
A Federated Source Code Quality Query and Analysis Platform

Tugkan Tuglular

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkiye

email: tugkantuglular@iyte.edu.tr

Emre Baran Karaca

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkiye

email: emrekaraca@std.iyte.edu.tr

Onur Leblebici

Univera Inc.

Izmir, Turkiye

email: Onur.Leblebici@univera.com.tr

Naşit Uygun

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkiye

email: nasituygun@std.iyte.edu.tr

Osman Anıl Hiçyılmaz

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkiye

email: osmanhicyilmaz@std.iyte.edu.tr

Abstract—The typical approach to data analysis is to store,

query, and analyze data in a central location. In the case of

source code, where multiple organizations or partners in a

consortium contribute to a software, the repositories would be

distributed and might be private. Within such a setting, one

goal would be achieving and maintaining a certain level of

source code quality across the consortium. One solution is to

consider each partner as a node in a federated network. This

paper proposes a federated code quality query and analysis

platform. It further presents the features and the design of this

platform.

Keywords-source code quality; federated network; federated

query; federated analysis.

I. INTRODUCTION

There are cases where each partner in a consortium, such
as in the NESSI-SOFT project [1] in the Sixth Framework
Programme and in the MODUS project [2] in the Seventh
Framework Programme, does not want to share all of its
source code but needs to be queried whether holding a pre-
determined minimum source code quality level so that a
certain level across the consortium is achieved and
maintained. For such cases, one solution is to build a
federated network so that each node in this network has its
privacy, but shares required quality information. This paper
considers this setting for source code quality and proposes a
Federated Source Code Quality Query and Analysis
(FSCQQA) platform. The setting is visualized in Figure 1.

The FSCQQA platform consists of a central site as seen
at the top of Figure 1 and multiple sites, which are peers. It is
a kind of peer-to-peer network, where the peers accept and
follow a general policy and corresponding rules. In addition,

the central site is responsible for inclusion and removal of
peer sites with respect to the general policy. Such platforms
are on the rise especially in the health field, where privacy
regulations and expectations are high, and accountability is
enforced at state level. The proposed FSCQQA platform is
one of the early attempts, where the idea is applied to source
code, but not health records. Therefore, we believe that there
is a practical gain from such a platform proposal.

Figure 1. The FSCQQA platform overview.

41Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

The proposed platform is not only for consortiums to
utilize. A global software company with development sites in
various countries can also benefit from the FSCQQA
platform. In this setting, concerns like revealing too much
information about the software under development and the
software development team may be relieved.

The FSCQQA platform offers opportunities for querying
and monitoring source code quality across a consortium.
This platform can facilitate analyzing how source code
improvements are performed and how defect numbers are
minimized. The FSCQQA platform has the following
features:

• Analyze software quality with defect and source
code metrics.

• Share defect and source code metrics with peers and
consortium administration/management.

• Follow trends and improve.

• Compile federated historical data on defects and
source code quality.

The features are kept at minimum in the paper, but they
can be extended easily. To serve these features, the
FSCQQA platform provides a data infrastructure, a software
stack, and the operations on them. The proposed design is
novel. The FSCQQA platform can be used for source code
quality and defect prediction in the future.

As of today, there are multi-site software development
companies whose sites are globally distributed. Each site is
autonomous to some degree, but they are subject to central
management rules. In such a setting, tracking each site’s
software quality and achieving an overall performance is not
easy. Such a platform would be beneficial to them as well.

The paper is organized as follows: Section II presents the
bug, or defect, datasets and source code quality metrics.
Section III explains the proposed platform. Section IV
outlines related work, and the last section concludes the
paper.

II. FUNDAMENTALS

A. Bug Datasets

Lately, bug datasets are composed for bug or defect
prediction. Following this, Ferenc et al. [3] compiled and
standardized existing public bug datasets. The same group
[4] extended their bug dataset and made the dataset publicly
available at [5]. Several research works have produced and
utilized bug datasets to develop and evaluate novel bug
prediction methods. The objective of their study is to collect
and combine current public source code metrics-based bug
databases. In addition, they evaluated the abundance of
gathered metrics and the bug prediction skills of the unified
bug dataset. One research direction in this field moves
toward combining bug datasets with software code quality
metrics for better prediction. One of the first attempts is
published by Osman et al. [6]. They evaluated sixty distinct
bug prediction setting combinations on five open-source Java
projects using a cost-aware evaluation scheme. Change
measurements combined with source code metrics were
discovered to be the most cost-effective option for
developing a bug predictor. Another example of this work is

presented by Mashhadi et al. [7]. They conducted a
quantitative and qualitative study on two prominent datasets
(Defects4J and Bugs.jar) utilizing 10 common source code
metrics, as well as two popular static analysis tools
(SpotBugs and Infer), for the purpose of evaluating their
capacity to anticipate flaws and their severity.

