
Automating Blog Crawling Using Pattern Recognition

Anal Kanti Roy1, Nitin Agarwal2

Department of Information Science

University of Arkansas at Little Rock

Little Rock, Arkansas, USA

e-mail: 1axroy@ualr.edu, 2nxagarwal@ualr.edu

Abstract—Social media plays an important role in the

propagation and dissemination of ideas and thoughts leading

to the formation of diverse online communities. Compared to a

myriad of other social media sites and applications, blogs

provide a convenient platform for users to post detailed

information, engage in active discussions and share the content

on other social media sites, such as Facebook and Twitter.

Thus, the blogosphere has been an enormous and ever-growing

part of the open-source intelligence. In order to track and

monitor online social behavior particularly from blogs, the

first challenging part is to mine the vast pool of unstructured

data. Several approaches have been developed to extract blog

data using focused crawling, which requires a lot of time, effort

and manual intervention. To scale up this process and cope

with the continuously changing blog structure, we propose a

sophisticated, advanced, generic, and scalable automated blog-

crawler, with ability to identify different patterns in the

Hypertext Markup Language (HTML) structure of the blog

pages and extract data, such as title, author, date, content, tags,

etc. from different blog posts. Using the crawler, we have

crawled 530 blog sites with 894,856 blog posts so far.

Keywords- blog crawling; generic crawler; blogs; blog posts;

metadata; title; author; date; content; patterns; html.

I. INTRODUCTION

Recent years have witnessed an explosive growth of social
media driven communications. Due to the pervasive nature
of social media platforms, people have become more
engaged in their ways of expressing thoughts. Usage of
social media is no longer limited to just networking,
advertising or self-expression. Sometimes, the negative side
of the social platforms are encouraging people to utilize
these online platforms for malicious purposes, such as
spreading rumors, propaganda, polarization, extremism and
radicalization.

The blogosphere (the clustered network of blogs and
comments in existence on the internet and their links to other
social media platforms) [1] is considered a highly dynamic
subset of the social media. Starting from 1994, from early
blogging platforms like LiveJournal, TypePad, and Blogger,
the blogosphere has grown considerably with the addition of
services like Tumblr, WordPress, Medium, Squarespace, etc.
more than 500 million are recognized as blogs. Their authors
account for over 2 million blog posts daily. Tumblr, possibly
the biggest blogging platform, reports that it hosts over 440
million blogs. The most popular Content Management
System (CMS), WordPress, adds about 60 million more [2].

Apart from the massiveness, this domain also distinguishes
itself from the rest of social media platforms due to several
features, such as more space for building discourse, more
involvement in the conversation, and ability to spread into
other platforms through shares. Analyzing blogs would
therefore provide insights into our cyber behaviors, whether
it is to monitor cyber campaigns, identify powerful actors
and groups, study propaganda dissemination, and trace cyber
threats [3][4]. However, collecting blog data is imperative
for conducting any sort of computational analysis. This data
collection process is quite challenging due to several reasons.
First, the majority of information that can be crawled from
blogs is unstructured and noisy, which makes it difficult to
predict and model the crawling process. Second, the problem
of automated crawling is exacerbated by the enormous
growth rate of blog data.

To address the challenges mentioned above, we developed
a generic crawler that is able to automatically parse the blog
information for any blog site, categorize different data types
based on their respective patterns, clean the data through data
munging module and finally storing them in organized
format in a Database Management System (DBMS).
Although there is room for improvement for the automated
crawler, it surely enhances the effectiveness and scalability
of blog data collection. The rest of this paper is organized as
follows. Section II describes similar blog crawling
approaches taken by others so far. Section III explains
separately how each type of blog data, such as title, author,
date and content are extracted using our rule-based approach.
The conclusion and acknowledgement close the article.

II. LITERATURE REVIEW

This literature review summarizes few blog-specific
crawling methods available on the web and their drawbacks.

A. Web Content Extractor (WCE)

WCE is a crawling tool designed to extract web’s data in

general. For the extraction of data from the blogs, the

patterns of the HTML pages and the patterns of the different

data entities (title, author, date, etc.) has to be manually fed

into the WCE before crawling any blog(s). Although WCE

is quite accurate and can be operated without any prior

knowledge of programming, but it has to be distinctly set up

for every individual blog-site, which certainly is not a

scalable solution when targeting multiple blogs. WCE has

the feature of exporting the data into different formats .xml,

.csv, .txt etc.) [5].

32Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

mailto:1axroy@ualr.edu

Figure 1. Extraction of blog elements by Web Content Extractor [5]

However, it does not have a synchronization ability with

the database management systems. Therefore, a user has to

convert the exported files manually into a compatible format

that suits the database. It is also a multi-threaded web

crawler that supports the data extraction from up to 20

threads (webs) simultaneously (Figure. 1 Extraction of blog

elements by Web Content Extractor). However, the speed of

the crawling process is normal as general crawler and

sometimes slow while executing huge scripts. Moreover,

this tool is completely focused and bound to the limited

tasks with less room for customizations [5]. Therefore,

WCE is quite not suitable to collect enormous amounts of

data from a huge number of blogs.

B. Mapping the blogosphere towards a universal and

scalable Blog-Crawler

The crawler in this method identifies the posts by
crawling only feeds, RSS and atom from a host identified as
a blog [6]. The crawler identifies the blog by downloading
the crawled webpage and then parse it to check for the
common standard patterns of the diverse blog systems. For
instance, a pattern could be a match, if the generator tag of a
web page contains < meta content = ‘‘blogger’’ name =
‘‘generator’’ />. Then crawler downloads the first alternate
link rel = ‘‘alternate’’ with the type of an eXtensible Markup
Language (XML) page recognized by type = ‘‘application /
RSS + xml” or type=”application/atom+xml” and stores the
referenced feed as the main feed of a blog, which should
contain all posts. In some cases, the crawler may end up
crawling the feeds, which contains only a minimized version
of all posts, which are displayed as summaries on the home
page of a blog(s). These instances occur because few web
pages are limited to only displaying the latest posts.
Consequently, the crawler has a drawback of crawling only
the subsets of the displayed posts. The uncovered posts
create a historical gap, as the crawler is unable to dive deep
into the archives [6].

C. A New Algorithm of Blog-oriented Crawler

This work aims at downloading blog pages in some portal

websites and the crawler views the blog as the special

"topic" [7]. The concept of this method is identical to the

topical crawling. Generally, topic describes the contents of a

web page and is defined by the users before being fed as an

input into the crawler. Similarly, for a blog as a topic, it

refers to the types of blog pages and describes the structural

patterns of those pages. It also can differentiate whether the

fetched pages are relevant to predefined topic or not, and

then the pages are downloaded if they are relevant,

otherwise dismissed. The strategy of the topical crawler is to

check for the contents of pages or structure of linkages. It

prunes the URLs when crawling to some extends and orders

the handled URLs. This crawler is neither a depth-first

search nor a breadth-first search, but the best-first search.

That means the crawler downloads the most relevant page,

which the URL points to, in a current situation. This method

also have a mechanism to extract blog linkages. However, it

has some drawbacks in terms of precision and efficiency

because of its generality and no specialty in nature [7].

D. BlogPulse

BlogPulse [8][9][10] devised by Intelliseek, was designed

to find trends and patterns across selected 22,000 weblogs.

It provided a list of key phrases, key persons and key

paragraphs every day. It also had several analytical features

that included gathering the insights by tracing the daily

activities from the blogs, tracking the information by

studying how the topic of information was disseminated

through the blog posts. It profiled the top blogs, which

provided detailed information about how the blog influences

others and their activities. It extracted the list of 22,000+

weblogs from the BlogStreet directory. These blogs were

crawled every day and were checked for possible

duplication. The major limitation with BlogPulse is the

restriction on the number of blogs available for crawling.

Another challenge with the approach was that it was not

user-friendly. Users were not allowed to monitor some set

of blog sites and gather the trend information. Hence, the

tool was a one-way reporting tool. It also does not fetch the

comments from the blog posts, while crawling and mining

the data. This tool was deprecated in 2012 [9].

Therefore, blog(s) oriented data retrieval systems are still

in their premature stages. Blog-specific search engines only

index the feeds, which usually are readable XML versions

of the blogs. Most of them only provides a summary of the

whole context obtained from the blog entries [11]. Some of

them either focus on a tiny subset of blog(s) data with

similar patterns [10], which in-turn consumes too much time

and manual effort to crawl. The generic crawler we

proposed allows us to crawl all the blog pages active in any

blog irrespective of its different web structures saving

significant amount of time and manual intervention which

makes it different from other approaches.

33Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

III. METHODOLOGY

Since, the websites do not follow a unified standard that

would allow the computer to semantically understand what

every bit of HTML is trying to say, there is no common

approach for grabbing patterns for every metadata. The ideal

solution would be to build a robust and scalable tool that

will be able to extract data irrespective of HTML content

and structure. That is why; training the crawler for different

HTML patterns of blogs, along with machine learning

techniques should be an appropriate approach to apply. It

will let the computer to understand what are on a HTML

page exactly in the same way a human would.

First, we need an algorithm to recognize any blog pages.

Among several papers [4][7][12] published, “Blog

identification and splog detection” [12] suggests handful

algorithms to identify blog pages by certain features like

blog mark in URL, RSS tag, ordered dates in log etc.

A. Link extraction

After the recognition of blog pages, the next step is the

extraction of all the relevant links (URLs) and identifying

the patterns for required data. Here is the step-by-step

approach for link extraction.

• Start crawling the URLs in every page of a blog

site using Scrapy [13] that crawls in a DFO order.

• Filter out external URLs using Scrapy's rule-based

approach [13], which only look for the domain

name of the blog we are crawling (1).

 rules = (Rule (LinkExtractor (allow = [keyword],

 callback = 'parse_item', follow = True),) (1)

• Out of the internal URLs, it tries to eliminate the

ones with a set of stop-words. Here goes the list:

stopwords = ['facebook.com', 'google.com',

'twitter.com', 'youtube.com', 'pinterest.com',

'instagram.com', '/page/', '/search', '/author/', '/tag/',

'/category/', '/about', '/comments/', '/contact/', '?', '=']

B. Extraction of Blog Content

Our method is to follow rule-based approach to recognize

a specific information in a blog post. For example, ‘title’ of

a blog post has a set of features or parameters that may

classify it from any other piece of information. These

features can be termed as classifiers. In order to filter out the

post title, every chunk of data in the blog page has to go

through the validation of these classifiers. Each classifier

will provide them a score on a scale of 0 to 1 based on how

they satisfy the conditions. The sum of scores from all the

classifiers is the total score of each chunk of data. The

chunk with highest score is considered as the post-title only

if it surpasses a certain threshold. Since the importance or

occurrence of all the classifiers is not the same, we multiply

individual classifier scores by different weights before

adding them. The weights can be determined by Naive

Bayes Classification algorithm. We generated generic

module for different data types, such as title, author, date

and content. Here goes the explanation of step-by-step

approach for each module.

C. Extraction of post title

Collect every chunk of text from the blog page by filtering

out the empty nodes and store them in a list. Then perform

required string manipulation in the chunks like stripping,

joining and getting rid of unnecessary scripts. In this case,

the classifier is set with the following patterns:

• The post titles are mostly likely to be surrounded

by h1 or h2 tags.

• In blog site analysis, it can be observed that a post

titles are not longer than 200 characters. Hence,

this classifier filters out the descriptive chunks

from the pool.

• The titles commonly appear at the beginning of the

page. Therefore, the nodes with less depth in the

HTML tree gets high priority.

• The post titles have a great chance to completely or

partially match with the text between tags. The

match percentage between these two texts could

possibly lead to a decision. To match the similarity

between the strings, we choose Cosine Similarity

measurements here.

• In most of the cases, the URLs of the blog posts

contain words quite similar to the post title

delimited by ‘-’ or ‘/’. Therefore, if we match the

words of each chunk with the split words from the

URL, the result significantly can contribute to a

decision making.

• The post titles are often surrounded by tags with a

class or id name of the “title”, or a name where title

is a substring. These scenarios can be used to

identify the title quite easily.

• Most of the cases, the URLs of the blog posts

contain words quite similar to the post title

delimited by ‘-’ or ‘/’. Therefore, if we match the

words of each chunk with the split words from the

URL, the result significantly can contribute to a

decision making.

• The post titles do not usually end with a full stop.

This filter out the other chunks from consideration.

• These individual scores are multiplied by their

respective weights and then added up to obtain the

total score.

• Equation (2) below shows that the chunk with

highest score is extracted as post title only if it

exceeds a certain threshold (3).

