
Estimating Functional Size of Software with
Confidence Intervals

Luigi Lavazza Angela Locoro
Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria
Varese, Italy

email:luigi.lavazza, angela.locoro@uninsubria.it

Roberto Meli
DPO

Rome, Italy
email:roberto.meli@dpo.it

Abstract—In many projects, software functional size is mea-
sured via the IFPUG (International Function Point Users Group)
Function Point Analysis method. However, applying Function
Point Analysis using the IFPUG process is possible only when
functional user requirements are known completely and in detail.
To solve this problem, several early estimation methods have
been proposed and have become de facto standard processes.
Among these, a prominent one is the ‘NESMA (Netherlands
Software Metrics Association) estimated’ (also known as High-
level Function Point Analysis) method. The NESMA estimated
method simplifies the measurement by assigning fixed weights
to Base Functional Components, instead of determining the
weights via the detailed analysis of data and transactions. This
makes the process faster and cheaper, and applicable when some
details concerning data and transactions are not yet known.
The accuracy of the mentioned method has been evaluated,
also via large-scale empirical studies, showing that the yielded
approximate measures are sufficiently accurate for practical
usage. However, a limitation of the method is that it provides a
specific size estimate, while other methods can provide confidence
intervals, i.e., they indicate with a given confidence level that the
size to be estimated is in a range. In this paper, we aim to enhance
the NESMA estimated method with the possibility of computing
a confidence interval. To this end, we carry out an empirical
study, using data from real-life projects. The proposed approach
appears effective. We expect that the possibility to estimate that
the size of an application is in a range will help project managers
deal with the risks connected with inevitable estimation errors.

Index Terms—Function Point Analysis; Early Size Estimation;
High-Level FPA; NESMA estimated.

I. INTRODUCTION

In the late seventies, Allan Albrecht introduced Function
Points Analysis (FPA) at IBM [1], as a means to measure
the functional size of software, with special reference to the
“functional content” delivered by software providers. Albrecht
aimed at defining a measure that might be correlated to the
value of software from the perspective of a user, and could
also be useful to assess the cost of developing software
applications, based on functional user requirements.

FPA is a Functional Size Measurement Method (FSMM),
compliant with the ISO/IEC 14143 standard, for measuring the
size of a software application in the early stages of a project,
generally before actual development starts. Accordingly, soft-
ware size measures expressed in Function Points (FP) are often
used for cost estimation.

The International Function Points User Group (IFPUG)
is an association that keeps FPA up to date, publishes the
official FP counting manual [2], and certifies professional
FP counters. Unfortunately, in some conditions, performing
the standard IFPUG measurement process may be too long
and expensive, with respect to management needs, because
standard FP measurement can be performed only when rel-
atively complete and detailed requirements specifications are
available, while functional measures could be needed much
earlier for management purposes.

To tackle this problem, the IFPUG proposes Simple Func-
tion Points (SFP). This is an alternative way of measuring the
functional size of software: while the SFP method is based on
the same concepts as FPA, it requires less detailed information
than FPA, so that it is applicable before complete and detailed
requirements specifications are available; besides, if is faster
and cheaper to apply. As such, it is often presented as a
lightweight functional measurement method, also suitable for
agile processes. Although the SFP method provides measures
that are quantitatively similar to those yielded by FPA, it is
not an approximation method for FPA; instead, it is a different
measurement method that yields different measures.

Before SFP was proposed, many methods were invented
and used to provide estimates of functional size measures,
based on fewer or coarser-grained information than required
by standard FPA. These methods are applied very early in
software projects, even before deciding what process (e.g.,
agile or waterfall) will be used. Among these methods, one of
the most widely used is the “NESMA estimated” method [3],
which was developed by NESMA [4]. Using this method
for size estimation was then suggested by IFPUG [5], which
renamed the method High-Level FPA (HLFPA).

HLFPA has been evaluated by several studies, which found
that the method is usable in practice to approximate traditional
FPA values, since it yields reasonably accurate estimates,
although it has been observed that the NESMA method tends
to underestimate size, which is potentially dangerous.

Many estimation methods provide a “confidence interval”,
meaning that instead of providing a single value, they predict
that the size is in an interval. The greater the required
confidence, the greater the interval. Knowing the confidence
interval is considered very useful by project managers, because

14Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

it helps managing the risk deriving from inevitable estimation
errors and the inherent uncertainty of estimates. Unfortunately,
the NESMA estimated method does not provide a confidence
interval. This papers aim to enhancing the NESMA estimated
method by equipping it with a mechanism to create a confi-
dence interval.

