
Integrating Privacy During Requirements Capture
for Ubiquitous Computing

Richard Gunstone
Computing and Informatics, School of Design, Engineering and Computing

Bournemouth University, Poole, Dorset, United Kingdom
rgunstone@bournemouth.ac.uk

Abstract—Use cases are used extensively in software require-
ments capture and representation in contemporary software
system analysis and design. Ubiquitous computing systems are
likely to require a high degree of user-centric requirements
capture if they are to meet the often demanding requirements
of the modern computer user. Such systems have a strong
association with privacy issues, and their users are likely to
have highly adaptive, complex privacy needs. This paper proposes
a synthesis and extension of exant approaches to misuse cases
for the special case of privacy issues in developing ubiquitous
computing systems, catering for privacy enhancing technology.
By incorporating privacy at the earliest and most critical phase
of system development, we propose the enhancement provides
greater emphasis on addressing privacy needs during systems
development.

Index Terms—use cases; privacy; ubiquitous computing

I. INTRODUCTION

Use cases have found frequent use in software require-
ments capture and representation in contemporary software
engineering and they are frequently integrated into business
processes. The requirements engineering process is widely
recognised as being crucial in the process of building a
software system, by building a specification through iterative
processes of elicitation, specification, and validation, ideally
integrating multiple viewpoints to encourage objectivity [1].

The concept of ubiquitous computing is often attributed to
Mark Weiser [2]. His vision of a pervasive, connected world
through which computing would adapt to the environment,
rather than the reverse, holds significant promise as a future
paradigm for computing. Similarly, we view ubiquitous com-
puting as a move toward an environment where technology
diffuses into the background and where software systems
are used that adapt to user needs autonomously. Ubiquitous
computing examples are wide and varied, but they tend to
require relatively advanced functionality in networks, context-
awareness, and interaction design. Recent developments in
consumer technology, particularly the convergence of techno-
logies and information on mobile devices, have highlighted a
growing interest in computers serving as communication tools
in societal contexts. Use cases offer the potential to support
the development of ubiquitous computing technology, where
a high degree of user-centric requirements capture is likely to
be necessary.

Use cases (or scenarios) serve as projections of future
system usage and as projected visions of interactions with a

designed system [3], providing a number of benefits to both
requirements and software engineering. Use cases–as proposed
originally and referred hereafter to as Ordinary Use Cases or
(OUCs)–offer scalability and iterative improvement support
[1], an intuitive graphical notation scheme; their use of natural
language offers benefits such as partial specification and an
opportunity to capture the user viewpoint [4]. They are also
thought to suffer a number of disadvantages, including a lack
of formal syntax and semantics that can lead to ambiguity, and
not being amenable to formal analysis [1, 5].

While use cases offer benefits, their limitations have led
to several proposals that aim to extend or replace the core
modelling technique. In the following parts of the paper we
focus particularly on privacy extensions to the requirements
capture part of the development process. These extensions
sit within a broader effort to address many of the problems
identified with the original use case approach adopted by
practitioners.

Modifications proposed in the literature sit within a spec-
trum of primarily augmentation approaches (i.e. incremental
enhancements) on the one hand, and more extensive replace-
ments formalisms on the other. Examples include incorporat-
ing goals and Non-Functional Requirements (NFRs), [6], e.g.,
the work of Lee and Xue [5], the use of more structured
representations [4], using a more formal methodology for
pre- and post-conditions [7], or considering the system within
the environment [8]. Examples of more radical changes to
the use case representation include the use of Petri nets via
Constraints-Based Modular Petri Nets (CMPNs) [1] and Place
Transition nets (PT or PrT nets) [9] and the generation of
test requirements. We recognise some of these formalisms
(e.g., PrT nets) are particularly interesting in their suitability
for representing cross-cutting requirements such as security
requirements.

We do make the implicit assumption however that augment-
ation of the methodology is appropriate for the purposes of
privacy, rather than a complete replacement of the formalism.
We note the observation made by Glinz, that while formal
representations are useful for analysis and can achieve high
levels of precision, this comes at the expense of readability
and effort to write the scenarios [4].