B. Source Code Quality Metrics

Software quality metrics have been proposed for decades.
The literature starts in 1970s. In the 1980s and 1990s, design
metrics and their impact on software and source code were
mainly studied. Henry and Selig [8] published a book on
design metrics, which predicts source code quality. Two
early research works specifically on source code quality
metrics are by Pearse and Oman [9] and by Welker et al.
[10]. They worked on the maintainability of source code.

With the popularity of object-orientation, the research in
this area was intensified. Nuñez-Varela et al. [11] did a
comprehensive mapping investigation on 226 articles that
were published between 2010 and 2015 and discovered
nearly 300 source code metrics. Even though object-oriented
metrics have received a great deal of attention, there is a
need for greater research on aspect and feature-oriented
measurements. Prediction of software faults, complexity, and
quality evaluation were recurring themes in these
investigations.

Currently, there are separate tools as well as tools
embedded into platforms, which not only produce source
code quality metrics but also calculate technical debt. The
next step for these tools seems to be towards predictions and
suggestions for better code quality. Our vision and current
attempt are in the same direction.

III. PROPOSED PLATFORM

We propose a federated code quality query and analysis
platform, called FSCQQA. In this section, we first explain
our design goals, such as “authentication and authorization”
and “logging and monitoring” and continue with the services
the FSCQQA platform provides. Some local services may
vary between sites, but standardized procedures and rules
will be implemented to ensure uniform administration and
oversight. Finally, we present our user interface design to
give a sense of use cases for the FSCQQA platform.

A. Design Goals

The major design goals are as follows:
Authentication & Authorization (AA): Each partner or site

may have its own AA mechanism implemented. Then, each
partner is responsible for the FSCQQA platform for its users’
queries. Each query includes the user and site identification;
the site is responsible for logging the queries.

Access Control (AC) Policies: Each site may have its
policies and regulations depending on the country where the
site is. Therefore, the response to each query is filtered
locally before sending. Each site should guarantee that any
response does not contain any personal identifiable
information.

Secure Communication: Each site must be able to
communicate securely with trustworthy peers. All nodes

42Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

exchange secure Public Key Infrastructure certificates in
order to establish trust. While the FSCQQA platform is a
federated network, the security of the nodes is only as strong
as the network's weakest link.

Logging and Monitoring: Every query executed by a
node should be recorded in an audit trail that the peer sites
could view. The logs will be monitored by the central site for
anomalies.

Standard APIs: Each site should provide standard APIs
defined by the FSCQQA platform. Although the FSCQQA
platform provides a software agent called FSCQQA agent to
fulfil this requirement, the site may choose to implement its
own software agent.

Source Code Repositories: The FSCQQA platform
provides a software agent to work with GitHub [12]
repositories. However, this is not a must. Any site can work
with any source code repository but must ensure that
standard APIs required by the platform are provided.

Management of Federated Platform: There is a central
site responsible for the management of partners and their
sites. These management operations include adding and
removing partners and sites (a partner may have more than
one site), constantly informing partners about other alive
partners and sites, and collecting velocity and trend
information from site.

B. Services

The FSCQQA platform defines two types of services,
one provided by the FSCQQA agent and the other by the
standard FSCQQA APIs. The FSCQQA agent is
customizable through configurations with the following
parameters:

• GitHub repository address

• GitHub repository access rights
The FSCQQA agent automatically generates local defect

database for each site from a GitHub repository by extracting
commit/issue histories and analyzing them. At the same
time, it collects software metrics, such as lines of code and
cyclomatic complexity, for each commit/issue. The defect
information with software metrics will represent source code
quality of the software developed at a site. Moreover, the
FSCQQA agent extracts source code related metrics for a
specific version using tools, such as OpenStaticAnalyzer
[13]. The process is presented as an Unified Modeling
Language (UML) sequence diagram in Figure 2. The
FSCQQA agent is also responsible for the management of
the local database for defects and metrics. To mitigate
security concerns related to such an agent software, its
source code should be open.

