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Abstract— Due to the rapid growth of Internet, most of the 

data that is available in the Internet that is archived/ analyzed, 

is graph structured in nature as graphs form a powerful 

modeling tool. The problem of graph pattern matching is to 

find all the tuples that match a user-given graph pattern from 

a large directed graph. For faster access of paths in the large 

directed graph, transitive closure of the graph is compressed 

and maintained using 2-hop reachability labeling technique by 

assigning every node a 2-hop label. These 2-hop labels are 

computed using a geometry-based approach that will be useful 

in solving the graph pattern matching problem. In this paper, 

a geometry-based approach that computes the 2-hop 

reachability labeling is described. The experimental results 

show that the proposed approach efficiently computes the 

compressed transitive closure technique of reachability 

labeling. 

 

Keywords- graph pattern; graph matching; 2-hop cluster; 

2-hop labeling; 2-hop cover. 

I. INTRODUCTION  

Graphs form a powerful modeling tool to represent 
various networks in different areas like chemistry, biology, 
web, etc. In online social networking systems like Facebook 
and Twitter, the relationships among users and their 
proximity can be conveniently expressed using graphs. 
Thus, there is a demand for efficiently querying the graph 
data.  

Graph database [1] is a large labeled directed graph or a 
collection of labeled directed graphs. A graph pattern is a 
sequence of nodes and edges which is constructed by 
connecting nodes based on links/relationships between them 
as required by the user. Given a graph database and a graph 
pattern, finding all the set of tuples (an ordered sequence of 
vertices) that match a user given graph pattern is the graph 
pattern matching problem. For instance, in analyzing online 
social networking systems, a large graph can be obtained 
where the job-title attribute on each node can be regarded as 
label. A small graph pattern can be to discover connections 
between several people with specified jobs. But, the graph 
pattern matching problem is challenging as graph data can 
be large and graph patterns can be large and complex. 

To access the paths in a large graph data faster, its 
compressed transitive closure is pre-computed using 2-hop 
reachability technique which involves assigning a graph 
code termed 2-hop reachability label to each node of the 

directed graph. The computation of 2-hop reachability 
labeling for the graph is found to be NP-hard [3]. In this 
paper, a geometry-based approach is implemented to 
efficiently compute the 2-hop reachability labels for a large 
directed graph which is a nearly optimal solution. The graph 
codes computed will be useful in solving the graph pattern 
matching problem in relational database context [1]. 

Section II covers the related work done for finding the 
efficient techniques to solve the problem of graph pattern 
matching and 2-hop reachability labeling. Section III 
describes the prominent compressed transitive closure 
techniques while section IV describes the procedure to 
compute 2-hop reachability labels efficiently. Section V 
reveals the experimental results and analysis and in section 
VI, we conclude the paper with future work. 

 

II. RELATED WORK 

Extensive survey has been done for finding efficient 
techniques to solve the graph pattern matching problem 
[10]. It includes the survey on tree-pattern matching 
techniques [8][9], graph pattern matching techniques [1][5] 
and extensive survey on multi-interval encoding [4]  and  2-
hop labeling [2][3][6][7].The problem of tree pattern 
matching is to find the set of patterns from a large tree that 
match the given tree pattern. Bruno et al. [8] used stack 
encoding scheme for tree pattern matching in XML 
documents with elements and parent-child relationships 
rendering it as tree. Chen et al. [9] further improved by 
using hierarchical stack encoding scheme for tree pattern 
matching. But, these techniques do not work on graph data 
directly as graphs do not have the good acyclic property of 
trees.  