 Target = max (sum (individual scores * weight)) (2)

 Post title = TRUE if (Target > Threshold) (3)

• Now, the question is how the weights and the

threshold are calculated. In this regard, we

incorporate a data analysis over our collected feed

34Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

from a sample set of blog pages. Then, we use

Naive Bayes classification algorithm.

TABLE I. CLASSIFIER TABLE

 Classifiers True/False

Page 1

Between h1 tags True

Matches title tag text True

Class or id named title True

Page 2

Between h1 tags True

Matches title tag text True

Class or id named title False

Page 3

Between h1 tags True

Matches title tag text False

Class or id named title False

TABLE II. FREQUENCY TABLE

Classifiers True False Total

Between h1 tags 3 0 3

Matches title tag text 2 1 3

Class or id named title 1 3 3

TABLE III. LIKELIHOOD TABLE

Classifiers True Likelihood
Normalized-*3

(Weights)

Between h1 tags 3 1.00 3.00

Matches title tag text 2 0.67 2.00

Class or id named title 1 0.33 1.00

a. Rule-based classifiers for blog pages [14]

Let us assume that data are collected according to the

performance of three classifiers from three blog pages
where post title is taken as an example. Tables I, II and III
show how weight is calculated. Likelihood refers to the
chances of occurrence of a pattern. The pattern with more
weight is given more significance while calculating the total
score. From the above analysis, we calculate the threshold
from the minimum total score that qualified as a post title, if
the classifiers guessed correctly [14].

D. Extraction of post author

For any fetched URL, our method is to cross check with
five predefined patterns, which identifies the author of a blog
post. On passing the rules, each block of text gains a score
just like post title extraction and then each score can be
multiplied by their respective weights. Weights are
determined by precision and recall of the training data.
Finally, these scores are summed up for the highest scoring
text block, which is considered as post author. However, the
text block containing author name may contain other
unnecessary texts like ‘by’, ‘written by’, ‘and courtesy’ etc.
To filter these out, text-splitting methods, such as
tokenization, n-grams and Inside–Outside–Beginning (IOB)
tags from Natural Language Toolkit (NLTK) are used to pick
human names.

Firstly, gather every chunk of text from the blog page
filtering out the empty nodes and store them in a list. Then
create a dataframe later on for storing records containing
each block of text, its parent node and its score. For this
purpose, initialize the following three lists and append values
for texts and nodes for now. The scores are inserted after we
have the calculations. Now, pass each block of text through
the rules set by each pattern.

• The microformat rel="author" attribute in link tags
(a) is commonly used to specify author of a post.

Author

• Author related keywords are used in attributes like
class and id etc. in the node containing author
name. It can also be present in the href attribute if
wrapped between anchor tags (a) like:

href = http://www.example.com/author/name

• To capture these patterns, we do the following.

a) Firstly, we create a list of all the keywords that may

 possibly refer to author, such as ‘author’, ‘byline’,

 ‘source’, ‘writer’, ‘written’, ‘by’, ‘courtesy’,

 ‘contributor’, ‘originator’, ‘creator’, ‘builder’,

 ‘editor’ etc.

b) We then create a string joining all attribute values

 of the parent node for each text node.

c) Finally, we look for the existence of each of the

 author keywords in any of the attributes we

 gathered in the string above.

• Sometimes author names are specified in between
meta author tags (<author>…</author>). Therefore,
we check whether the parent node for each text is
‘author’ or not.

• The parent html tag for the author text is most likely
to be anchor tags (<a>…). Therefore, this rule
prioritizes the tag enclosed text blocks.

• The author information is supposed to be within a
certain limit of text blocks. So, this rule emphasizes
text blocks with a character limit of 50 or less in
order to filter out larger chunks of text.

• In the end, all the scores multiplied by their
respective weights are added up to yield the total
score for each text block. The weights are
calculated upon the precision and recall over the
training data. We can use Bayes Classification
algorithm or Random Forest model for this purpose.
The more training data we have, the more it will
lead to accuracy. For now, the weights are
estimated based on a small set of data using Bayes
algorithm. Finally, append score for each text block
to the score’s list we declared earlier.

• Create a pandas dataframe with lists (nodes, texts
and scores) and select highest scoring text block as
the post author data.

35Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

• The extraction is not finished yet. The text block
containing author name may contain some
unnecessary text along with the author name like
‘by’, ‘written by’, ‘and courtesy’ etc. To remove the
surplus and extract author name only, we use
tokens, n-grams, IOB tags, parts of speech etc. from
NLTK, which can recognize human names most
likely of a person or organization.

E. Extraction of post date

Alongside the traditional rule based approach, two
additional approaches are used to safeguard the extraction of
the ‘date’ of an article. Earlier approach used to traverse
through the html body and recognize the highest ranked text
chunk based on certain rules. If this approach does not work,
it will look for a date in the ‘content’ attribute value of
potential meta tags in html head section. If failed to find the
date here also, it will finally try to pull out the date from the
post URL, which is a commonly used trend to describe the
resource path of a blog post or article. Even after successful
extraction of postdate, it may contain unnecessary texts like
‘On’, ‘Published on’ etc., or the date may appear in a variety
of formats sometimes in human readable forms like
‘Yesterday’, ‘2 mins ago’, ‘Tuesday’ etc. So, the extracted
data are finally processed through a date parser to get rid of
unwanted texts and store the value in any user-required
format (currently in ‘dd-Month-yyyy’). Methods are
described elaborately below along with code segments. The
process of how normalized text chunks are fetched and
ranking methodology that chooses the based suited chunk
will remain the same. This section focuses more on the
postdate patterns. Going through the source code will give a
better understanding of the sequence.

This approach follows the traditional method of ranking
each block of text, based on five patterns.

• The postdate commonly appears to be within the

time tags (<time></time>). If crawler wants to

fetch full date time format, it can find it in the

‘datetime’ attribute of the time tag.

• Date related keywords may be present in attributes

like class, id, title, and content etc. in the node

containing postdate. To capture this pattern, first

create a list of all the keywords that may possibly

refer to postdate. Then simply create a string

joining all attribute values of the parent node for

each text node. Finally, look for the existence of

each of the date keywords in any of the attributes

that are gathered in the string above.

• Now a days, it is common for resource path of a

blog post to show date format in the post URL. As

a first step, extract the date portion of the URL and

match it with every text chunk. The higher the

match ratio, the more possibility of that text to

contain ‘date of the blogpost’.

• There is a chance that a single blog post may have

multiple dates. For example, each comment may

contain datetime, which crawler is not looking for.

So we emphasize on the original date value by its

depth in the html tree as postdate, it usually

appears at the beginning, most of the time after the

post title.

• The postdates are no longer in character length.

Therefore, we can filter out larger chunks of texts

by limiting the character length of the text to 50 or

less than equal to 50.

 From the above process, crawler only looks for the post

date in the html body section. If this approach fails to

extract, it looks for the date in attributes of meta tags

defined in the HTML head section, which most often stores

the publishing date of the article/blog post. The following

steps gives an idea about what meta tags, a crawler should

look for and where the postdate may be present.

Out of various meta tags, only look for selective ones.

Postdate usually appears in the meta tags, which contain

these four attributes:

{Name, property, itemprop, http-equiv}

• Then look for potential keywords for the date in the

values of these attributes. For each of the above

attributes, a separate list of keywords are defined.

• If a match occurs, we take out the date information

from ‘content’ attribute value of the same meta tag.

 On failure of capturing date in spite of applying the above

approach, we look for the date information in the URL of

the article, which is a widely used fashion to define the

resource path of an article. For example,

http://www.example.com/2017/05/29/blog-post-title

 To do this, isolate the resource path from the URL

through URL parsing and use regular expressions to

partition the date block from it.

 Even after successful extraction of postdate, the chunk

may contain unnecessary texts like ‘On’, and ‘Published on’

etc., or the date may appear in a variety of formats

sometimes in human readable forms like ‘Yesterday’, ‘2

mins ago’, ‘Tuesday’ etc. The dateparser module does an

excellent job to process the extracted date, get rid of

unwanted texts and store the value in common format

(currently in ‘dd Month, yyyy’).