The standard FSCQQA APIs provide the services of the
FSCQQA platform with respect to Open-API specifications
[14]. The services are grouped as follows:

• Defect related metrics: number of existing (active)
defects, defect density, defect resolve velocity,
longest unresolved defect.

• Source code related metrics: class metrics, method
metrics, coupling metrics, cohesion metrics,
cyclomatic complexity metrics.

The services provide data for a specific version. They can
be extended to supply data between two versions, but it may
complicate the presentation of information and is, therefore,
left as future work. The service calls can be for a specific
metric or a set of metrics from a specific site or the whole
network. If the whole network is queried, the query site
requests all alive sites from the central site and queries each
one individually then accumulates the results.

Figure 2. The FSCQQA platform overview.

The central site keeps a list of alive sites in the federated
network by recording their heartbeats. Each site is expected
to send a heartbeat every hour. If a site’s heartbeat is missing
necessary notifications are performed. The central site also
holds summarized metrics for the whole network, such as
overall defect resolve velocity and its trend over some time.

C. User Interface Design

The user interface design is presented via Figures 3-5. A
user either in a site or in the central site can see the
repositories with proper access rights, as shown in Figure 3.
To mimic this operation, Figure 1 presents some public
GitHub repositories. This project repository and selection
window also indicates the status of the project with four
states: “Not Analyzed”, “Analyzing”, “Analyzed”, and
“Failed”. After selecting a project, a window like the one in
Figure 4 is shown and if the status is neither “Analyzing” nor
“Analyzed”, the "Analyze" button appears. If it has already
been analyzed, the details of the analyze operation are
shown. To see the metrics, the metrics button should be
pressed, and it takes the user to a window like the one shown
in Figure 5. It is called the dashboard and presents various
metrics with charts and graphs. Metrics, charts, and graphs
are all customizable.

IV. RELATED WORK

The concept of federated networks is not new, and they
are not limited to a certain field. The services are called
federated if their service architecture spans numerous
independent control domains [15]. It is challenging to
manage federated services and provide effective customer

43Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

assistance since only a tiny portion of the environment can
be monitored and controlled by any given authority. Bhoj et
al. [15] characterized many facets of federated networks as
early as 1997. Some other examples of federated networks
are as follows. For instance, Afsarmanesh et al. [16]
proposed the PRODNET architecture for federated
information management. Another example is Open Cirrus

[17], which is proposed to federate a multitude of sites with
diverse hardware, services, and tools for providing federated
data centers for open source systems and services research.
The sites reside on different continents and are subject to
different privacy legislation and concerns.

Figure 3. Project repository and selection user interface design.

Figure 4. Project analysis user interface design.

44Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

Figure 5. Dashboard user interface design.

The health domain is currently running federated

networks. For instance, CanDIG [18] is a Canadian national
health federated research data platform designed to assist the
finding, querying, and analysis of permitted health research
data across institutions and projects. CanDIG is the first
Canadian federation of many human genomes and
biomedical data projects. Another proposal for health
domain is the Cross-Institutional Clinical Translational
Research project [19], which investigated a federated query
tool and examined how this tool can facilitate the discovery
of clinical trial cohorts by controlling access to aggregate
patient data housed in academic medical centers that are not
linked.

V. CONCLUSION

Each day, new features are added to software, and with
each new feature, extra bugs may be introduced, and source
quality may suffer. The scenario becomes more complicated
if the software development is distributed with specific
privacy and trade secret considerations. When addressing the
challenges mentioned above, it is desired that the software
quality be maintained above a particular threshold. Toward
this goal, this paper proposes a federated source code quality
query and analysis platform called FSCQQA.

With the proposed platform, sites are not required to
disclose their codes with any other site while aiming for high
source code quality and low defect ratio. At each site, local
defect datasets will be generated and analyzed. The analysis
results as defect metrics and the source code metrics
obtained from the static analysis will be shared within the
federated network and can be queried. Furthermore, trend
analysis can be conducted at the central site and shared with
consortium sites.

As future work, federated analytics and prediction using
the local datasets are planned. The sites may push defect-
related features to the central site for future machine
learning. Such a defect database is valuable in terms of
following the reliability of each site but also in improving
defect-free development by providing in-depth analysis, such
as root-cause analysis, and suggesting training and
education. Then, the prediction model will generate
predictions on sites. The prediction model will be updated
and enhanced based on further coming data, meaning new
source code. As developer data will not be exchanged, there
will be no privacy concerns.

