
A Model Library Tool for Holistic Embedded
Software Design
Sven Jacobitz, Xiaobo Liu-Henke

Ostfalia University of Applied Sciences
Department of Mechanical Engineering, Institute for Mechatronics

Salzdahlumer Str. 46/48, 38302 Wolfenbüttel, Germany
Email: {sve.jacobitz; x.liu-henke}@ostfalia.de

Abstract—The ever-increasing complexity and connectivity
of mechatronic systems makes using a structured, systematic
methodology essential for embedded software design. The model-
based Rapid Control Prototyping is a widely used model-based
development process for this. Essential is a seamless support by a
Computer Aided Engineering platform. However, such platforms
are very cost-intensive, which is why the seamless low-cost
platform LoRra was developed by the authors. A key element of
this platform is the Model Library tool, which provides consistent
access and traceable change management to all data (especially
functional and plant models as well as resulting artefacts) used
throughout the holistic process of software development. Version
and configuration management also increase the reusability of
resulting artefacts. This paper presents the new ideas, used
to design the LoRra model library for the low-cost function
development of mechatronic systems. The holistic coverage of
the entire development process, from modelling to real-time
realization, is the feature, that distinguishes the LoRra model
library from existing tools.

Index Terms—Rapid Control Prototyping (RCP), low-lost de-
velopment platform, model-based design, model library.

I. INTRODUCTION

Mechatronic systems continue to increase in complexity and
functionality. This trend is a major challenge for Small and
Medium-sized Enterprises (SMEs). To remain competitive,
they need to integrate ever more intelligent hardware and
software into their products. This is not only due to the
number of functions in a system, but also to the ever-increasing
degree of connectivity between complex software components
that strongly interact with each other [1]. The structured and
systematic development of such software intensive systems is
essential to meet ever shorter development times and higher
quality requirements [2]. In this context, model-based Rapid
Control Prototyping (RCP) is a widely used methodology
for embedded software design. The seamless support by a
Computer Aided Engineering (CAE) development platform
is essential for RCP in order to achieve a high degree of
automation. Established seamless CAE tool chains are very
cost-intensive, which is a major barrier to the adoption of
the RCP process, especially for SMEs [3]. Therefore, as part
of the EU-funded research project Low-Cost Rapid Control
Prototyping System with Open-Source-Platform for Functional
Development of Embedded Mechatronic Systems (LoCoRCP),
the authors developed a seamless low-cost development plat-
form named LoRra [4].

This paper presents the conception, design and exemplary
realization of the CAE-based LoRra model library. This library
enables access to a consistent data base throughout the entire
development process, as well as traceable change management
- especially for functional or plant models and resulting arte-
facts. The rest is structured as follows: Section III summarizes
the RCP development methodology and introduces the LoRra
platform. The state of the art is outlined in Section II. In
Section IV, the concept and the basic solution approach is
presented based on a requirement analysis. The design is
detailed in Section V. Section VI is a description of the
implementation. Finally, Section VII summarizes the results
and gives an outlook on future work.

II. STATE OF THE ART

Developing in distributed teams and the associated central
data management has been an important topic in classical
software development for a long time. This is especially, due to
the high diversity, flexibility and short development times of
software [5]. Model-based software development poses new
challenges for methods and tools. To ensure the reusabil-
ity of models and the associated software functions newly,
systematic, integrated data management approaches with the
associated sub-processes, such as version and configuration
management must be used. This is important because, in
comparison to classical software development, the resulting
artefacts no longer result from manual textual changes, but
are derived from models [6].

First regulations for this came up in the early 1960s
at NASA [7]. According to Sax et al. [8], inconsistencies
during function development are increasingly caused by the
high number of variants, which can be avoided by using an
appropriate configuration management. In the context of RCP,
a CAE-based model library that manages all relevant artefacts
(result of a subprocess such as models, program source code
or documentation) is recommended for this purpose [9].

Version and configuration management is widely used in
classical software development. An overview is provided
by [10]. A primitive but widely used method is manual
versioning. A backup is generated by manual copying and
renaming. In comparison, the backup copies are created auto-
matically when version control tools are used. There are many

26Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

different kinds of software available, such as the Concurrent
Version System (CVS), Subversion (SVN) or Mercurial.

A frequently used open source tool for versioning is
GIT [11]. However, the focus of this tool is on change-based
management of text files [12]. An application of this approach
to data formats common in model-based design is not very
practicable [13]. Therefore, extensive adaptations are required
for use in a model library.