For faster access of paths and for testing if two nodes are 
reachable, transitive closure is pre-computed and stored in 
compressed form. Multi-interval encoding defined by 
Agrawal et al. [4] is a compressed transitive closure 
technique used for faster processing of graph pattern 
matching of graph-structured documents in [5]. The 2-hop 
reachability labeling defined by Cohen et al. [3] is a 
compressed transitive closure technique where each node is 
assigned labels that represent the reachability information of 
the node. The problem of 2-hop cover is to find the 
minimum size of 2-hop cover for a given graph, which is 
proved to be NP-hard [3]. Cohen et al. [3] show that a 
greedy algorithm exists to compute a nearly optimal 
solution for the 2-hop cover problem. The resulting size of  
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the greedy algorithm is larger than the optimal by atmost    
O(log n). The basic idea is to solve the minimum 2-hop 
cover problem as a minimum set cover problem [3]. 
Schenkel et al. [6][7] implemented divide and conquer 
approach where the directed graph is partitioned into 
subgraphs and 2-hop cover is computed for each partition as 
in [3] and then the results are combined. The approach 
developed by Cohen et al. focused on finding minimum 
overlap among the subsets for finding 2-hops of the graph 
while J. Cheng et al. [2] implemented a geometry-based 
approach and focused on finding the minimum number of 
subsets which finds the 2-hops faster than the former 
approach. 

The survey [10] resulted in discovering an efficient 
geometry-based approach [2] for finding reachability labels 
of the directed graph. 

 

III. COMPRESSED TRANSITIVE CLOSURE COMPUTATION 

TECHNIQUES 

Transitive closure represents all the set of paths between 
the nodes of the graph that satisfy transitivity property. The 
transitive closure size is defined as the total number of paths 
present in the transitive closure. By pre-computing transitive 
closure, we can access shortest paths faster and check the 
existence of paths between the two nodes. But, the transitive 
closure size is very large compared to the total number of 
vertices/edges that represent the directed graph. The 
following are the two different techniques to compute the 
compressed transitive closure efficiently. 

 

A. Multi-interval Encoding 

Multi-interval encoding technique involves assigning 
every node a postid and interval list with atleast one interval 
that together represent the compressed transitive closure of 
the directed graph. 

 Initially, the directed graph is converted into DAG 
(directed acyclic graph) by computing the maximal strongly 
connected components of the directed graph and assigning a 
node to represent each maximal strongly connected 
component in DAG. Then, multi-intervals are computed 
using Agrawal et al. algorithm [4]. To compute multi-
intervals, an optimum tree cover is derived first from the 
DAG [4]. Then, postids (the numbers) are assigned to the 
nodes in post-order traversal order of the optimum tree. 
 For instance, consider the optimum tree cover shown in 
Fig. 2 of the directed graph G in Fig. 1. In Fig. 2, consider a 
node ―n9‖ to which the assigned postid is 1, which is 
assigned based on the post-order traversal of the optimum 
tree. To each node of the optimum tree cover, an interval [s, 
e] is assigned where ‘e‘ is the postid of the current node 
and‗s‘ is the postid of the lowest descendant node.  

For each leaf node ‗v‘ with postid ‗i‘, its interval 
assigned is [i, i] and that of its parent node with postid ‗j‘ is 
[i, j]. For instance, from Fig. 2, the interval of the leaf node 
―n9‖ is [1, 1] and interval of its parent node ―n6‖ is [1, 2] 
(shown in Table I). Multiple intervals for each node of the 
graph come into existence if there are back edges to the 
nodes in the DAG. For instance, in Fig. 1, there is a back 
edge (n8, n10) for node ―n8‖ hence the interval of node 
―n10‖, i.e. [4, 4] is  added to the interval list of ―n8‖ as 
shown in Table I. 

 In general, there exists a path a~b if and only if the 
postid of ‗b‘ lies in atleast one interval in the interval list of 
‗a‘. For instance, there exists a path n3~n8 as the postid of 
―n8‖ is 6 which lies in the interval [4, 8] of n3. Multi-
intervals for the other nodes of the directed graph are same 

 
TABLE I. MULTI-INTERVAL ENCODING OF G 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. A Directed Graph G 

 

 
Figure 2. Optimum tree cover with postid for each 

node 

 

V pid I 

n1 10 [1, 10] 

n2 3 [1, 6] 

n3 8 [4, 8] 

n4 9 [[1, 2], [4, 4], [6, 6], [9, 9]] 

n5 7 [4, 7] 

n6 2 [[1, 2], [4, 4], [6, 6]] 

n7 5 [4, 5] 

n8 6 [[4, 4], [6, 6]] 

n9 1 [[1, 1], [4, 4]] 

n10 4 [4, 4] 

 

59Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-228-8

SOTICS 2012 : The Second International Conference on Social Eco-Informatics



as the multi-intervals of the maximal strongly connected 
nodes of the directed graph that represent them in DAG. 
Table I shows the multi-interval encoding of each node of G 
shown in Fig. 1. Thus, multi-interval encoding represents 
the compressed transitive closure of the directed graph. 