ACKNOWLEDGMENT

The authors would like to thank Univera Inc. for valuable
guidance.

45Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

REFERENCES

[1] “Networked European Software and Services Initiative-support

office team.” https://cordis.europa.eu/project/id/034359

(accessed Mar. 19, 2023).

[2] “Methodology and supporting toolset advancing embedded

systems quality.” https://cordis.europa.eu/project/id/286583

(accessed Mar. 19, 2023).

[3] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, “A

public unified bug dataset for java,” presented at the

Proceedings of the 14th international conference on

predictive models and data analytics in software engineering,

2018, pp. 12–21.

[4] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy, “A

public unified bug dataset for java and its assessment

regarding metrics and bug prediction,” Software Quality

Journal, vol. 28, pp. 1447–1506, 2020.

[5] “Unified Bug Dataset.” http://www.inf.u-

szeged.hu/~ferenc/papers/UnifiedBugDataSet/ (accessed Mar.

19, 2023).

[6] H. Osman, M. Ghafari, O. Nierstrasz, and M. Lungu, “An

extensive analysis of efficient bug prediction configurations,”

presented at the Proceedings of the 13th international

conference on predictive models and data analytics in

software engineering, 2017, pp. 107–116.

[7] E. Mashhadi, S. Chowdhury, S. Modaberi, H. Hemmati, and G.

Uddin, “An Empirical Study on Bug Severity Estimation

Using Source Code Metrics and Static Analysis,” arXiv

preprint arXiv:2206.12927, 2022.

[8] S. M. Henry and C. L. Selig, Design Metrics which Predict

Source Code Quality. Department of Computer Science,

Virginia Polytechnic Institute and State University, 1987.

[9] T. Pearse and P. Oman, “Maintainability measurements on

industrial source code maintenance activities,” presented at

the Proceedings of International Conference on Software

Maintenance, IEEE, 1995, pp. 295–303.

[10] K. D. Welker, P. W. Oman, and G. G. Atkinson,

“Development and application of an automated source code

maintainability index,” Journal of Software Maintenance:

Research and Practice, vol. 9, no. 3, pp. 127–159, 1997.

[11] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E. Martínez-

Perez, and C. Soubervielle-Montalvo, “Source code metrics:

A systematic mapping study,” Journal of Systems and

Software, vol. 128, pp. 164–197, 2017.

[12] “GitHub.” https://github.com/ (accessed Mar. 19, 2023).

[13] Department of Software Engineering, University of Szeged,

Hungary, “OpenStaticAnalyzer.”

https://openstaticanalyzer.github.io/ (accessed Mar. 19,

2023).

[14] “OPENAPI Initiative.” https://www.openapis.org/ (accessed

Mar. 19, 2023).

[15] P. Bhoj, D. Caswell, S. Chutani, G. Gopal, and M.

Kosarchyn, “Management of new federated services,”

presented at the Integrated Network Management V:

Integrated management in a virtual world Proceedings of the

Fifth IFIP/IEEE International Symposium on Integrated

Network Management San Diego, California, USA, May 12–

16, 1997, Springer, 1997, pp. 327–340.

[16] H. Afsarmanesh, C. Garita, Y. Ugur, A. Frenkel, and L. O.

Hertzberger, “Design of the federated information

management architecture for PRODNET,” presented at the

Infrastructures for Virtual Enterprises: Networking Industrial

Enterprises IFIP TC5 WG5. 3/PRODNET Working

Conference on Infrastructures for Virtual Enterprises (PRO-

VE’99) October 27–28, 1999, Porto, Portugal 1, Springer,

1999, pp. 127–146.

[17] R. H. Campbell et al., “Open CirrusTM Cloud Computing

Testbed: Federated Data Centers for Open Source Systems

and Services Research.,” HotCloud, vol. 9, pp. 1–1, 2009.

[18] L. J. Dursi et al., “CanDIG: Federated network across Canada

for multi-omic and health data discovery and analysis,” Cell

Genomics, vol. 1, no. 2, p. 100033, 2021.

[19] N. Anderson et al., “Implementation of a deidentified

federated data network for population-based cohort

discovery,” Journal of the American Medical Informatics

Association, vol. 19, no. e1, pp. e60–e67, 2012.

46Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