In order to identify the type and scope of the necessary
adaptations, systematic investigations were carried out by
Niedzwiedz and Frei [14], for example. Here, a model is
constructed in a standardized way from metadata, interface
information and parameters. Based on such a standardized
structure, version and configuration management can be per-
formed even for complex, integrated models. An example of
such a systematic structural description approach is the System
Entity Structure (SES) [15].

In summary, there is currently no applicable solution for
central model management within the framework of a low-
cost RCP platform. Available approaches are either designed
for textual changes, but do not offer the structures necessary
for model-based software design or do not support essential
processes, such as version and configuration management.
Approaches that exist for UML-based models, for instance (c.f.
[16]), often only support the models themselves, but not the
resulting artefacts such as the source code. Also, the holistic
coverage of the entire development process, from modelling
to real-time realization, is not supported by other tools, yet.

III. DEVELOPMENT METHODOLOGY AND PLATFORM

Due to the high system complexity of modern intercon-
nected mechatronic systems, the structured, model-based,
verification-oriented RCP process is used for software de-
velopment and validation. This consists of the process steps
modelling, analysis / synthesis, automated generation of source
code, automated implementation on real-time hardware and
online experimentation. The whole methodology is supported
by Model-in-the-Loop (MiL), Software-in-the-Loop (SiL) and
Hardware-in-the-Loop (HiL) simulations [17].

The presented methodology is characterized by a high
degree of consistency and automation, from modelling and
model-based software design to automatic code generation and
real-time realization (cf. Fig. 1 on the left). It is accompanied
by a seamless, fully automated CAE platform. The modular,
cost-effective development platform LoRra is such a CAE
platform. Fig. 1 illustrates the RCP development process,
as well as the seamless support by means of LoRra [4].
Of particular relevance here is a central model library that
makes a consistent, traceable development status available in
all process steps.

The domain-independent model library serves as a central
data base from the modelling process up to the realization.
By means of version and configuration management, model
variants can be designed, managed and integrated to higher
level models. The open source CAE tool Scilab / Xcos
(cf. [18]) is used for model analysis and synthesis of the

Modelling

Automatic C-Code
generation

Automatic
implementation

Target Hardware

RCP process

Online experiment
with HMI

Se
am

le
ss

 R
C

P
de

ve
lo

pm
en

t p
la

tf
or

m Analysis and Synthesis

LoRra-iGES
For online measurement

and calibration

LoRra-RTI
executable program file

LoRra approach

Scilab/Xcos

LoRra-Code-generator
efficient and adaptable code

Microcontroller

LoRra model libraries

Fig. 1. RCP development process with seamless support by the LoRra
platform [4].

software. It offers a wide range of functionality comparable to
those of the commercially frequently used Matlab / Simulink.
The resulting function model can be integrated directly into
the model library. Thanks to the open interfaces of the LoRra
API, existing programmes and interface drivers can also be
integrated with little effort. MiL simulations can be used to
optimize and test the developed functions at an early stage of
development.

The LoRra code generator automatically generates efficient,
modular C source code from the functional model by means
of model-to-text transformation. Open functional descriptions
of basic elements of the model, so-called basic blocks, make
the LoRra code generator flexibly extendable. The generated
source code can be re-integrated into the Xcos model without
manual work, e.g., for optimization and testing by means of
SiL simulations.

The signals to the plant models or, depending on the devel-
opment focus, to other software components are replaced by
interface blocks of the LoRra Real-Time Interface (RTI) when
the development reaches a sufficient functional status. This
enables the use of real-time hardware interfaces without man-
ual programming. In combination with hardware-specific RTI
basic software, which includes a real-time operating system
and standardised interface drivers, automated implementation
on the real-time hardware by the RTI is possible. Low-cost mi-
crocontrollers, e.g., of the STM32H7 series, are used as real-
time hardware. By means of HiL simulations, the developed
function can thus also be optimized and tested under real-
time conditions. The integrated Ggraphics-supported Experi-
mentation Software (iGES) is available as a Human-Machine
Interface (HMI). It can be used to intuitively perform and
monitor online experiments, as well as to record measurement
data by means of real-time data acquisition.

IV. CONCEPT OF THE MODEL LIBRARY

In this section, the conception of the LoRra model library
is presented. First, some approaches for the graphical user

27Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

interface development are introduced. Then, the requirements
are outlined and the initial stage for a solution is derived.

