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Abstract—This study employs a Susceptible-Exposed-Infected-
Quarantine-Recovered (SEIQR) epidemiological framework to
analyze the spread of toxicity in online environments, integrating
toxicity intensity stratification to capture the complexity of
toxicity propagation. Using datasets from coronavirus disease of
2019 (COVID-19) and social movement discussions, we conduct
sensitivity analysis to evaluate key parameters influencing toxicity
diffusion. The results reveal that splitting toxicity into moderate
and high levels significantly reduces model error rates, enhancing
predictive accuracy across all datasets. Additionally, our findings
indicate that the basic reproduction number (Ry) is highly
sensitive to exposure and quarantine rates, emphasizing the
critical role of enhanced moderation and adaptive quarantining
in suppressing toxicity. Moreover, quarantine interventions and
content demotion strategies are shown to significantly curb
toxicity intensity while maintaining engagement dynamics. These
insights provide a foundation for policy-driven interventions,
enabling social media platforms to implement optimized content
moderation, algorithmic intervention, and network-level strate-
gies to mitigate online toxicity and promote healthier digital
ecosystems.
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I. INTRODUCTION

The rapid evolution of social media platforms has trans-
formed the way users engage in communication, share infor-
mation, and participate in public discourse. These platforms
serve as catalysts for the swift dissemination of news, edu-
cational resources, and discussions on critical societal matters
[1]. By enabling real-time interaction across diverse audiences,
social media fosters global connectivity and awareness. How-
ever, alongside these beneficial aspects, social media has also
unintentionally become a breeding ground for the amplifi-
cation of toxic behaviors. This toxicity manifests in various
forms, including hate speech, misinformation, harassment,
cyberbullying, and online extremism. The unrestricted and
algorithm-driven nature of social platforms often facilitates the
viral spread of harmful content, influencing not only individual
users but also wider societal dynamics [2]-[5].

The proliferation of toxicity on digital platforms has far-
reaching consequences that extend beyond online environ-
ments, affecting psychological well-being, social cohesion,
and even real-world actions. Misinformation-driven narratives
have contributed to public unrest, political polarization, and
radicalization, demonstrating the tangible effects of unchecked
digital toxicity [6]. In extreme cases, the rapid circulation of
false information has led to public health crises, economic
disruptions, and coordinated disinformation campaigns aimed
at manipulating public opinion [7][8]. As a result, addressing

the spread and impact of online toxicity has become an urgent
research priority that demands multidisciplinary approaches
and advanced analytical frameworks [9][10].

Given the increasing reliance on digital communication and
algorithmic content curation, it is imperative to understand
the underlying mechanisms that drive toxicity propagation
across interconnected online communities. The primary chal-
lenge lies in developing intervention strategies that effectively
mitigate toxic interactions while upholding fundamental rights
to freedom of speech and avoiding excessive restrictions on
public discourse. Striking a balance between content regulation
and open dialogue is crucial to maintaining healthy digital
ecosystems that encourage constructive engagement.

The complexity and scale of modern social networks neces-
sitate the adoption of computational modeling and data-driven
methodologies to analyze the spread, persistence, and impact
of online toxicity. By leveraging mathematical modeling,
network analysis, and artificial intelligence, researchers can
identify key transmission patterns, predict emerging toxicity
trends, and develop targeted interventions that curb digital
toxicity while preserving online freedoms. These insights will
help policymakers, social media platforms, and researchers
formulate evidence-based strategies to foster safer and more
inclusive online environments.

This study addresses the following key research questions:

i RQ1: How do variations in toxicity intensity (mod-
erate vs. high vs. no split) influence the impact on
the Susceptible-Exposed-Infected-Quarantine-Recovered
(SEIQR) model’s performance?

ii RQ2: What are the key parameters in the SEIQR model
that have the most significant impact on the basic repro-
duction number R, and how can these parameters be
controlled to mitigate toxicity spread?