The disadvantage of multi-interval encoding is that, it is 
lengthy and its storage cost increases with increase in the 
number of vertices/edges of the directed graph and sorting is 
required to perform graph pattern matching using the multi-
interval encoding technique. Hence, the more efficient 2-
hop reachability labeling or 2-hop cover technique is opted 
to compute and store the compressed transitive closure. 

B. 2-hop Reachability Labelling 

 A hop in a directed graph is defined by a path in the 
graph and one of the end points of the path. For each node 
‗v‘ in a directed graph G (V, E), a label L(v) = {Lin(v), 
Lout(v)} is assigned where Lin(v)  represents the set of the 
nodes  in G that can reach ‗v‘ & Lout(v)  represents the set of  
nodes  in G that are reachable from ‗v‘, (hence the name 2-
hop) which   define the 2-hop reachability labeling [3]. 

A 2–hop cover is a 2–hop labeling of directed graph G 
such that if there is a path u~v in G, then Lout (u) ∩ Lin (v) ≠ 
∅. 2-hop cover is computed such that the transitive closure 
of graph is covered. 

Table II shows the 2-hop reachability labels for the 
nodes of the directed graph G of Fig. 1. For instance, L (n3) 
= {{n1}, {n5}} is the 2-hop reachability label for a node 
‗n3‘ where Lin (n3) = {n1} & Lout (n3) = {n5}. There exists 
a path n3~n8 as Lout (n3) ∩ Lin (n8) is {n5}. Thus, 2-hop 
reachability labelling represents the compressed transitive 
closure of the directed graph. 

The problem of finding 2-hop cover   is to assign the 2-
hop reachability labels such that the total size is minimum 
which is found to be an NP-hard problem as it can be 
reducible to minimum set-cover problem which has no 
optimal solution. Minimum set cover problem is to find the 
subsets with minimum overlap covering all the paths. Each 
subset has a center w associated with it represented as S(Fw, 
w, Tw) which is termed the 2-hop cluster with center ‗w‘ and 

 
TABLE II. 2-HOP REACHABILITY LABELING OF G 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fw and Tw constitute all the set of nodes that are reachable 
from ‗w‘ and that can reach ‗w‘ respectively. The center 
with maximum cost is selected. The cost is assigned to the 
center node based on the criterion of maximum number of 
paths that the node can cover.  

IV. EFFICIENT COMPUTATION OF 2-HOP LABELLING FROM 

MULTI-INTERVAL ENCODING USING GEOMETRY-BASED 

APPROACH 

We computed 2-hop clusters by implementing the 
geometry-based concept behind the algorithm in [2]. The 
geometry-based technique involves the following steps. 

1. Construction of virtual reachability map. 
2. Computation of rectangular map for each node ‗w‘ that 

forms a bipartite graph with center ‗w‘.  
3. Derivation of 2-hop cluster by mapping the rectangular 

map that has maximum matches with the virtual reachability 
map.  

The steps 2 and 3 are repeated until the virtual 
reachability map is completely covered. The set of 2-hop 
clusters together represent the 2-hop cover. 

Initially, the directed graph is converted to DAG and the 
reverse DAG is constructed. Reverse DAG is constructed by 
reversing the direction of edges of the DAG. Let ―I‖ be the 
set having multi-interval encoding information of the nodes 
of DAG, i.e., for each node, postid and interval list is stored 
in ―I‖. Let ―It‖ be the set having multi-interval encoding 
information for the nodes of reverse DAG. Let p(vi) and 
pt(vi) be the postids of the node vi in I and It respectively & 
let I(vi) & It(vi) denote the  interval list of node vi in ―I‖ & 
―It‖  respectively where vi is one of the vertices in V of the 
DAG G(V, E). The following pseudocode implements the 
steps of geometry-based approach and computes the 2-hop 
cover efficiently. 