F. Extraction of post content

 Unlike post-title, post-author or post-date, it is quite

challenging to extract post-content to an accurate

satisfactory level by rule-based pattern identification

approach. Rule-based approach results in inclusion of

boilerplates and larger-sized comments by users. However,

there are few resources in the web like Dragnet, Goose,

Readability, Eatiht, Boilerpipe etc., which does the same

kind of job of extracting main content. In this case, we can

36Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

use a tool “JusText” [15]. JusText is a useful tool to get rid

of boilerplate content for example: navigation links,

headers, footers and scripts from HTML pages. In a few

cases, JusText cannot distinguish post-title, post-author and

other unwanted texts and thus considers it as a part of the

blog post/article-body. To avoid these, we can apply a few

sanity checks and heuristics on the text returned by JusText.

The procedure is explained step-by-step.

Figure 2: The architecture of crawling process by Scrapy [13]

• Justext can easily be installed via pip for either

Python 2.6+ or 3.3+ [15].

• Then, requests can be sent to the blog-post URL to

fetch pure texts from the response.

• Then comes the part of boilerplate detection. False

cases in boilerplate detection are the texts we are

targeting on, which further sanity-checks and

heuristics should be performed.

• As mentioned earlier, these texts sometimes

include other data like post-title, post-author or

post-date along with the main blog-post content. So

text-chunks can be checked to exclude these

unnecessary data. By the time post-title, post-

author and postdate are extracted, we can easily

filter post-content out.

• Main blog-post contents are most likely to contain

complete meaningful sentences. One tricky option

to identify a complete sentence could be the text

chunk ending with these punctuation marks: period

(.), question mark (?) and exclamation point (!).

This way unsolicited text chunks could be

eliminated. We can also make sure the text chunks

are trimmed on both right and left sides to ignore

the dilemma of empty spaces.

• In very few cases, scripts are found embedded in

the article body. These unnecessary scripts can be

trimmed from the content.

 The post content can also be extracted if the tag attributes

of the html body for content contains the following property

names in html body of the post.

['entry-content', 'article-body', 'article', 'articlebody', 'article-

content', 'article-entry', 'post-body', 'post-entry', 'post-

content', 'main-content', 'content', 'single-post', 'content-

single', 'single-content', 'post', 'inner-content', 'page-content',

'postbody', 'material', 'material-body', 'article-main-content',

'material-body', 'materialbody', 'inner-post-entry', 'material-

content', 'b-material content', 'article-inner-content']

G. Tools used

The tools used for the implementation are as follows:

• Scrapy: An open source and collaborative

framework built on Python for extracting the data

from websites in a fast, simple way and yet

extensible by design. It allows us to plug new

functionality easily without having to touch the

core [13]. The diagram above (Figure. 2 The

architecture of crawling process by Scrapy)

interprets the architecture of the crawling process.

• Python: Python programming language (V. 3.7.1)

37Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

• MySQL Workbench: MySQL Workbench is a

unified visual tool for database architects,

developers, and DBAs.

• Elasticsearch: Elasticsearch is a search engine

based on the Lucene library. It provides a

distributed, multitenant-capable full-text search

engine. It is developed in Java.

IV. EXPERIMENT

For experiment, we matched the data we extracted through

our generic crawler with the respective sample data crawled

by Web Content Extraction (expected to be correct). We

collected data from 10 following blogs with 26,579 posts.

- http://europeans101.blogspot.com/

- http://ukrainianlaw.blogspot.com/

- http://www.asianpolicy.press/

- http://www.rabble.ca/

- https://futuristrendcast.wordpress.com/

- https://informnapalm.org/

- https://uprootedpalestinians.wordpress.com/

- https://www.asia-pacificresearch.com/

- https://www.counterpunch.org/

- https://www.no-to-nato.org/

Here are the overall experiment results based on averages.

Precision: 0.9412558436393738

Recall: 0.9580803573131561

F-measure: 0.9489225566387176

V. CONCLUSION

 To sum up, in this paper we introduced the parsing of blog

post pages of a blog for post attributes, using patterns that

are automatically extracted from the blog’s html patterns

and implement a generic automated crawler for fast, robust

and efficient blog data collection. We are still researching

in what patterns, and to what extent blogs are

interconnected. We also have great interest in analyzing the

content of single weblogs. Due to this dynamic nature of

blogs, we will face the long-term challenge of mining the

blogosphere on a global scale. Even though the original

implementation performed well along the milestones

defined in the current crawler implementation, the accuracy

of the crawler might not be 100%, but it can be smarter

gradually adding more patterns to the data identification and

by implementing machine-learning techniques.