The remainder of the paper is organized as follows: Section

2 provides a review of related work on toxicity propagation
in social media and epidemiological modeling techniques.
Section 3 introduces the methodology, detailing the SEIQR
model formulation. Section 4 presents the experimental results
and discusses the impact of different toxicity intensities.
Section 5 presents the results and discussion. Finally, Section 6
concludes the study with recommendations for future research
and policy interventions.

II. RELATED WORK

The rise of online toxicity in social media environments has
prompted extensive research into its dynamics, effects, and
mitigation strategies. With the increasing spread of harmful
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or toxic content, researchers have employed various computa-
tional, epidemiological, and network-based models to under-
stand and control the propagation of toxicity.

A. Machine Learning Approaches to Toxicity Detection

Several studies have leveraged machine learning techniques
to detect, classify, and analyze toxicity in online discussions.
For example, researchers in [11][12] analyzed coronavirus
disease of 2019 (COVID-19) misinformation and toxicity
across social media platforms, revealing notable differences
in the extent and nature of toxic behaviors on Twitter, Reddit,
and Facebook. Their findings emphasized the role of key
user groups (super-spreaders) in amplifying misinformation
and toxic content. Similarly, natural language processing
models such as Bidirectional Encoder Representations from
Transformers (BERT), Generative Pre-trained Transformers
(GPT), and Detoxify have been used to detect toxicity in real
time [13]-[16]. These models have been instrumental in the
identification of various forms of toxic language, including
hate speech, harassment, cyberbullying, and misinformation.
Furthermore, studies in [17] investigated the dynamics of
discussion threads on Reddit, where toxicity spreads hierar-
chically within nested conversations. However, these machine
learning-based approaches largely focus on static classification
of toxicity, often overlooking long-term propagation effects
and feedback loops that sustain toxic environments.

B. Epidemiological Models for Online Toxicity Spread

Epidemiological modeling has proven to be an ef-
fective framework for understanding and predicting the
spread of online toxicity by drawing analogies between
toxic content dissemination and infectious disease trans-
mission. Traditional models such as Susceptible-Infected-
Recovered (SIR), Susceptible-Infected-Susceptible (SIS), and
Susceptible-Exposed-Infected-Recovered (SEIR) have been
adapted to analyze how toxicity spreads within digital commu-
nities [18][19]. The Susceptible-Toxic-Recovered-Susceptible
(STRS) model has further refined this analogy by incorporat-
ing recovery mechanisms where users disengage from toxic
interactions [10][20][21].

Moreover, quarantine-based control strategies have been
widely adopted in epidemiological models to curb infectious
spread, an approach that has direct applications in content
moderation and toxicity mitigation. Authors in [22] studied
the impact of content quarantining on social media toxicity,
demonstrating that isolating toxic users reduces the overall in-
fection rate in a network-based toxicity model. Similarly, [20]
applied epidemiological modeling to study COVID-19 mis-
information spread, highlighting the role of user quarantine,
moderation interventions, and algorithmic content suppression.

[II. METHODOLOGY

This section outlines the data collection framework, ana-
Iytical methods, and computational procedures employed to
validate the proposed fractal-fractional SEIQR model.

A. Data Collection and Analysis

To validate the model, we analyzed two distinct datasets:
(1) discourse related to the COVID-19 pandemic (spanning
February 2020-June 2021) and (2) social movements in Brazil
(spanning November 1, 2022-February 25, 2023) and Peru
(spanning December 7, 2022—January 31, 2023). Public posts
were collected via X’s (formerly Twitter) Academic API,
focusing on keywords and hashtags associated with polarized
discourse.

o COVID-19 Dataset: Included topics such as pandemic
policies, face mask mandates, lockdowns, and 5G con-
spiracy theories. Key hashtags: #fckthecovid/s, #fckyour-
mask/s, #f*cklockdown/s, #5GCoronavirus.

o Brazilian Protests: Centered on post-election unrest
following the October 30, 2022, presidential election,
with hashtags like #semanistia and #SOSbrasil reflecting
demands for military intervention and counter-protests.

o Peruvian Protests: Captured anti-government demon-
strations after President Pedro Castillo’s removal on De-
cember 7, 2022, using hashtags such as #peruprotest/s.