The remainder of this paper is structured as follows. In
section II, we explore the nature of privacy in the context of
ubiquitous computing, contrasting to the similar, sometimes
overlapping but distinct concept of information security. In

75

SOTICS 2011 : The First International Conference on Social Eco-Informatics

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-163-2

section III, we attempt a synthesis of extant approaches to
MUCs (that cater primarily for information security) and adapt
these to the special case of privacy issues in developing UCSs.
The paper is finished with conclusions and acknowledgements.

II. A NEED TO CATER FOR PRIVACY

We make the distinction in this paper between on the one
hand information security, which is primarily concerned with
the confidentiality, integrity, and availability of information,
and privacy on the other. While Information Security is often
an important element in ensuring effective privacy controls, it
does not encompass all aspects of privacy provision. Similarly,
privacy is not equivalent to information security.

Privacy is a difficult concept to formally specify, particularly
for ubiquitous computing (and for computing more generally).
At a theoretical level, theorists have evolved their articulation
of privacy since the early legalistic definitions [10]. There has
been a particular change in immediacy from the likes of territ-
orial privacy toward more contemporary notions of remote pri-
vacy concerned with communications and information. As part
of this change, privacy has evolved into a multidimensional
concept (c.f. Marx’s personal border crossings for natural,
social, spatial/temporal, and ephemeral/transitory aspects of
privacy [11]).

On a practical level moving from theories of privacy, which
are useful in exploring the efficacy of the concept, toward
building complex ubiquitous computing systems (UCS), inev-
itably requires specific technical developments to the system
design to ensure privacy can be protected or enhanced. This
necessitates the implementation of technical measures–Privacy
Enhancing Technology (PET). (Indeed, the introduction of
PET serves to contrast ubiquitous computing privacy versus
the classical models of privacy mentioned earlier.)

Individual users typically have dynamic privacy expect-
ations. Such expectations vary according a multiplicity of
factors (that are much more specialised than the broad themes
proposed by Marx), for example: the other parties involved,
timing, events, decisions recently made, the type of informa-
tion to be shared, what the information will be used for. In
tackling this highly variable user requirement, the provision of
a suite of technical measures to fortify privacy and controlled
by the user, therefore becomes crucial. (Indeed, this trend to
push the locus of control for individual privacy to the user is
increasingly commonplace in other areas of computing e.g.,
social networks).

Ubiquitous computing takes privacy considerations for con-
temporary computing much further, because a UCS is intrins-
ically based upon the collection and processing of information
about their users, the environment, their property, actions, and
so on. This information is collected all or most of the time,
senses information types that are not readily accessible in
contemporary computing paradigms (such as video camera
feeds of rooms, contents of fridges via RFID, etc.), and is
extensively processed to yield new useful information that can
aid the activities of its users. Thus we argue a special treatment
of privacy in ubiquitous computing is necessary and justified.

It is worthwhile at this point elaborating on what this paper
regards as PET. We define PET to be ‘technical means through

which privacy can be preserved or enhanced according to the
needs of the user’. PET can be implemented under a variety
of categories, with some typical examples including: (1)
Information management policies and provision of policy spe-
cifications and management infrastructure to govern the release
of information, to whom and for what purpose, for how long,
etc.; (2) Statistical anonymisation, encompassing techniques
such as k-anonymity, and location cloaking such as adding
noise, or discretization of location data; (3) Communication
privacy including traditional approaches to ensuring privacy
(encryption); (4) Identity authentication and authorisation,
including federated identity technologies such as Shibboleth.
(The broad range of PET categories serves to underline the
need to derive PET from an analysis of risk during the design
and development of a UCS.)

Privacy risks in ubiquitous computing are not often readily
apparent, but surface in unanticipated ways often through
the use of sources of information in unanticipated ways. A
typical example is a ubiquitous computing infrastructure that
collects information over a period of time and then due to
an absence of privacy safeguards allows this information to
be made available to an external party who takes actions
that are unwanted by the user. For example, a smart space
(environments equipped with extensive ubiquitous computing
infrastructure) that monitors the amount of waste over a period
of time, but then makes this information available to a local
waste authority who made a supplementary charge for the
property, clearly raises privacy and ethical questions. (For
example, should UCS users be at a disadvantage to other
members of society who do not use UCSs?)

Fundamentally, the use of ubiquitous computing technology
implies the sharing of the association between identity and
types of data that are often considered personal, for instance
real-time location information. Poorly designed ubiquitous
computing architectures open the opportunity for information
to made available, and subsequently used, in a way that does
not uphold such privacy requirements.