A. Human Machine Interface development approaches

Nowadays, standardised architecture styles are used for
structured software design [19]. These serve in particular to
increase reusability, to structure the design and to create a
uniform vocabulary. More than 25% of the existing styles are
used for the design of HMI [20]. In the context of this work,
the Model-View-Controller (MVC) principle is particularly
relevant.

The architectural style MVC, according to [21], is illus-
trated in Fig. 2. Here, the view (also called visualization or
presentation), the controller and the data model are realized
separately with defined interfaces. The controller component
reacts to user inputs in the Graphical User Interface (GUI)
and changes the model if necessary. Furthermore, the model
can also be changed by other software components. It notifies
the controller of the changes made. The controller updates
the presentation. Due to the low component coupling, this
principle is particularly suitable for HMI that are used on
different target platforms [22]. For example, the operating
system-dependent graphical presentation can be completely
decoupled from the controller and the model.

B. Model library requirements

As outlined in Section III, the model library is a central
tool for data management in all process steps of software
development. In order to fully support the model-based version
and configuration management approach, the model library
must meet the following overarching requirements:

1) Coherent versioning of all contained data and support for
version management processes (e.g., review, approval).

2) Supporting the data structures required for Configuration
Management throughout the process steps, as well as
the Configuration Management processes (e.g. review,
approval) to ensure a consistent data state at all times
and across all RCP steps.

3) Hierarchical structuring of the models in configurable
categories and hierarchy levels.

4) Search function to quickly find specific models, even
though a large amount of data are contained.

5) Support for distributed teams working from a common
model base.

6) Presentation of all relevant model information in one
overview.

ModelView

Controller

Output

Input

Changes

Notifies

Changes

Fig. 2. Architecture style Model-View-Controller according to [21].

C. Basic idea of the concept

In order to be fully compliant with the requirements of the
model library, the first step is a closer look at the structure of
a model. In doing this, generic and aggregated models need
to be distinguished.

A generic model is the smallest self-contained model unit at
the lowest hierarchical level. It is not subdivided into further
hierarchically ordered sub-models. An example of a generic
model is the electrical part of a DC motor, which can be
described by (1) (cf. [23]). The structured assembly of a
generic model is illustrated by Fig. 3. It consists of four
components:

• Metadata describes the higher-level characteristics (e.g.,
name, author, general description) of the model.

• Interface information: Data structure, units and other
relevant information of the inputs- and outputs of the
model. Using the example of (1), the terminal voltage
u in V and the angular speed ω in rad/s as input or the
motor current i in A as output.

• Parameter: Information and values about the parameters
of the model. Using (1) as an example, the resistance R
in Ω, the inductance L in H and the machine constant c
in V s.

• Artefacts of the model such as the (Xcos-)model file, the
generated C-code or the model documentation.

Generic
 Model

Metadata

Model

ParameterInterface informationArtifacts

Fig. 3. Structured assembly of a generic model.

u = Ri+ L
di

dt
− cω (1)

An aggregated model is composed of further sub-models
and thus represents higher hierarchy levels. Aggregated models
are mapped as so-called configurations in the model library. A
configuration is created by integrating defined version levels
of the part models. Fig. 4 illustrates the principle assembly of
a configuration.

The models are arranged hierarchically in a tree structure.
The tree contains folders (grouping hierarchy elements) and
model elements (both generic and aggregated models). User
rights and individual processes can be assigned to both group-
ings and individual elements.

To enable model access for several users, the principle of a
central data repository is applied. Fig. 5 illustrates the concept.
All model data are stored in the central repository, which acts

28Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

Model Part 1

Model Part 2

Configuration 1
1.0 2.0

1.0

3.0 4.0 5.0

1.1 1.2

Legend
Model change
Model reference

Model version

Fig. 4. Principle assembly of a configuration.

Central
repository

Local working
copy

Local working
copy

User 1 User n

…

Changes
Copy Changes

Fig. 5. Concept of the central data repository.

as a database. Model artefacts are accessed via local working
copies. Changes are transmitted to the central repository and
merged to the original data. Users can then pull the changed
data to their local working copy.

V. MODEL LIBRARY DESIGN

The concept from Section IV will now be fleshed out and
transferred into a concreted design. For this purpose, the data
structures and interfaces, as well as the data management are
designed.

A. Data structures

There are a number of data structures and interfaces that
are necessary for the model library. The core element is a
hierarchical model tree, which also serves as the data basis
for the MVC of the GUI. In the following, the data structure
and interfaces of the model tree are designed as an example.