1) Toxicity Classification: Toxicity scores for each post
were computed using Detoxify [23], a pre-trained deep learn-
ing model that evaluates text for harmful content. Detoxify
employs convolutional neural networks and semantic embed-
dings to assign a toxicity probability between 0 (non-toxic)
and 1 (highly toxic). Posts with scores of 0.5 or more were
classified as toxic; those below 0.5 were deemed non-toxic.

To analyze toxicity intensity, the toxic subset was further
stratified:

o Moderate Toxicity: Posts with scores below the dataset-
specific average toxicity score.
« High Toxicity: Posts exceeding the average score.

Table I summarizes the distribution of high/moderate toxic
posts and average scores across datasets.

2) User Activity and Quarantining: To identify superprop-
agators, we isolated the top 10% of users by activity level,
defined as the number of retweets per post [22]. These high-
engagement users were algorithmically transferred to a quar-
antine compartment in the SEIQR model, simulating platform-
level interventions to curb toxicity spread.

B. Model Formulation

Online toxicity is a growing epidemic on digital platforms,
characterized by high transmission rates, latent behavior, and
infectiousness. To analyze this, we used the SEIQR model
(illustrated in Figure 1) as the following system of ordinary
differential equations.
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TABLE I. TOXICITY DATASET STATISTICS.

Dataset Num. of Posts | Avg. Toxicity | Num. of High Toxic | Num. of Moderate Toxic
F*Covid 28,131 0.91 4,684 2,082
F*Mask 2,423 0.91 538 217
F*Lockdown 1,995 0.82 598 493
5G 33,403 0.84 1,096 703
Brazil Anti 405,160 0.70 1,221 2,309
Brazil Pro 44,415 0.75 105 131
Peru 195,290 0.71 511 546
where A\ = %, the entire population, and we define the where

quantity N (t) by
N(t) = S(t) + E(t) + I(t) + Q(t) + R(t).
and initial conditions

S(0)=2S,>0, E0)=Ey>0, I(0)=1I,>0,
Q(0)=Qo >0, R(0)=Ry>0.

Figure 1. Transfer diagram for the toxicity spread on the social network
platform.

IV. MODEL PARAMETERIZATION AND DATA FITTING
ANALYSIS

Ensuring accurate model validation and precise parameter
estimation is fundamental in mathematical modeling when
working with real-world data (illustrated in Table II). The
main challenge lies in determining the most suitable parameter
values from empirical data, making parameter fitting a crucial
step in model formulation. One widely used approach for
parameter estimation in nonlinear models is the Non-Linear
Least Squares Method (NLSM), which minimizes the discrep-
ancy between observed and predicted values.

Consider a nonlinear mathematical model

yi=f(2;,0)+¢, i=1,2,..,n

where

o y; represents the observed data points,

e f(x;,0) is a nonlinear function that depends on the
parameter set O,

o x; are the independent variables, and

e €; is an error term assumed to be normally distributed.

The goal of NLSM is to minimize the sum of squared
residuals (RSS), defined as

o Z(O) is the objective function to be minimized,

o y; are the actual observed values,

e f(x;,0) represents the model’s predicted values, and

o O is the set of unknown model parameters.

To evaluate model fitting, we use the relative error, given
by

E = ||Iest(ti) - Idata(ti)”Q
- [ aata (£2) [l

This relative error, Ei, quantifies the discrepancy between
the estimated number of infected users Ioq(¢;) and the actual
recorded infected users Iy, (t;) at various time points ¢;. The
norm ||-||, represents the Euclidean distance, allowing for an
objective measure of the overall deviation relative to actual
data. A lower error value signifies a better model fit, affirming
its accuracy in depicting the dynamics of toxicity spread.