Addressing privacy considerations is, then, a mixture of
countermeasures to enhance privacy (sometimes referred to
as privacy enhancing technology or PET) and a consideration
of potential privacy-breaching activities. We established in
Section 1 that the requirements engineering process is widely
recognised as being crucial in the process of building a
software system, and thus we argue the process of identifying
suitable countermeasures should begin when requirements are
being established. Similarly, use cases are a logical method-
ology to adopt given the benefits discussed earlier. However,
in their extant form use cases are not ideal in that they tend
to model the intent of cooperative users of the system.

We draw attention to this, and underline the need to be able
to explicitly represent (1) PET; (2) the uncooperative users of
the system (or information) and (3) the relationships between
OUCs, privacy risks and PET. While it may be possible to
use OUCs to represent privacy requirements, without explicit
elements within the formalism to represent these aspects
the requirements engineering process is potentially at risk
of losing information. Crucially, such information would be
useful for subsequent phases of UCS development.

76

SOTICS 2011 : The First International Conference on Social Eco-Informatics

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-163-2

As has been established, the existing meta-model for OUCs
does not provide formalism for representing these extensions.
Thus, it is desirable to extend the use case methodology
to accommodate privacy concerns, and to potentially have a
means to develop the requirements and consequential system
design in such a way as to address any concerns identified
during use case analysis. Any PET identified can then be
developed sourcing appropriate requirements in the use case
model.

III. REPRESENTING PRIVACY USING USE CASES

In developing a use case augmentation that can cater for
privacy, there are several considerations. Firstly a represent-
ation must be able to represent the risks to privacy; that is,
the representation should explicitly model the risk formally
without recourse to supplementary models. The representation
should also be able to represent the PET to counter such
risks; it should contain sufficient information to lead to the
development of PET as requirements are carried through from
the requirements capture phase through all subsequent phases
of the ubiquitous computing project. Finally, the augmentation
should provide a straightforward way of translating all relevant
use cases into implementation, particularly with respect to
privacy features.

One approach to representing privacy concerns is to ex-
tend the use case diagram to accommodate features that are
complementary to the ’cooperative’ elements discussed earlier.
A class of use case formalism, referred variously as misuse
cases and abuse cases, has emerged in recent years, primarily
focused on Information Security risk analysis but we argue
applicable more broadly to privacy.

Alexander presents a well-known extension using the “mis-
use case” (MUC) [12], that has been acknowledged in various
studies. This concept simply represents a negative scenario,
a use case from the point of view of an actor hostile to the
system. An example of a malevolent actor might be a car
thief, a hacker, a rogue employee, or non-human entity (or
process such as the weather). Such actors are represented
diagrammatically as an additional actor. Using Jacobson’s
original use case formalism, the MUC is represented as a series
of parallel use cases that threatens the ability of the friendly
actor to perform an ordinary use case. A MUC describes
potential system behaviours that are deemed unacceptable to
the stakeholders of a system [13]. MUCs are structured and
use the same representational principles as ordinary use cases.
Their connection to ordinary use cases are represented via
«threatens» and «mitigates» relationships between the two
types of case respectively, leading to a zigzag pattern of play
and counter-play. In so doing, they potentially represent a
means through which risk can be explicitly modelled.

In Alexander’s approach, an iterative style of development
leads to an enumeration of MUCs and additional use cases
that can mitigate the threat posed by MUCs. During the re-
quirements elicitation process the requirements analyst should
enumerate each stake holder’s ‘doomsday scenario’, in order
to identify potential misuse cases [13]. Through an iterative
process it should be feasible to enumerate all potential use

cases and MUCs (as far as practicable). MUCs also provide
a basis for developing new subsystems and components that
lead to countermeasures. These developments may themselves
lead to new types of threat, that require the evaluation of
further countermeasures, thus spurring on the iterative process
to conclusion.

In practice countermeasures derived from use case analysis
are likely to vary depending on context of use. For instance,
a financial trading system may use the same software product
family as a small business, however the consequences should
confidentiality be compromised are potentially more signi-
ficant. Authentication in such a case, may require a more
complicated form of authentication rather than simple pass-
word authentication. (It follows, therefore, that some variance
in implementation may emerge depending on the software
product line.)