The set-up of the data structure is object-oriented. For
each element of the tree, the abstract class AModelElement
represents the basic structure. It contains central data such
as title, path in the tree or parent element. The classes
HierarchyElement and ModelElement are derived from it.
HierarchyElement contains a list with subordinate elements.
ModelElement summarizes interface information, parameters
and memory information of the model among other data. Fig. 6
illustrates the relationship as a UML class structure.

The model tree requires interfaces for various operations,
which are served by the controller classes. For example, adding
or moving child elements of the class HierarchyElement is

AModel Element

Hierarchy element Model Element

Interface information Memory information

Parameter

Fig. 6. Class structure of the hierarchical model tree.

provided here. Model elements require more extensive inter-
faces, for example to change the metadata or to generate new
versions. Each modification must be captured and documented
by the version management.

B. Data Management

Data management is the key function of the model library.
On the one hand, version and configuration management
are very important. On the other hand, the storage of local
working copies must also be coordinated. For example, only
models that have been selected by users should be completely
downloaded as working copies. For other models, storing the
metadata is enough.

To ensure versioning and thus consistent reuse of software
in the form of configurations, the model library must sup-
port an appropriate version management process. This mainly
concerns releasing new versions. If changes are made to a
model or other artefacts, a new model version may only be
used following specific release processes. For the LoRra model
library, this means that versions proposed by users are not
released to the public until they have been approved by the
groups of people required according to the configured process.

For version numbering, the concept of semantic version-
ing is applied. Different versions of a models and artefacts
are identified by version numbers of the form x.y. Where
x is the major version and y is the minor version. If no
compatibility-relevant adjustments were made to the model
during a change (e.g., bug fixes or pure visual changes -
behaviour and interfaces remain the same), only the minor
version is incremented. If adjustments have been made that
affect the compatibility of the model with other models (e.g.,
changes to the interfaces, extension of the functionality), the
major version is incremented and the minor version is set to
0.

The composition of a configuration is done by linking sub-
models. For this purpose, the corresponding version numbers
of the models are referenced, and the interfaces are linked.
Fig. 4 illustrates the principle.

29Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

VI. REALIZATION

The model library is implemented in Java as Eclipse Rich
Client Platform (cf. [24]). A basic set of functions is im-
plemented in an object-oriented way. The Eclipse framework
already offers many mechanisms necessary for realization,
such as the Standard Widget Toolkit or event-based, minimal-
coupling communication between different graphical elements.
In addition, numerous extensions with open interfaces can be
used.

Versioning is done using the existing open source tool GIT
(cf. [11]), which also connects to the central storage infrastruc-
ture. There is a separate GIT repository for each model. Proven
mechanisms for versioning are already available here. By
using structured, text-based model descriptions, the limitations
mentioned in Section II can be avoided. The GIT branching
enables variant management in addition to the version and
configuration management functions described above. Initially,
user authentication is implemented for the Atlassian service
Bitbucket. Later extension is possible.

The structured model description is in JSON format (cf.
[25]). Listing 1 contains an exemplary stored model tree.
Hierarchy elements are identified by the fields title (display
title of the element), relPath (relative file path to the parent
hierarchy element) and children. Model elements contain the
fields relPath, metaFileName and repoUrl (URL to the online
GIT repository). All relevant metadata is stored in the file
specified in metaFileName.

The integration of sub-models into a configuration is XML-
based. This is done in the form of an SES. Thus, the structure
of a new configuration can first be created at an abstract
level. A concrete configuration is then generated by pruning
and referencing the sub-models and specifying the version
and variant. This approach with flexible, standardised data
structures and interfaces allows the model library to be applied
in various simulation environments. It can therefore be used
as part of the LoRra platform, as well as in the context of
other development platforms or further model editors.

Finally, the GUI is built according to the MVC principle
introduced in Section IV-A. The data basis for this (model)
is the model tree designed in Section V-A. Fig. 7 illustrates
the overall design (presentation) of the LoRra model library.
The main window is divided into three areas. The navigation
area (on the left) contains the hierarchical model tree of the
library. Here, users can perform actions on individual models
(e.g., open or edit) and get an initial overview of the current
model status. In addition, the model tree can be searched.
The display area (on the right) contains various views for
displaying and editing information. Here, for example, the
metadata and model artefacts can be displayed or the version
history can be viewed. In addition, a context-dependent toolbar
and the menu structure for operating the library are arranged
in the tool area.