We compared the error rates of the SEIQR model with and
without dataset splitting (shown in Table III). The consistently
low error rates across datasets when splitting the data into
moderate and high toxicity levels, as compared to using the
model without this division, underscore the effectiveness of the
SEIQR model in capturing the dynamics of toxicity diffusion.
The findings suggest that employing the SEIQR model and
categorizing toxicity into moderate and high levels is reliable
for understanding and predicting the spread of toxicity in
various contexts. Hence, these analyses offer an answer to
RQ1.

To answer RQ2, i.e., sensitivity analysis of the model
parameters, we begin by identifying the parameter values
that are most influential in determining social media toxi-
city spread (illustrated in Table IV). It is vital to discover
numerous aspects that contribute to the toxicity spread and
prevalence to decide the best technique for minimizing the
number of affected users. To determine the dependence of
each parameter on the SEIQR model, a sensitivity analysis
of each parameter was performed using the Latin Hypercube
Sampling-Partial Rank Correlation Coefficient (LHS-PRCC)
method. The PRCC corresponds directly to the degree of
statistical influence. A positive value indicates that an increase
in this parameter leads to a positive influence on the SEIQR
model. In contrast, a negative value indicates that an increase
in this parameter leads to a negative influence on the SEIQR
model. As shown in Figure 2, among the ¢, 3, ¥, u, A,
and 6 parameters, ¢, 3, ¥, A, and 6 have positive effects on
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TABLE II. EXPLANATION OF THE MODEL PARAMETERS.

Parameter Value  Source Explanation

A [100] fitted recruitment rate of human

I} 0.0006 fitted effective contact rate

P 0.047  fitted the rate at which exposed become infected

0 0.020  fitted the rate at which [ transfer to quarantine class
n 0.04 fitted the rate at which recovery becomes susceptible
5y 0.002 fitted the rate at which @) transfer to recovery

10) 0.1 fitted the rate at which I transfer to recovery

L 0.1 fitted the rate at which people exit autonomously

TABLE III. ERROR RATES FOR SEIQR MODEL WITH AND WITHOUT
DATASET SPLITTING.

Dataset Moderate High No split
F*Covid 0.0011 0.0021 0.081
F*Mask 0.021 0.049  0.073
Lockdown  0.032 0.045  0.061
5G 0.0029 0.0011 0.003
Brazil Anti  0.062 0.055  0.094
Brazil Pro  0.060 0.061  0.088
Peru 0.095 0.124 041

Ro. In contrast, parameter u has a negative effect on Ry.
The red line represents the p-value, and in the context of
social media toxicity, p < 0.05 indicates that the results of the
sensitivity analysis are statistically significant. Specifically, it
means that there is less than a 5% probability that the observed
effects (relationships between the parameters and the effective
reproduction number R () occurred by chance. These behaviors
are significant in executing emergency management measures.
Let,

CRO — 9Ro X a

p 8p RQ
where, p is the parameter being studied for its sensitivity.
Utilizing this index, one can deduce the sensitivity index cor-

responding to every parameter integrated into the expression
for Ry. We compute their derivatives as follows:

Ro_% ﬂ
Cﬁ =5 XRO,
such that,
dRy _ AB(p+o+0—1)
dp p(p+ V)2 (u+ o +0)
ARy A
B8 pwlp+v)(u+o+0)
dRo _ By
dA  plp+¥)(p+o+0)

ARy _ ABY(u+v+o+0)
dp P+ ¥)(p+ ¢+ 0)
dRy _ Ay

dp — p(p+v)(u+¢+0)?
dRy AByY

A9 p(p ) (p+ o+ 0)

TABLE IV. SENSITIVITY INDEX OF EACH PARAMETER ON Ry.

Parameters  Sensitivity Indices Relationship
Y 0.863213 +ve
B 0.902867 +ve
A 0.8617 +ve
o -0.9167 -ve
0] 0.89574 -ve
0 0.1913 +ve
PRCC for R,

Sensitivity indexes
o

o
o

‘—t 0.5, significant (*p<0.05)

) 53 A L ¢ 0
Figure 2. Sensitivity of /R of the online toxicity contagion.