This particular aspect of uses cases is explored in [14]
where the authors propose the introduction of separate use
cases to the use case diagram (i.e. the development of a
parallel model to support the main use case model). Their ra-
tionale for separation is to reflect the variability in application
and security requirements and consequently they propose a
separation of security concerns is appropriate for use cases.
In this approach, Security Use Cases (SUCs) are specified
separately to the application use cases and can incorporate
parametrisation. SUCs are subsequently integrated into the
use case diagram using extension points, which focus as the
“bridge” between the UC and SUC models. For instance,
a parametrised SUC may be defined for an authentication
service, which determines whether the accessor is a valid user.
This could be subsequently fulfilled by two alternate use cases
for example, one authenticating using an ID and password,
and the other authenticating using a biometric (such as a
fingerprint). This leaves the application use cases to specify
business functionality, and the parameters for the SUCs are
set, as mentioned, on the basis of the product line.

Similarly, Rosado et al. [15] (looking at Grid computing)
also identify a need for SUCs, and propose extensions includ-
ing specialisations of the generic use case for misuse, mobility,
and security (Røstad proposes an extended notation for misuse
cases [16] particularly focused on Information Security and a
review of previous work in the area of misuse cases).

A number of observations are appropriate on the basis of
such studies, particularly with a view to the development of
PET in ubiquitous computing: (1) it is not feasible at the
requirements capture stage to overlook events that may impact
the privacy expectations of the anticipated users of a system.
As the introduction noted, the requirements engineering pro-
cess is widely recognised as being crucial in the process of
building a software system [1]. Indeed retro-fitting PET to
a system that has not been developed from first-principles to
cater for privacy is unlikely to be economic or straightforward;
(2) use case models need to represent additional actors in
addition to the anticipated actors or users of the system. At a
minimum an additional class to cater for “misusers” or similar
of a system is necessary; (3) a commonality across several
extensions to the use case formalism is that a further type
of use case is necessary to cater for categories of risk that

77

SOTICS 2011 : The First International Conference on Social Eco-Informatics

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-163-2

misusers of a system present (the “misuse case”); (4) a further
use case type is necessary to encapsulate countermeasures;
and, (5) extension points offer a means through which a use
case model can ‘drill down’ to a level of detail suitable for
the development of countermeasures.

We thus envisage two actors as follows: (1) The uncooperat-
ive user or actor (akin to “misuser” in MUCs) is an individual
who wishes to invade the privacy of a legitimate user of the
system; (2) The legitimate user or actor (“ordinary actor”) is
one who the UCS is designed for and both performs legitimate
actions using the UCS, and performs actions that protect or
enhance his or her own privacy. Considered together, three
tiers of activity emerge, leading to the following types of use
case (‘prototypes’ in the terminology of Rosado et al.):

OrdinaryUseCase (UC)–this is a use case of the form
currently used in mainstream use case modelling, representing
the legitimate actions of the “ordinary actor”. This continues
to represent a flow of events [1], includes a description
comprising structured or unstructured text [17], contains a
sequence of actions (or transactions) performed by the system
leading to an observable result that is of value to an actor
[17, 18, 19]. The standard relationships «extend» and «in-
clude» are compatible with this type. UCs are evolved using
standard, widely-accepted practices.

PrivacyMisuseUseCase (PMUC)–this represents a privacy
risk to the privacy expectations of ordinary users of the system.
Within this context, the PMUC represents the characterist-
ics associated with the standard use case. The relationships
«threaten» and «mitigate» are compatible with this type, after
Alexander [12]. (To aid reproduction, we represent the PMUC
as a double-circled variant of the standard use case.)

PrivacyEnhancingUseCase (PEUC)–this represents a
privacy-enhancing use case, and acts as the anchor point for
PET. We propose this type will normally be associated with
an extension point that permits a range of PET options. The
relationship «threaten» (from a PMUC) is compatible with
this type. (This diverges from Røstad’s proposal, which uses
the standard use case type for countermeasures and is more
straightforward.)

PETUseCase (PET)–anchors to the extension point of the
PEUC and can use the «mitigate» relationship. This is used
to represent PET within the model. At the extension point we
propose they may or may not be included as part of the main
use case model, decided as necessary by the analyst. (Diver-
ging from the practice advocated in [14].) The relationship
«mitigate» is compatible with this type, after Alexander [12].