 

Algorithm 2-HopCover (I, It, V) 

{ //size(V) returns the number of vertices of DAG in set V. 

n:=size(V); 

for i:=1 to n 

{ 

   for j:=1 to n, vi≠vj 

{  

for k:=1 to size(I(vi)) //[xk, yk] is in I(vi) 

if (xk<=p(vj)<=yk) f[p(vj)][pt(vi)]:=1; 

} 

}//virtual reachability in 2D array f 

do 

{ 

for m:=1 to n 

             {m2:=Rect(vm); if(max<m2) {max:=m2; w:=vm; }} 

V Lin(v) Lout(v) 

n1 

 

{} {n5, n6} 

 n2 

 

{n1} 

 

{n6} 

 n3 

 

{n1} 

 

{n5} 

 n4 

 

{n1} 

 

{n6} 

 n5 

 

{} 

 

{n1, n3} 

 n6 

 

{} 

 

{} 

 n7 

 

{n2, n5} 

 

{n10} 

 n8 

 

{n5, n6} 

 

{n10} 

 n9 

 

{n6} 

 

{n10} 

 n10 {n5, n6} {} 

 

60Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-228-8

SOTICS 2012 : The Second International Conference on Social Eco-Informatics



//get w in V with maximum count from  Rect(w).Let rf[i][j] 

//be the array where reachability  of node ‗w‘ is stored. 

for i:=1 to n{  for j:=1 to n{if(rf[i][j]=f[i][j] & f[i][j]=1){ 

F.add (p
-1

(i)); T.add (pt
-1

(j)); f[i][j]:=0;}}} 

H.add(S (F, w, T)); F.empty (); T.empty (); 

} while (atleast one value in 2D array f is 1); 

return H; 

} 

Rect(w) 

{ count:=0; 

 //I(w)={[s1,e1],s2,e2]..[sn,en]} & similarly for It(w). 

 for k:=1 to size(I(w)) for i:=sk to ek  

for l:=1 to size(It(w)) for j:=sl
 
 to el

 
  

{ 

rf[i][j]:=1; rf[p(w)][pt(w)]:=0; 

if(rf[i][j]=f[i][j]=1) count++; 

} 

return count; 

} 

 

 

Pseudocode to compute 2-hop cover 

 
In the pseudocode, the multi-interval encoding 

information is taken as input and the output returned is the 
2-hop cover H. The explanation of the pseudocode along 
with the steps of the geometry-based technique is given 
below. 

 

A. Construction of Virtual Reachability Map 

For every node vi, its reachability information is stored 
in a 2D array ‗f‘ in the pseudocode defined as follows: 

 f[i][j]=1 if postid 'i' of a node (p[vj])  lies in one of the 
intervals of vi, and ‗j‘ is the postid of the current node vi 
(pt[vi]) in  reverse DAG. 

This 2D array is termed as the virtual reachability map. 
This virtual reachability map contains the complete 
reachability information of the DAG.  

  

B. Computation of Rectangular Map 

Then, a rectangular map is created for each node vi and 
stored in a temporary 2D array ―rf‖. This map is created 
from the interval lists I and It of the current node vi. Let I= 
[[s1, e1], [s2, e2],.[sk, ek]..[sn, en]]. Let It = [[s1

1
, e1

1
], [s2

2
, 

e2
2
],. .[sl, el]... [sn

n
, en

n
]]  for vi. The rectangular map ―rf‖ 

computed in Rect(w) in the pseudocode is defined as 
follows: 

For each interval [sk, ek] in I,   
For each interval [sl, el] in It, 
rf[i][j]=1  for all integers i such that  i is in [sk, ek] and 
for all integers j such that j is in [sl, el]. 
rf[i][j]=0 if  p[vi]=i and pt[vi]=j.  