The positive sensitivity indices, associated with ¢, (, £,
9, o, and ¢, predominantly influence the frequency of online
toxicity manifestations, with 5 having the highest positive im-
pact index, indicating its crucial role in online toxicity spread
(as illustrated in Figure 2). In contrast, negative sensitivity
indices linked to parameters p and ¢ attenuate the online
toxicity spread. Remarkably, parameters such as the infection
rate of exposed users (1)), recovery rates of users who hadn’t
been quarantined (o), the rate at which infected users transfer
to rehabilitation (e¢), and the rate at which infected users are
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banned from platform (¢) all curb the dissemination of online
toxicity. This highlights the importance of improving measures
to ban infected users and rehabilitation to control the spread
of online toxicity effectively.

Building on the insights from the SEIQR model’s numerical
simulations and sensitivity analysis, several strategic interven-
tions are recommended to control the spread of toxicity on
social media platforms. These measures leverage fractional
and fractal dynamics to enhance content moderation and
behavioral management. First, we suggest adaptive moder-
ation through behavioral memory and recurrence patterns. To
effectively manage toxicity, platforms should implement tem-
porary restrictions on accounts engaged in harmful behavior.
These restrictions may include suspensions, limited posting
capabilities, or increased scrutiny. This approach acknowl-
edges the role of memory effects in user behavior, ensuring
that past interactions influence future activities. By allowing
monitored users to reform while preventing unchecked toxicity
from gaining momentum, this method balances community
safety with user rehabilitation. Second, we suggest algo-
rithmic content demotion and network complexity reduction.
Reducing the visibility of toxic content using algorithmic
content demotion can limit its reach and engagement. By
prioritizing non-toxic interactions and reducing amplification
through engagement restrictions (e.g., limiting likes, shares,
and comments on flagged content), the network’s structure
becomes less conducive to toxicity proliferation. This inter-
vention effectively slows down the contagion effect. Third,
we suggest cross-platform collaboration for unified toxic-
ity control. Toxic content often spreads across multiple so-
cial media networks, requiring cross-platform collaboration
for consistent moderation. A unified approach—incorporating
shared databases, technological innovation, and standardized
policies—can enhance intervention efficiency. Platforms can
integrate collective quarantine mechanisms, ensuring that users
flagged for toxicity on one platform face restrictions across
multiple services, thereby mitigating repeated behavioral pat-
terns. Last, we suggest structured quarantine and reintegration
mechanisms. The SEIQR model suggests that quarantining
toxic users is an effective strategy to limit further spread.
Platforms should establish dedicated discussion spaces where
quarantined users can engage in monitored interactions rather
than simply migrating to another platform. This could include
controlled forums, restricted access groups, or supervised
comment sections, ensuring that users receive guidance toward
positive behavioral reform.

By implementing these memory-aware and network-
structured interventions, social media platforms can effectively
mitigate the spread of toxicity, reduce harmful interactions,
and foster a healthier digital environment.

V. CONCLUSION AND FUTURE WORKS

This study applied the SEIQR epidemiological model to
analyze the propagation of toxicity on social media. By
categorizing toxicity into moderate and high intensities, the
model significantly improves prediction accuracy, as evidenced

by lower error rates across diverse datasets. This granular
classification aligns with real-world observations that toxic-
ity manifests in varying degrees of severity, each requiring
distinct intervention strategies. The sensitivity analysis further
underscores the critical role of parameters such as the contact
rate () and quarantine rate () in modulating the basic
reproduction number (Rg), offering actionable insights for
platform regulators.

Our key contributions include:

1) Improved Predictive Accuracy: Splitting toxicity into
moderate and high levels reduces model error rates by
up to 90% (e.g., Peru dataset error drops from 0.41 to
0.095), enabling precise resource allocation.