Further, we define the following additional type of actor:
UncooperativeActor (UA)–an actor associated with PMUCs,

for whom the successful completion of their nefarious activity
achieves value. While the use case model is not intended to
cater for this type of actor in terms of services offered by the
system, their inclusion is (as the paper implies) to develop
countermeasures to safeguard the privacy of the intended
users. Within this context, the UA shares the properties and
characteristics of a standard actor in the use case meta model.
(This actor is complemented by the conventional UML actor,
which we abbreviate as Cooperative Actor or CA.)

A complexity with this proposal when representing privacy

Figure 1. The main diagrammatic elements for modelling privacy in the
proposed model. The introduction of a third tier concerned with Privacy
Enhancement serves to contrast the proposed approach with traditional Mis-
useCases (MUCs).

at the use case analysis stage is how best to represent the
interplay between privacy threats and the actions of the co-
operative user of the system. Encapsulating this by linking
PMUCs directly to OUCs (via e.g., <<threaten>>) might
appear sufficient, however this implies a threat to the actions
of the CA more akin to traditional Misuse Cases (MUCs),
whereas in the case of privacy, the CA will usually be able
to perform their actions regardless of any privacy threats,
with privacy risks surfacing subsequently and not directly
jeopardising the original activity. The unwanted tracking of
a UCS user, for instance, does not necessarily jeopardise
the sharing of location information. We propose this logical
impasse can be overcome by assuming the areas where the
CA wishes to enhance privacy are known to the CA and these
are correspondingly represented separately in a second middle
tier; the interplay then occurs between the PMUCs of the
UA and the PEUCs (and PETs) of the CA. (This leaves the
conventional use case analysis separate.) Figure 1 shows these
new constructs diagrammatically.

This additional group of PEUCs can be enumerated accord-
ing to the following outline repetitive process for developing
and elaborating the use case model: (1) Identify, enumerate
and represent the Ordinary Use Cases (OUCs) of the CA;
(2) Identify, enumerate and represent the Privacy Misuse Use
Cases (PMUCs) of the UA. (These represent the privacy
threats to the normal performance of OUCs.); (3) Identify, enu-
merate and represent Privacy Enhancing Use Cases (PEUCs)
to counter the privacy threats posed by PMUCs. Generic
PEUCs are appropriate in this type of use case, for instance
“Cloak location data”; (4) Identify, enumerate and represent
Privacy Enhancing Technology (PET) use cases attached to
relevant extension points on the PEUCs identified above.
An example of PET for an extension point for the previ-
ous example may be “Discretize location” or “Implement k-
anonymity or return no information”; (5) Repeat steps until
use case analysis is complete.

In terms of their textual representation, PMUCs, OUCs, and
PEUCs should share the conventional textual representation of

78

SOTICS 2011 : The First International Conference on Social Eco-Informatics

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-163-2

contemporary use cases, adapted as appropriate to privacy.

IV. CONCLUSION

Use cases have achieved widespread use in software engin-
eering problems, and more widely as a generic term for user
needs from products and services.

In this work-in-progress paper, we have proposed a syn-
thesis of extant approaches to MUCs and evolved these to the
special case of privacy issues in developing UCSs. The pro-
posed approach is particularly attuned to the PET requirements
of ubiquitous computing.

In modelling privacy at the use case development stage a
number of advantages are evident:

• Privacy is explicitly modelled early-on during the system
development process (the most critical phase of system
development). This provides an opportunity to carry
through the privacy requirements identified during use
case analysis through into system development.

• Privacy-enhancing technology is accommodated in the
use case model, and the analyst has a choice as to whether
to include PET use cases directly via extension points into
the use case model, or to represent these separately.

• The use case development process for misuse cases
provides an outline of the iterative process required to
develop use cases, PET and associated privacy-related
use cases. Through iterative development, PET should
emerge from the use case model to enhance the system
development process.

• The modifications represent an augmentation to the stand-
ard use case methodology, providing familiarity and a
straightforward development process for software engin-
eering and development.

Further developments to this approach include validating
the methodology against a real-world system example, and
introducing a more formalised description of the elements
introduced (akin to the modelling approached used in [14]).