VII. SUMMARY AND FUTURE WORK

This paper presents the design of a model library for
low-cost software development of mechatronic systems using

Listing 1. Exemplary model tree in JSON format.

{
"title" : "root",
"relPath" : "",
"children" : [{
"title" : "Vehicle models",
"relPath" : "vehicles/",
"children" : [...]

}, {
"title" : "Functional models",
"relPath" : "functions/",
"children" : [{
"title" : "VMS",
"relPath" : "VMS/",
"children" : [...]

},
{
"title" : "AMS",
"relPath" : "AMS/",
"children" : [{

"relPath" : "efm/",
"metaFileName" : "efm.json",
"repoUrl" : "https://tinyurl.com/

repo_efm/"
}, ...]

}]
}, ...]

}

model-based design approaches. As part of the seamless RCP
development platform LoRra, which is based on open source
software, the model library provides a consistent and traceable
model basis for each development step. In this way, the model

Fig. 7. Layout of the graphical user interface of the model library.

30Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

library covers the entire development process holistically.
Based on the basic requirements, an approach for version and
configuration management of hierarchical models, as well as
for central model storage was developed. This was followed
by the exemplary design of a model tree data structure
for hierarchical model configurations and the graphical user
interface. Finally, the implementation of a basic functionality
is summarized.

Based on existing technologies, such as version manage-
ment with GIT, a new tool for the continuous development of
software for mechatronic systems has been created. An easy-
to-use graphical interface facilitates version and configuration
management of project artefacts throughout the entire devel-
opment process from MiL, SiL and HiL to prototype.

Future work will focus on further optimizing the user expe-
rience. To this end, the integration of graphical editors to sim-
plify the generation and management of configurations is also
possible. An extension of the GIT tool diff, which visualizes
model changes, is planned for an optimized overview of the
version history. Finally, a generalization of user authentication
is possible, so that any kind of central storage system can be
used. For further testing and optimization, the model library
will be integrated into the virtual embedded software test
bench of the authors.

ACKNOWLEDGMENT

Funded by the Lower Saxony Ministry of Science and
Culture under grant number ZN3495 within the Lower Saxony
”Vorab” of the Volkswagen Foundation and supported by the
Center for Digital Innovations (ZDIN).

REFERENCES

[1] X. Liu-Henke, S. Scherler, M. Fritsch, and F. Quantmeyer, “Holistic
development of a full-active electric vehicle by means of a model-
based systems engineering,” in Proceedings of 2016 IEEE International
Symposium on Systems Engineering (ISSE), B. Rassa and P. Carbone,
Eds., 2016, pp. 1–7.

[2] S. Jacobitz, M. Gollner, J. Zhang, O. A. Yarom, and X. Liu-Henke,
“Seamless validation of cyber-physical systems under real-time condi-
tions by using a cyber-physical laboratory test field,” in 2021 IEEE
International Conference on Recent Advances in Systems Science and
Engineering (RASSE). IEEE, 2021, pp. 1–8.

[3] X. Liu-Henke, R. Feind, M. Roch, and F. Quantmeyer, “Investigation of
low-cost open-source platforms for developing of mechatronic functions
with rapid control prototyping,” in Proceedings of the 2014 International
Conference Mechatronic Systems and Materials (MSM), 2014, pp. 1–9.

[4] S. Jacobitz and X. Liu-Henke, “The Seamless Low-cost Development
Platform LoRra for Model based Systems Engineering,” in Proceedings
of the 8th International Conference on Model-Driven Engineering and
Software Development. SCITEPRESS - Science and Technology
Publications, 2020, pp. 57–64.

[5] H.-B. Kittlaus, Software Product Management. Berlin, Heidelberg,
Germany: Springer, 2022.

[6] K. Henderson and A. Salado, “Value and benefits of model–based
systems engineering (MBSE): Evidence from the literature,” Systems
Engineering, vol. 24, no. 1, pp. 51–66, 2021.

[7] B. L. Summers, “Software Configuration Management,” in Effective
Methods for Software Engineering, B. L. Summers, Ed. New York,
USA: Auerbach Publications, 2020, pp. 57–65.

[8] H. Guissouma, H. Klare, E. Sax, and E. Burger, “An Empirical Study on
the Current and Future Challenges of Automotive Software Release and
Configuration Management,” in 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE, 2018, pp. 298–
305.