2) Parameter Sensitivity: The positive correlation of 3, 1,
and A with R underscores the need to limit exposure
to toxic content, while the negative impact of y and 6
validates quarantine policies.

However, the study has limitations. The reliance on
threshold-based toxicity classification (e.g., Detoxify scores
> 0.5) may oversimplify nuanced human communication.
Additionally, the model assumes homogeneous mixing within
compartments, which may not fully capture the fragmented
nature of online communities. Future iterations could incor-
porate network-specific topology data to refine compartmental
transitions.

ACKNOWLEDGMENTS

This research is funded in part by the U.S. National
Science Foundation (OIA-1946391, OIA-1920920), U.S. Of-
fice of the Under Secretary of Defense for Research and
Engineering (FA9550-22-1-0332), U.S. Army Research Of-
fice (W911NF-23-1-0011, W911NF-24-1-0078, W911NF-25-
1-0147), U.S. Office of Naval Research (N00014-21-1-2121,
N00014-21-1-2765, N00014-22-1-2318), U.S. Air Force Re-
search Laboratory, U.S. Defense Advanced Research Projects
Agency, the Australian Department of Defense Strategic Policy
Grants Program, Arkansas Research Alliance, the Jerry L.
Maulden/Entergy Endowment, and the Donaghey Foundation
at the University of Arkansas at Little Rock. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the funding organizations. The researchers
gratefully acknowledge the support.

REFERENCES

[11 E. A. Vogels, The state of online harassment. Pew Research
Center Washington, DC, 2021, vol. 13.

[2] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Char-
acterizing user behavior in online social networks,” in Pro-
ceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement, 2009, pp. 49-62.

[3] S. Shajari, M. Alassad, and N. Agarwal, “Characterizing
suspicious commenter behaviors,” in Proceedings of the inter-
national conference on advances in social networks analysis
and mining, 2023, pp. 631-635.

[4] S. Shajari and N. Agarwal, “Safeguarding youtube discussions:
A framework for detecting anomalous commenter and engage-
ment behaviors,” Social Network Analysis and Mining, vol. 15,
no. 1, p. 54, 2025.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.  ISBN: 978-1-68558-301-9



SOTICS 2025 : The Fifteenth International Conference on Social Media Technologies, Communication, and Informatics

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

S. Shajari and N. Agarwal, “Developing a network-centric ap-
proach for anomalous behavior detection on youtube,” Social
Network Analysis and Mining, vol. 15, no. 1, p. 3, 2025.

L. Dai, X. Liu, and Y. Chen, “Global dynamics of a fractional-
order sis epidemic model with media coverage,” Nonlinear
Dynamics, vol. 111, no. 20, pp. 19513-19526, 2023.

R. Bernard, G. Bowsher, R. Sullivan, and F. Gibson-Fall,
“Disinformation and epidemics: Anticipating the next phase of
biowarfare,” Health Security, vol. 19, no. 1, pp. 3-12, 2021,
PMID: 33090030. por: 10.1089/hs.2020.0038. eprint: https:
//doi.org/10.1089/hs.2020.0038. [Online]. Available: https:
//doi.org/10.1089/hs.2020.0038.

P. Petratos and A. Faccia, “Fake news, misinformation, dis-
information and supply chain risks and disruptions: Risk
management and resilience using blockchain,” Annals of Op-
erations Research, vol. 327, no. 2, pp. 735-762, 2023.

K. DiCicco, N. B. Noor, N. Yousefi, M. Maleki, and N. Agar-
wal, “Toxicity and networks of covid-19 discourse communi-
ties: A tale of two social media platforms,” in Proceedings of
ROMCIR 2023: The 3rd Workshop on Reducing Online Misin-
formation through Credible Information Retrieval, held as part
of ECIR 2023: the 45th European Conference on Information
Retrieval, April 2-6, 2023, Dublin, Ireland, pp. 1-13.

N. Yousefi and N. Agarwal, “Study the influence of toxicity
intensity on its propagation using epidemiological models,” in
Proceedings of the 30th Americas Conference on Information
Systems (AMCIS), 2024, pp. 2401-2410.