C. Derivation of 2-hop Cover 

The procedure Rect(w) returns the total number of 
matching 1s of the virtual reachability map with ―rf‖  of the 
node 'w' which is stored in variable "count". The node 
which has maximum value of ―count‖ is selected. From the 
matching 1's of ―rf‖ of such node ‗w‘, a 2-hop cluster S (F, 
w, T) is derived. For each matching value, i.e. for each  
f[i][j]=rf[i][j]=1, where 1<=i<=n and 1<=j<=n, add the node 
vi to F which has p[vi]=i and add the node vj to T which has 
pt[vj]=j. Each 2-hop cluster formed can be visualized as a 
bipartite graph with ‗w‘ as the center node of the bipartite 
graph. Thus, a 2-hop cluster is created which is added to 2-
hop cover H. Then, assign to all the matching 1s in the 
virtual reachability map the value 0 and remove ‗w‘. This 
process of matching the rectangular maps with the virtual 
reachability map is repeated until no value in the virtual 
reachability map is 1. Thus, the 2-hop cover of DAG is 
computed. 

The 2-hop clusters computed for the directed graph in 
Fig. 1 implementing the above pseudo-code are {[n1, n2, 
n4], n6, [n10, n8, n9]}, {[n1, n3], n5, [n10, n7, n8]}, {[n7, 
n8, n9], n10, []}, [], n1, [n1, n2, n3, n4]} & {[], n2, [n7]}. 
From the 2-hop cover, 2-hop labels can be derived for the 
nodes of the DAG. For each cluster S(Fw, w, Tw) , for each 
node ‗u‘ in Fw, add ‗w‘ to Lout (u) and for each node ‗v‘ in 
Tw, add w to Lin (v).For instance, 2-hop labels derived for 
the directed graph in Fig. 1 are shown in Table II. Thus, 2-
hop labels are constructed for the nodes of DAG. 2-hop 
labels for the other nodes of the directed graph are same as 
2-hop labels of the maximal strongly connected nodes of the 
directed graph that represent them in DAG. 

V. EXPERIMENTAL RESULTS 

The graph data can be a large real XML document like 
DBLP data (http://dblp.uni-trier.de/xml/), or synthetic XML 
data like XMark [11] which are parsed to derive the directed 
data graph. XMark is a synthetic XML benchmark known 
for its irregular schema. There are elements that internally 
refer to other elements in the document which can be used 
to encode the XMark XML document as a directed graph 
with elements as nodes and parent-child relationships and 
referencing relationships as edges. The xmlgen tool of 
XMark constitutes a scaling factor which can be adjusted for 
generating XML documents with varying sizes. 

We conducted our experiments on Dell laptop with 2.10 
GHz processor and 3.0GB RAM running on Windows 7 in 
Java. 2-hop clusters are computed for XMark benchmark 
XML files using the efficient geometry based approach with 
the results outlined in the Table III. The last column in the 
Table III shows 2-hop labels  which are computed from the 
2-hop clusters (shown in third column of Table III). Fig. 3  

61Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-228-8

SOTICS 2012 : The Second International Conference on Social Eco-Informatics



TABLE III.  EXPERIMENTED DATA AND RESULTS 

XMark  

scaling 

factor 

 |V| 

of 

Directed 

Graph 

 |E| 

Of Directed 

Graph 

No. of 2-

hop 

clusters 

|S| 

 2-hop label 

size |L| 

0.0001 372 438 109 891 

0.0005 757 882 182 2444 

0.0007 1143 1355 304 3237 

0.0008 1158 1358 292 3419 

0.001 1677 1961 480 4663 

 
 

 
Figure 3. Comparison of Multi-interval Encoding size and 2-hop Labeling 

size to Transitive Closure size 

 
shows significantly less 2-hop label size computed using our 
approach when compared to transitive closure size.  
 

VI. CONCLUSION AND FUTURE WORK 
The approach for computing 2-hop clusters is an 

efficient geometry-based approach which is tested on 
XMark XML files. From each 2-hop cluster S(Fw, w, Tw), 2-
hop reachability labels are constructed by adding center 
node ‗w‘ to the label Lin(v) where ‗v‘ is one of the nodes in 
Tw and adding center node ‗w‘ to the label Lout(u) where 
‗u‘ is one of the nodes in Fw. The results shown in Fig. 3 of 
2-hop labels computed show the significant amount of 
compression of transitive closure which indicates the 
efficiency of our approach. Using the 2-hop labels computed 
from 2-hop clusters, base relations and cluster-based index 
will be constructed that will be used in implementing the 
join-based algorithms [1] for efficiently solving the graph 
pattern matching problem. 
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