The remainder of the paper is organized as follows.
Section II provides an overview of FPA and the NESMA
method. Section III describes the empirical study and its
results, which are discussed in Section IV. In Section V, we
discuss the threats to the validity of the study. Section VI
reports about related work. Finally, in Section VII, we draw
some conclusions and outline future work.

II. BACKGROUND

Function Point Analysis was originally introduced by Al-
brecht to measure the size of data-processing systems from
the point of view of end-users, with the goal of the estimating
the value of an application and the development effort [1].
The critical fortunes of this measure led to the creation of
the IFPUG (International Function Points User Group), which
maintains the method and certifies professional measurers.

The “amount of functionality” released to the user can be
evaluated by taking into account 1) the data used by the appli-
cation to provide the required functions, and 2) the transactions
(i.e., operations that involve data crossing the boundaries of
the application) through which the functionality is delivered to
the user. Both data and transactions are counted on the basis
of Functional User Requirements (FURs) specifications, and
constitute the IFPUG Function Points measure.

FURs are modeled as a set of Base Functional Components
(BFCs), which are the measurable elements of FURs: each
of the identified BFCs is measured, and the size of the
application is obtained as the sum of the sizes of BFCs. IFPUG
BFCs are: data functions (also known as logical files), which
are classified into Internal Logical Files (ILF) and External
Interface Files (EIF); and Elementary Processes (EP)—also
known as transaction functions—which are classified into
External Inputs (EI), External Outputs (EO), and External
inQuiries (EQ), according to the activities carried out within
the considered process and the primary intent.

The complexity of a data function (ILF or EIF) depends on
the RETs (Record Element Types), which indicate how many
types of variations (e.g., sub-classes, in object-oriented terms)
exist per logical data file, and DETs (Data Element Types),
which indicate how many types of elementary information
(e.g., attributes, in object-oriented terms) are contained in the
given logical data file.

The complexity of a transaction depends on the number of
FTRs—i.e., the number of File Types Referenced while per-
forming the required operation—and the number of DETs—
i.e., the number of types of elementary data—that the con-
sidered transaction sends and receives across the boundaries
of the application. Details concerning the determination of
complexity can be found in the official documentation [2].

The core of FPA involves three main activities:

1) Identifying data and transaction functions.
2) Classifying data functions as ILF or EIF and transactions

as EI, EO or EQ.
3) Determining the complexity of each data or transaction

function.
The first two of these activities can be carried out even if

the FURs have not yet been fully detailed. On the contrary,
activity 3 requires that all details are available, so that FP
measurers can determine the number of RET or FTR and DET
involved in every function. Activity 3 is relatively time- and
effort-consuming [6].

HLFPA does not require activity 3, thus allowing for size
estimation when FURs are not fully detailed: it only requires
that the complete sets of data and transaction functions are
identified and classified.

The SFP method [7] does not require activities 2 and 3: it
only requires that the complete sets of data and transaction
functions are identified.

Both the HLFPA and SFP methods let measurers skip
the most time- and effort-consuming activity, thus both are
relatively fast and cheap. The SFP method does not even
require classification, making size estimation even faster and
less subjective (since different measurers can sometimes clas-
sify differently the same transaction, based on the subjective
perception of the transaction’s primary intent).

NESMA defined two size estimation methods: the ‘NESMA
Indicative’ and the ‘NESMA Estimated’ methods. IFPUG
acknowledged these methods as early function point analysis
methods, under the names of ‘Indicative FPA’ and ‘High-
Level FPA,’ respectively [5]. The NESMA Indicative method
proved definitely less accurate [8], [9]. Hence, in this paper,
we consider only the NESMA Estimated method.

The NESMA Estimated method requires the identification
and classification of all data and transaction functions, but
does not require the assessment of the complexity of functions:
ILF and EIF are assumed to be of low complexity, while EI,
EQ and EO are assumed to be of average complexity. Hence,
estimated size is computed as follows:

EstSizeUFP = 7 #ILF + 5 #EIF + 4 #EI + 5 #EO + 4 #EQ

where #ILF is the number of data functions of type ILF, #EI is
the number of transaction functions of type EI, etc.

III. EMPIRICAL STUDY

In this section, the empirical study is described: Sec-
tion III-A described the dataset used for the reported anal-
ysis; Section III-B illustrates some considerations concerning
the accuracy of the NESMA method that affect the study;
Section III-C describes how the study was performed; finally,
SectionIII-D describes the obtained results.