D. DeMarsico, N. Bounoua, R. Miglin, and N. Sadeh, “Ag-
gression in the digital era: Assessing the validity of the cyber
motivations for aggression and deviance scale,” Assessment,
vol. 29, no. 4, pp. 764-781, 2022.

N. B. Noor, N. Yousefi, B. Spann, and N. Agarwal, “Com-
paring toxicity across social media platforms for covid-19
discourse,” in The Ninth International Conference on Human
and Social Analytics (HUSO), 2023, pp. 21-26.

N. Yousefi, N. B. Noor, B. Spann, and N. Agarwal, “To-
wards developing a measure to assess contagiousness of toxic
tweets,” in Proceedings of the international workshop on
combating health misinformation for social wellbeing, 2023,
pp. 43-47.

N. Yousefi, N. B. Noor, B. Spann, and N. Agarwal, “Exam-
ining toxicity’s impact on reddit conversations,” in Interna-
tional conference on complex networks and their applications,
Springer, 2023, pp. 401-411.

S. Dagtas, N. Agarwal, and N. Yousefi, “Modeling toxicity
propagation on reddit using epidemiology,” in International
Conference on Complex Networks and Their Applications,
Springer, 2024, pp. 113-124.

T. C. Falade, N. Yousefi, and N. Agarwal, “Toxicity prediction
in reddit,” in In Proceedings of the 30th Americas Conference
on Information Systems (AMCIS), 2024, pp. 2835-2844.

T. Li, S. Wang, and B. Li, “Research on suppression strategy
of social network information based on effective isolation,”
Procedia computer science, vol. 131, pp. 131-138, 2018.

M. Maleki and N. Agarwal, “A comparative evaluation of
the sir and seiz epidemiological models to describe the dif-
fusion characteristics of covid-19 polarizing viewpoints on
online social networks,” in In Proceedings of the 58th Hawaii
International Conference on System Sciences (HICSS), 2025,
pp. 2483-2492.

M. Maleki, M. Arani, E. Mead, J. Kready, and N. Agar-
wal, “Applying an epidemiological model to evaluate the
propagation of toxicity related to covid-19 on twitter,” in In
Proceedings of the 55th Hawaii International Conference on
System Sciences (HICSS), 2022, pp. 3275-3284.

R. Das and W. Ahmed, “Rethinking fake news: Disinformation
and ideology during the time of covid-19 global pandemic,”

[21]

[22]

(23]

IIM Kozhikode Society & Management Review, vol. 11, no. 1,
pp. 146-159, 2022.

G. A. Ngwa and M. I. Teboh-Ewungkem, “A mathematical
model with quarantine states for the dynamics of ebola virus
disease in human populations,” Computational and mathemat-
ical methods in medicine, vol. 2016, no. 1, pp. 1-29, 2016.
E. Addai, N. Yousefi, and N. Agarwal, “Seiqr: An epi-
demiological model to contain the spread of toxicity using
memory-index,” in Fifth International Workshop on Cyber
Social Threats, International Conference on Web and Social
Media, 2024, pp. 11-22.

L. Hanu, “Unitary team. detoxify,” Github: https://github.
com/unitaryai/detoxify [last accessed: September 3, 2025],
2020.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.

ISBN: 978-1-68558-301-9


https://doi.org/10.1089/hs.2020.0038
https://doi.org/10.1089/hs.2020.0038
https://doi.org/10.1089/hs.2020.0038
https://doi.org/10.1089/hs.2020.0038
https://doi.org/10.1089/hs.2020.0038

	Introduction
	Related Work
	Machine Learning Approaches to Toxicity Detection
	Epidemiological Models for Online Toxicity Spread

	Methodology
	Data Collection and Analysis
	Toxicity Classification
	User Activity and Quarantining

	Model Formulation

	Model Parameterization and Data Fitting Analysis
	Conclusion and Future Works