V. ACKNOWLEDGEMENTS

The author is particularly grateful to the anonymous review-
ers for their fair and reasoned contributions.

REFERENCES

[1] W. J. Lee, S. D. Cha, and Y. R. Kwon, “Integration
and Analysis of Use Cases Using Modular Petri Nets
in Requirements Engineering,” IEEE Transactions on
Software Engineering, vol. 24, pp. 1115–1130, December
1998.

[2] M. Weiser, “Some Computer Science Issues in Ubiquit-
ous Computing,” Commun. ACM, vol. 36, pp. 75–84, July
1993.

[3] A. G. Sutcliffe, N. A. M. Maiden, S. Minocha, and
D. Manuel, “Supporting Scenario-Based Requirements
Engineering,” IEEE Transactions on Software Engineer-
ing, vol. 24, pp. 1072–1088, December 1998.

[4] M. Glinz, “Improving the Quality of Requirements with
Scenarios,” in Proceedings of the Second World Congress

for Software Quality (2WCSQ), (Yokohama), pp. 55–60,
September 2000.

[5] J. Lee and N.-L. Xue, “Analyzing User Requirements by
Use Cases: A Goal-Driven Approach,” IEEE Software,
pp. 92–101, July/August 1999.

[6] L. M. Cysneiros and J. C. S. do Prado Leite, “Non-
functional Requirements: From Elicitation to Conceptual
Models,” IEEE Transactions on Software Engineering,
vol. 30, pp. 328–350, May 2004.

[7] C. Nebut, F. Fleurey, Y. L. Traon, and J.-M. Jezequel,
“Automatic Test Generation: A Use Case Driven Ap-
proach,” IEEE Transactions on Software Engineering,
vol. 32, pp. 140–155, March 2006.

[8] J. B. Jorgensen and C. Bossen, “Executable Use Cases:
Requirements for a Pervasive Health Care System,” IEEE
Software, pp. 34–41, March/April 2004.

[9] D. Xu and X. He, “Generation of Test Require-
ments from Aspectual Use Cases,” in Proceedings of
WTAOP07 Workshop, (Vancouver, British Columbia,
Canada), pp. 17–22, ACM, March 2007.

[10] S. D. Warren and L. D. Brandeis, “The Right to Privacy,”
Harvard Law Review, vol. IV, December 1890.

[11] G. T. Marx, “Murky Conceptual Waters: The Public and
the Private,” Ethics and Information Technology, vol. 3,
no. 3, pp. 157–169, 2001.

[12] I. Alexander, “Misuse Cases: Use Cases with Hostile
Intent,” IEEE Software, pp. 58–66, January/February
2003.

[13] G. Peterson and J. Steven, “Defining Misuse within
the Development Process,” IEEE Security and Privacy,
pp. 81–84, November/December 2006.

[14] H. Gomaa and M. E. Shin, “Separating Application and
Security Concerns in Use Case Models,” in Proceedings
of EA09, (Charlottesville, Virginia, USA), ACM, March
2009.

[15] D. G. Rosado, E. Fernandez-Medina, and J. Lopez,
“Reusable Security Use Cases for Mobile Grid Envir-
onments,” in Proceedings of ICSE09 Workshop, SESS09,
(Vancouver, Canada), pp. 1–8, IEEE, May 2009.

[16] L. Rostad, “An extended misuse case notation: Including
vulnerabilities and the insider threat,” in Twelfth Working
Conference on Requirements Engineering: Foundation
for Software Quality (REFSQ06), (Luxembourg), June
2006.

[17] D. Leffingwell and D. Widrig, Managing Software Re-
quirements: A Use Case Approach. Addison-Wesley
Professional, 2 ed., May 2003. Print ISBN-10: 0-321-
12247-X; Print ISBN-13: 978-0-321-12247-6.

[18] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse:
Architecture, Process and Organisation for Business Suc-
cess. Reading, MA: Addison-Wesley/ACM Press, 1997.

[19] A. J. H. Simons, “Use Cases Considered Harmful,” tech.
rep., University of Sheffield, 1999.

79

SOTICS 2011 : The First International Conference on Social Eco-Informatics

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-163-2

	Introduction
	A need to cater for privacy
	Representing Privacy using Use Cases
	Conclusion
	Acknowledgements