A. The dataset

In the empirical study, we use an ISBSG dataset [10], which
has been extensively used for studies concerning functional
size [11]–[16].

15Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

The ISBSG dataset contains several small project data. As a
matter of fact, estimating the size of small projects is not very
interesting. Based on these considerations, we removed from
the dataset the projects smaller than 100 UFP (Unadjusted
Function Points). The resulting dataset includes data from 140
projects having size in the [103, 4202] range. Some descriptive
statistics for this dataset are given in Table I.

TABLE I
DESCRIPTIVE STATISTICS FOR THE ISBSG DATASET.

UFP #ILF #EIF #EI #EO #EQ NESMA
Mean 801 22 20 35 37 37 730
Std 818 21 22 37 65 48 721
Median 475.5 14 14.5 22 10 20.5 463
Min 103 0 0 0 0 0 71
Max 4202 100 172 204 442 366 3755

B. The accuracy of the NESMA estimated method

As already observed in previous papers [16], [17], the
NESMA estimated method tends to underestimate. Figure 1
shows that more than 75% of the estimates by NESMA have
positive error. Being the error defined as the actual size (i.e.,
the size measured via the ISBSG standard FPA process) minus
the estimate, positive error indicate underestimation.

Fig. 1. Histogram of estimation errors by the NESMA method, when applied
to the ISBSG dataset.

In addition, Figure 1 suggests that the distribution of
NESMA errors is skewed. The skewedness of NESMA errors
is clearly visible in Figure 2, which illustrates the distribution
of errors: it is easy to notice that most errors are positive.

For our purposes, the fact that the distribution of NESMA
errors is skewed and not centered on zero means that we can-
not evaluate confidence errors as is usually done. Specifically,
given a confidence level C we cannot select two error levels
eL and eH that are symmetric with respect to the mean error
ē (i.e., |eH − ē| = |ē− eL|) such that the proportion of errors
such that eH ≥ error ≥ eL is C.

Since it makes hardly sense to provide confidence intervals
for a method that underestimates systematically, we first
“correct” the NESMA estimated method. Via a trial-and-error
procedure, we found that by multiplying NESMA estimates
by 1.08 it is possible to obtain estimates that have a better
error distribution (less skewed and centered around zero) and
a smaller mean absolute error (50.7 UFP instead of 83.8 UFP).

The boxplot of estimation errors obtained with the corrected
NESMA method is shown in Figure 3. The error distribution
is shown in Figure 4: it can be noticed that the distribution is
much less skewed than in Figure 2.

Fig. 2. Histogram of estimation errors by the NESMA method, when applied
to the ISBSG dataset.

Fig. 3. Boxplot of estimation errors by the corrected NESMA method, when
applied to the ISBSG dataset.

Fig. 4. Boxplot of estimation errors by the corrected NESMA method, when
applied to the ISBSG dataset.

16Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

Since the practical objective of this work is to provide
project managers with reliable predictions of functional size,
in what follows we consider only estimates provided by the
original NESMA method and corrected as described above. In
other words, we consider the following estimates:

EstSizeUFP = 1.08 (7 #ILF+5 #EIF+4 #EI+5 #EO+4 #EQ)

We make reference to this estimation as the “Corrected
NESMA” method.

C. Method used

In essence, given a confidence level C we aim at finding two
values kL and kH such that a proportion C of the actual size
measures (i.e., measures obtained via the official IFPUG FPA
process) is in the range [kL·EstSizeUFP, kH ·EstSizeUFP], where
EstSizeUFP is the size estimates computed via the Corrected
NESMA method.

Finding kL and kH would be straightforward if the estima-
tion errors obtained via the Corrected NESMA method were
normally distributed. Instead, it is not so, as shown by the
Shapiro-Wilk test.

Therefore, we proceeded as follows:
1) We computed the ratio ActualSize

EstSizeUFP
for all projects in the

dataset, obtaining a set of ratios; this set was then sorted
and stored in vector vRatios.

2) We computed the quantiles from 0 to 1, with 0.01 steps,
of vRatios, obtaining an ordered vector vQuant.

3) We looked for two indexes iL and iH in vQuant such
that iH − iL + 1 = C · n (where n is the number of
projects in the dataset).

4) kL and kH are the values in vRatios having index iL and
iH , respectively, i.e., vRatios[iL] and vRatios[iH].

