGR2 data on DOY18/2007 pass at DSS45.
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Figure 8: Negative correlation between SNT and WNfdegin seen in
VGR2 data on DOY 54/2007 pass at DSS45.
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Figure 9: Negative correlation between SNT and INfdegin seen in
VGR2 data on DOY 117/2007 pass at DSS45.

However, not all data have expressed a strong inegat
correlation between SNT and LM. We have obsertatl t
some other spacecraft data are either weakly nejpati
correlated (Corr Coef = -0.2 - -0.3), or uncorreta{Corr
Coef = -0.2 - +0.2). More validation effort is weel to
understand these instances.
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VI. CORRELATION OF SNT CLASSIFICATION
WITH WEATHER

In this section, we extend the correlation to ideldhe
weather effect. Atmospheric effects in the linesafht
between the ground tracking antenna and spacemmaft
reflected in the observed system noise temperature
measurements. Increased precipitation from rain and
increased humidity would cause a higher SNT. gur
10(a) shows the weather data during the pass. The
cumulative precipitation for the day, reflectingtrain, is
seen occurring at 15:00 — 18:00 GMT. The SNT start
depart from a modeled curve and steady increasstios
same period, per Figure 10(b). The received syrsigokl
to noise ratio, in Figure 10(c), drops as muchiba$63 dB
over the same period.

weather Information for SCID 32 DSS:43 DOY:288 Pass: 1847
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Figure 10: Correlation between (a) high SNT peéislow Link
Margin, and (c) bad weather.

There is a general positive correlation among the
changes in SNT, link margin and weather precipitain
this case. Note that there was similar increas¢d &nd
decreased symbol SNR near 8:00 GMT, but surpriging|
there was no indication of rain from the cumulative
precipitation measurements. This is an examplesséiple
inconsistency among the observables. Such obstacle
would be hard to overcome for a detection schenmgyus
Boolean logic. The neural network approach, given
proper training data, may offer a way to overcomesée
difficulties.

VII. CONCLUSIONS AND FUTURE DIRECTION

We have presented the development of a neural
network trained Fuzzy logic for system noise terapee
classification. With the inherent advantage of raku
network training using examples without setting aete
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rules, we have trained the neural network to evaltize
characteristics of measured SNT and to classifimfsact

to the communications link. We have observed, as
expected, some correlations between “Bad” SNT cajeg
and low link margin conditions, which would affettte
mission data return. In the future, adding link giar
information to the training of the SNT classificati
should help to improve the results. Further anslpd
other observed signatures of SNT deviation beydrad t
standard six categories discussed in this paperldwou
further the understanding on the operating behaarat
performance of DSN antennas; thus, pointing the teay
possible improvement. Certainly, the potential aapion

of this pattern recognition algorithm to other areADSN
performance analysis should be considered.
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