ACKNOWLEDGMENT

This research is funded in part by the U.S. National Science

Foundation (IIS-1636933, ACI-1429160, and IIS-1110868),

U.S. Office of Naval Research (N00014-10-1-0091,

N00014-14-1-0489, N00014-15-P-1187, N00014-16-1-

2016, N00014-16-1-2412, N00014-17-1-2605, N00014-17-

1-2675, N00014-19-1-2336), U.S. Air Force Research Lab,

U.S. Army Research Office (W911NF-16-1-0189), U.S.

Defense Advanced Research Projects Agency (W31P4Q-17-

C-0059), Arkansas Research Alliance, and the Jerry L.

Maulden/Entergy Endowment at the University of Arkansas

at Little Rock. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the

funding organizations. The researchers gratefully

acknowledge the support. We also thank Mainuddin Shaik

and Muhammad Nihal Hussain for valuable suggestions.

REFERENCES

[1] C. Fieseler, M. Fleck, and M. Meckel, “Corporate social
responsibility in the blogosphere”, Journal of business ethics,
2010 Feb 1, 91(4):599-614.

[2] Hosting Trubunal, “How many blogs are there” [Online],
Available at: https://hostingtribunal.com/blog/how-many-
blogs/, Last accessed on: Oct 6, 2019.

[3] M. N. Hussain, A. Obadimu, K. K. Bandeli, M. Nooman, S.
Al-khateeb, and N. Agarwal, “A framework for blog data
collection: challenges and opportunities", The IARIA
international symposium on designing, validating and using
datasets (DATASETS 2017), Jun. 2017.

[4] B. Mahar and C. K. Jha, "A Comparative Study on Web
Crawling for searching Hidden Web", International Journal of
Computer Science and Information Technologies 6.3 (2015),
1-5.K. Elissa, “Title of paper if known,” unpublished.

[5] Newprosoft, “Web Content Extractor” [Online], Available at:
http://www.newprosoft.com/web-content-extractor.htm, Last
accessed on: Oct. 8, 2019.

[6] P. Berger, P. Hennig, J. Bross, and C. Meinel, 2011,
"Mapping the Blogosphere--Towards a universal and scalable
Blog-Crawler", 2011, IEEE Third International Conference
on Privacy, Security, Risk and Trust and 2011 IEEE Third
International Conference on Social Computing, IEEE, Oct.
2011.

[7] L. Wei-jiang, R. Hua-suo, H. Kun, and L. Jia, "A new
algorithm of blog-oriented crawler", 2009 International
Forum on Computer Science-Technology and Applications,
Vol. 1, IEEE, Dec. 2009.

[8] BlogPulse, Wikipedia [online], Available at:
https://en.wikipedia.org/wiki/BlogPulse. Last Accessed on:
Oct. 8, 2019.

[9] N. Glance, M. Hurst, and T. Tomokiyo, "Blogpulse:
Automated trend discovery for weblogs", WWW 2004
workshop on the weblogging ecosystem: Aggregation,
analysis and dynamics, Vol. 2004, May 2004.

[10] L. Baker, “BlogPulse Search Engine” [Online], Available at:
https://www.searchenginejournal.com/blogpulse-search-
engine-launched-by-intelliseek/549/, May 2004, Last accessed
on: 6 Oct, 2019.

[11] M. Lalmas, A. MacFarlane, S. Rüger, A. Tombros, T.
Tsikrika, and A. Yavlinsky (Eds.), “Advances in Information
Retrieval: 28th European Conference on IR Research”, ECIR
2006, London, UK, April 10-12, 2006, Proceedings. Vol.
3936. Springer, Mar. 2006.

[12] P. Kolari, T. Finin, and A. Joshi, "SVMs for the blogosphere:
Blog identification and splog detection", AAAI spring
symposium on computational approaches to analysing
weblogs, Mar. 2006.

[13] Scrapy [online], Available at: https://scrapy.org/, Last
Accessed on: Oct. 6, 2019.

[14] Naive Bayes Classifiers [online], Available at:
https://www.geeksforgeeks.org/naive-bayes-classifiers/, Last
Accessed on: Oct. 6, 2019.

[15] “jusText 2.2.0 - Heuristic based boilerplate removal tool”
[online], Available at: https://pypi.org/project/jusText/, Last
Accessed on: Oct. 6, 2019.

38Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