In this way, we obtain a size estimate interval that contains
a proportion C of all estimates, such that all estimates outside
the interval are greater than those within the interval.

D. Results obtained

We applied the procedure described in Section III-C for
various confidence levels. The results obtained are given in
Table II. Note that these results depend on the dataset being
used, in our case, the ISBSG dataset. In other contexts, a given
confidence level could correspond to different confidence
intervals. For instance, in the ISBSG dataset, the minimum and
maximum ratios ActualSize

EstSizeUFP
are 0.758 and 1.343, respectively; in

another dataset, a smaller minimum and a larger maximum
ratios are clearly possible.

TABLE II
CONFIDENCE INTERVALS FOR VARIOUS CONFIDENCE LEVELS.

conf. level kL kH
0.50 0.947 1.053
0.60 0.933 1.069
0.70 0.902 1.100
0.80 0.875 1.134
0.90 0.840 1.165
0.95 0.826 1.220
1.00 0.758 1.343

Fig. 5. Corrected NESMA estimates vs. actual size in UFP, with confidence
C = 0.75.

For illustration purposes, Figure 5 plots the ISBSG project
data in the plan defined by actual size (the y axis) and the
size estimated via the Corrected NESMA method (the x axis).
In the plot, the dashed blue lines represent the y = kL x and
y = kH x lines.

IV. DISCUSSION OF RESULTS

In the previous sections, we exploited a dataset that collects
measures from real-life projects to determine a) a correction
of the estimates provides by the NESMA method, and b)
confidence intervals for the corrected estimates.

The contribution of this paper is twofold:
– Organizations that own historical data like those we used

can apply the procedure illustrated in Sections III-B
and III-C to derive the correction constant and the confi-
dence intervals that suite best their development process.

– Organizations that do not own historical data like those
we used can use our correction constant (1.08) and the
intervals in Table II, to get an idea of how much estimates
obtained via the NESMA method can vary in practice.
However, these organizations should be aware that the
data we used might not match their situations, hence both
the correction constant and the confidence intervals might
not be perfectly suited for their case.

The confidence interval can be used to perform risk analysis.
For instance, Table II shows that, given an estimate already
corrected with respect to the NESMA original prediction,
there are 30% probabilities that the actual size is more than
10% different (greater or smaller) than estimated. Most likely,
half of these 30% probabilities concern the underestimation
case: as a result, a project manager should consider that the
probability of underestimating functional size of 10% or more
is around 15%. The risk concerning the underestimation of

17Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

cost can be then computed, if the relationship between size
and cost is known. So, the proposed method supports typical
project management activities, like controlling the risk of
size underestimation, that are not supported by the original
NESMA size estimation method.

Finally, being the estimates obtained via the Corrected
NESMA method proportional to the estimates obtained via
the original NESMA method, the confidence intervals for
the Corrected NESMA method can be easily converted into
confidence intervals for the original NESMA method.

V. THREATS TO VALIDITY

The proposed approach is mostly empirical. From a theoret-
ical point of view, the adopted practices may not be perfect,
but the context itself suggests that this is not very relevant.
The definition of the NESMA estimated method itself has
no theoretically strong basis: it is simply the hypothesis—not
experimentally verified—that on average data have low com-
plexity (in FPA terms) while transactions have mid complexity.
So, we looked for reasonable confidence intervals, although
these intervals are not statistically linked to confidence levels
in a rigorous way.

Another typical concern in this kind of studies is the
generalizability of results outside the scope and context of the
analyzed dataset. In our case, the ISBSG dataset is deemed
the standard benchmark among the community, and it includes
data from several application domains. Therefore, our results
may be representative of a fairly comprehensive situation.
However, additional studies are needed for confirming the
general validity of this study. In the meanwhile, readers are
reminded that the amount by which the NESMA method
underestimates depend on the considered dataset; similarly,
the confidence interval depends on the dataset. In both cases,
the distribution of the complexity of BFCs (i.e., ILF, EIF, EI,
EO and EQ) rules.

VI. RELATED WORK

Measures for early software estimation were conceived
since the last decades [18]–[20]. The present study aims to
advance this field by providing statistical foundations to some
of these measures, by using confidence intervals where ap-
proaches not based on probability distributions were adopted.
For example, the “Early & Quick Function Point” (EQFP)
method [21] estimates an error of ±10% of the real size of
software, for most of the times, but fails to indicate a more
robust indicator of this estimate, such as a confidence inter-
val. Several other early estimation methods were proposed:
Table III lists the most popular ones.