[9] B. Kruse and K. Shea, “Design Library Solution Patterns in SysML for
Concept Design and Simulation,” Procedia CIRP, vol. 50, pp. 695–700,
2016.

[10] N. Ratti and P. Kaur, “Case Study: Version Control in Component-
Based Systems,” in Designing, Engineering, and Analyzing Reliable and
Efficient Software, H. Singh and K. Kaur, Eds. Hershey, USA: IGI
Global, 2013, pp. 283–297.

[11] H. Eriksson, J. Sun, V. Tarandi, and L. Harrie, “Comparison of ver-
sioning methods to improve the information flow in the planning and
building processes,” Transactions in GIS, vol. 25, no. 1, pp. 134–163,
2021.

[12] Y. S. Nugroho, H. Hata, and K. Matsumoto, “How different are different
diff algorithms in Git?” Empirical Software Engineering, vol. 25, no. 1,
pp. 790–823, 2020.

[13] D. Schmitz, W. Deng, T. Rose, M. Jarke, H. Nonn, and K. Sanguanpiya-
pan, “Configuration Management for Realtime Simulation Software,”
in 2009 35th Euromicro Conference on Software Engineering and
Advanced Applications. IEEE, 2009, pp. 229–236.

[14] S. Niedzwiedz and S. Frei, “A structured model library for the anal-
ysis of electric-vehicle drivetrains,” in AmE 2012 - automotive meets
electronics, ser. GMM technical report. VDE-Verlag, 2012, pp. 21–26.

[15] U. Durak, T. Pawletta, H. Oguztuzun, and B. P. Zeigler, “System entity
structure and model base framework in model based engineering of
simulations for technical systems,” in Proceedings of the Symposium on
Model-driven Approaches for Simulation Engineering, A. D’Ambrogio,
Ed. ACM Society for Computer Simulation International, 2017, pp.
1–10.

[16] R. S. Bashir, S. P. Lee, S. U. R. Khan, V. Chang, and S. Farid,
“Uml models consistency management: Guidelines for software quality
manager,” International Journal of Information Management, vol. 36,
no. 6, 2016.

[17] X. Liu-Henke, S. Jacobitz, S. Scherler, M. Göllner, O. Yarom, and
J. Zhang, “A Holistic Methodology for Model-based Design of Mecha-
tronic Systems in Digitized and Connected System Environments,” in
Proceedings of the 16th International Conference on Software Technolo-
gies, H.-G. Fill, M. van Sindern, and L. Maciaszek, Eds. SCITEPRESS
- Science and Technology Publications, 2021, pp. 215–223.

[18] A. K. Verma and R. Verma, Introduction to Xcos - A Scilab Tool
for Modeling Dynamical Systems, 1st ed. Jodhpur, India: MBM
Engineering College, JNV University, 2020.

[19] L. Bass, P. Clements, and R. Kazman, Software architecture in practice,
3rd ed., ser. SEI series in software engineering. Upper Saddle River,
USA: Addison-Wesley, 2013.

[20] S. Henninger and V. Corrêa, “Software pattern communities: current
practices and challenges,” in Proceedings of the 14th Conference on
Pattern Languages of Programs - PLOP ’07, A. Aguiar and J. Yoder,
Eds. ACM Press, 2007, pp. 1–19.

[21] S. Adams, “MetaMethods: The MVC paradigm,” HOOPLA!, vol. 1,
no. 4, 1988.

[22] Z. Liu, F. Li, H. Liu, C. Wu, and J. Zhang, “A Study of Cockpit HMI
Simulation Design Based on the Concept of MVC Design Pattern,” in
Proceedings of the 2018 3rd International Conference on Modelling,
Simulation and Applied Mathematics (MSAM 2018). Atlantis Press,
2018, pp. 82–84.

[23] X. Liu-Henke, M. Gollner, M. Fritsch, R. Feind, and R. Buchta, “FreDy
- An electric vehicle with intelligent chassis-control systems,” in 2015
Tenth International Conference on Ecological Vehicles and Renewable
Energies (EVER). IEEE, 2015, pp. 1–8.

[24] L. Vogel and M. Milinkovich, Eclipse Rich Client Platform: The
complete guide to Eclipse application development, 3rd ed., ser. Vogella
series. Hamburg, Germany: Vogella, 2015.

[25] “ISO/IEC 21778:2017: Information technology — The JSON data
interchange syntax,” International Organization for Standardization.

31Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