TABLE III
EARLY ESTIMATION METHODS: DEFINITIONS AND EVALUATIONS

Method name Definition Used functions Weight Evaluation
NESMA indicative [22] [23] data fixed [3] [17], [24]–[27] [9]
NESMA estimated [22] [23] all functions fixed [3] [17], [24]–[27] [9]
Early & Quick FP [20] [28] [21] all functions statistics [9] [29]
simplified FP (sFP) [30] all functions fixed [9]
ISBSG average weights [31] all functions statistics [9]
SiFP [32] data and trans. statistics [11] [13]

Recently, comparisons based on the accuracy of the HLFPA
method and statistical modelling methods were carried out in
order to assess whether standard measures fail in underesti-
mating or overestimating software size [16].

A survey [33] reports how machine learning techniques
were used for software development effort estimation, report-
ing accuracy as a comparison criterion for all the methods
analysed. To the best of our knowledge, confidence intervals
are overlooked as robust indicators of the estimates done in
software size. In this respect, this study aims to emphasize the
importance of providing robust indicators for a more reliable
comparison and precision of reporting.

VII. CONCLUSION

The “NESMA estimated” method was proposed to estimate
the functional size of software (expressed in IFPUG Function
Points). The NESMA method assigns fixed weights to base
functional components (i.e., ILF, EIF, EI, EO and EQ), so that
it is not necessary to analyze in depth every logic data file or
transaction. This makes the method both easier and faster, and
applicable when the details needed to characterize and weight
base functional components are not yet available.

Previous studies showed that the NESMA method is suffi-
ciently accurate to be used in practice. However, it has two
possibly relevant limitations: 1) it tends to underestimate the
“real” (i.e., as obtained via the IFPUG FPA process) size of
software, and 2) it yields a single estimate, with no confidence
intervals. Both these characteristics can be be problematic for
software project managers. In fact, planning a project based
on underestimated size and, consequently, on underestimated
effort estimates usually leads to unrealistic plans. Besides,
getting a confidence interval for size estimates allows for
evaluating the risks connected with imprecise size estimates.

In this paper, we have proposed a correction for the esti-
mates yielded by the NESMA method, to avoid underestima-
tion, and a procedure to compute the confidence interval. Both
these contributions are expected to make project managers’ life
easier.

ACKNOWLEDGMENT

The work reported here was partly supported by Fondo per
la Ricerca di Ateneo, Università degli Studi dell’Insubria.

REFERENCES

[1] A. J. Albrecht, “Measuring application development productivity,” in
Proceedings of the joint SHARE/GUIDE/IBM application development
symposium, vol. 10, 1979, pp. 83–92.

[2] International Function Point Users Group (IFPUG), “Function point
counting practices manual, release 4.3.1,” 2010.

[3] H. van Heeringen, E. van Gorp, and T. Prins, “Functional size
measurement-accuracy versus costs–is it really worth it?” in Software
Measurement European Forum (SMEF), 2009.

[4] nesma, “nesma site,” https://nesma.org/ [retrieved: March, 2023].
[5] A. Timp, “uTip – Early Function Point Analysis and Consistent Cost

Estimating,” 2015, uTip # 03 – (version # 1.0 2015/07/01).
[6] L. Lavazza, “On the effort required by function point measurement

phases,” International Journal on Advances in Software, vol. 10, no.
1 & 2, 2017, pp. 108–120.

[7] IFPUG, “Simple Function Point (SFP) Counting Practices Manual
Release 2.1,” 2021.

18Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

[8] nesma, “Early Function Point Analysis,” https://nesma.org/themes/
sizing/function-point-analysis/early-function-point-counting/ [retrieved:
March, 2023].

[9] L. Lavazza and G. Liu, “An empirical evaluation of simplified function
point measurement processes,” Journal on Advances in Software, vol. 6,
no. 1& 2, 2013, pp. 1–13.

[10] International Software Benchmarking Standards Group, ““Worldwide
Software Development: The Benchmark, release 11,” ISBSG, 2009.

[11] L. Lavazza and R. Meli, “An evaluation of simple function point as
a replacement of IFPUG function point,” in IWSM–MENSURA 2014.
IEEE, 2014, pp. 196–206.

[12] L. Lavazza, S. Morasca, and D. Tosi, “An empirical study on the effect
of programming languages on productivity,” in Proceedings of the 31st
Annual ACM Symposium on Applied Computing, 2016, pp. 1434–1439.

[13] F. Ferrucci, C. Gravino, and L. Lavazza, “Simple function points for ef-
fort estimation: a further assessment,” in 31st Annual ACM Symposium
on Applied Computing. ACM, 2016, pp. 1428–1433.

[14] L. Lavazza, S. Morasca, and D. Tosi, “An empirical study on the factors
affecting software development productivity,” E-Informatica Software
Engineering Journal, vol. 12, no. 1, 2018, pp. 27–49.

[15] L. Lavazza, G. Liu, and R. Meli, “Productivity of software enhancement
projects: an empirical study.” in IWSM-Mensura, 2020, pp. 1–15.

[16] G. Liu and L. Lavazza, “Early and quick function points analysis:
Evaluations and proposals,” Journal of Systems and Software, vol. 174,
2021, p. 110888.

[17] L. Lavazza and G. Liu, “An Empirical Evaluation of the Accuracy of
NESMA Function Points Estimates,” in ICSEA, 2019, pp. 24–29.

[18] D. B. Bock and R. Klepper, “FP-S: a simplified function point counting
method,” Journal of Systems and Software, vol. 18, no. 3, 1992, pp.
245–254.

[19] G. Horgan, S. Khaddaj, and P. Forte, “Construction of an FPA-type met-
ric for early lifecycle estimation,” Information and Software Technology,
vol. 40, no. 8, 1998, pp. 409–415.

[20] L. Santillo, M. Conte, and R. Meli, “Early & Quick Function Point:
sizing more with less,” in 11th IEEE International Software Metrics
Symposium (METRICS’05). IEEE, 2005, pp. 41–41.

[21] DPO, “Early & Quick Function Points Reference Manual - IFPUG
version,” DPO, Roma, Italy, Tech. Rep. EQ&FP-IFPUG-31-RM-11-EN-
P, April 2012.

[22] NESMA–the Netherlands Software Metrics Association, “Definitions
and counting guidelines for the application of function point analysis.
NESMA Functional Size Measurement method compliant to ISO/IEC
24570 version 2.1,” 2004.

[23] International Standards Organisation, “ISO/IEC 24570:2005 – Software
Engineering – NESMA functional size measurement method version
2.1 – definitions and counting guidelines for the application of Function
Point Analysis,” 2005.

[24] F. G. Wilkie, I. R. McChesney, P. Morrow, C. Tuxworth, and N. Lester,
“The value of software sizing,” Information and Software Technology,
vol. 53, no. 11, 2011, pp. 1236–1249.

[25] J. Popović and D. Bojić, “A comparative evaluation of effort estimation
methods in the software life cycle,” Computer Science and Information
Systems, vol. 9, no. 1, 2012, pp. 455–484.

[26] P. Morrow, F. G. Wilkie, and I. McChesney, “Function point analysis
using nesma: simplifying the sizing without simplifying the size,”
Software Quality Journal, vol. 22, no. 4, 2014, pp. 611–660.

[27] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “Assessing the
effectiveness of approximate functional sizing approaches for effort
estimation,” Information and Software Technology, vol. 123, July 2020.

[28] T. Iorio, R. Meli, and F. Perna, “Early&quick function points® v3. 0:
enhancements for a publicly available method,” in SMEF, 2007, pp.
179–198.

[29] R. Meli, “Early & quick function point method-an empirical validation
experiment,” in Int. Conf. on Advances and Trends in Software Engi-
neering, Barcelona, Spain, 2015, pp. 14–22.

[30] L. Bernstein and C. M. Yuhas, Trustworthy systems through quantitative
software engineering. John Wiley & Sons, 2005, vol. 1.

[31] R. Meli and L. Santillo, “Function point estimation methods: A com-
parative overview,” in FESMA, vol. 99. Citeseer, 1999, pp. 6–8.

[32] R. Meli, “Simple function point: a new functional size measurement
method fully compliant with IFPUG 4.x,” in Software Measurement
European Forum, 2011, pp. 145–152.

[33] M. N. Mahdi, M. H. Mohamed Zabil, A. R. Ahmad, R. Ismail, Y. Yusoff,
L. K. Cheng, M. S. B. M. Azmi, H. Natiq, and H. Happala Naidu,

“Software project management using machine learning technique—a
review,” Applied Sciences, vol. 11, no. 11, 2021, p. 5183.

19Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

