

Lightweight Sample Code Recommendation System

to Support Programming Education

Yoshihisa Udagawa

Faculty of Informatics, Tokyo University of Information Sciences
Chiba-city, Chiba, Japan

e-mail: yu207233@rsch.tuis.ac.jp

Abstract— One effective way to learn programming techniques
is to refer to sample programs. As the number of sample
programs increases, however, it becomes difficult and time-
consuming to find appropriate sample code visually. To
overcome this shortcoming, research and development of
program recommendation systems have been actively
conducted. This paper discusses a recommendation system for
Java sample programs using an unsupervised machine
learning technique. The proposed system includes three major
steps: (1) extracting invoked methods used in each sample
program, (2) clustering the sample programs by applying a
data mining technique to the extracted methods, and (3)
ranking the programs by calculating a weighted average of the
extracted methods. Experiments using file input and output
sample programs indicate that the proposed system has
sufficient potential to support programming education.

Keywords—Recommendation System for Software Engineering;
Mining Software Repository; Maximal Frequent Itemset; Tf-idf;
Unsupervised Machine Learning; Programming Education.

I. INTRODUCTION

Sample programs are an important source for learning new
programming technologies. In particular, sample programs
for using Application Programming Interfaces (API) related
to open-source programs are available on the Internet. Since
the amount of publicly concerning sample code becomes
enormous, it might become time-consuming and error-prone
to find appropriate sample code visually. Over the past few
decades, there has been a great deal of research and
development on the systems that provide useful
programming information for students and developers.

Recommendation systems are generally employed in
online stores and video/music websites, where rankings of
items are calculated based on users’ reactions and similarities
among products and/or works. The recommendation system
for software development deals with artifacts, such as sample
programs, specifications, test cases and bug reports. Several
techniques have been developed to collect, rank, and
visualize similar artifacts based on various indicators
reflecting their nature. These techniques are often specific to
software engineering and cause a recommendation system to
be called a Recommendation System for Software
Engineering (RSSE) [1].

Gasparic and Janes [2] survey 46 research and
development articles on RSSE published between 2003 and
2013, and categorize them with respect to the covered data

and the methods for recommendation. The most common
type of covered data is source code with 21 papers, followed
by help information to perform changes with 6 papers. As for
ranking method, list format is the most common with 33
papers, followed by document format with three papers, and
table format with two papers.

Hsu and Lin [3] propose a recommendation system based
on frequent patterns in source code. They originally define
17 syntax patterns and extract them from the source code
under study. A sequence pattern extraction algorithm based
on frequency known as Prefix-Span is applied to recommend
API usage patterns.

Katirtzis, Diamantopoulos, and Sutton [4] discuss an
algorithm that extracts API call sequences and then clusters
them to create an API usage summary known as a source
code snippet. Hierarchical clustering is performed by
calculating the distance of extracted API call sequences
using the longest common subsequence algorithm. Then,
code slice techniques are applied to create a source code
snippet.

Diamantopoulos and Symeonidis [5] develop a system to
recommend sample code stored in software repositories on
the Internet, such as GitHub, GitLab and Bitbucket. The
input to the system is a code fragment presented by a user,
and the output is a set of sample codes similar to the code
fragment. Similarities among source codes are calculated
based on the vector space model and the Levenshtein
distance.

Hora [6] discusses a source code recommendation system
that analyzes source code contained in a particular project
and creates ranked API usage examples on a web site. The
system ranks the source code based on three quality
measures, i.e., similarity, readability, and reusability. The
similarity is calculated using the cosine similarity in data
analysis, while readability and reusability are calculated
using indicators developed in software engineering studies.

Nguyen, Rocco, Sipio, Ruscio, and Penta [7] implement a
system to present API usage in a timely manner during a
coding process, and discuss the evaluation of experimental
results. The system calculates the similarity among similar
projects by Term Frequency-Inverse Document Frequency
(tf-idf) [8] and ranks API usage patterns using a collaborative
filtering technique [9].

This paper discusses a lightweight recommendation
system for analyzing Java sample programs that are collected
from the Internet. The system clusters Java sample programs

1Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

based on the methods that are invoked by the programs so
that each cluster represents a programming subject. The
system ranks the sample programs using a tf-idf weighted
vector space model for each clustering. Since the higher
ranked samples contain more invoked methods than those
ranked lower, this system assists a student in selecting
sample code suitable for learning.

The contributions of this study are as follows:
I. In general, method call patterns differ from one

programming subject to another. This system can
automatically cluster sample programs by programming
subjects and represent them to students.

II. The RSSEs proposed so far employ hard-clustering, if
any. In hard-clustering, the results depend on the initial
values and have the restriction that one sample belongs to
only one cluster. This study employes soft-clustering.
Therefore, a sample program can belong to multiple
clusters, and a cluster only contains related programs.

III. By modifying tf-idf to give greater weights to the
methods that frequently appear in a cluster, sample
programs that fit the subject of a cluster and invoke many
rare methods are ranked higher.

IV. The proposed system employs unsupervised machine
learning, making it lightweight to use, operate and
maintain the system.

The remainder of the paper is organized as follows.
Section II gives the architecture of the proposed system.
Section III describes the implementation of the main
functions of the proposed system. Section IV shows the
experimental results using file I/O sample programs. Section
V discusses other implementation options. Section VI
concludes the paper with our plans for future work.

II. OVERVIEW OF PROPOSED SYSTEM

This section describes the architecture of the proposed
system from the functional point of view, and outlines
typical usage.

A. Code Analyzer

Figure 1 depicts the architecture of the proposed system.
The input for this system is sample programs available on
the Internet. Currently, sample programs are collected
manually and stored in a specific project typically in Eclipse,
an Integrated Development Environment (IDE) for Java [10].
In this study, we assume that all sample programs are
correct and work properly.

Figure 1. Overview of the proposed system.

Figure 2 shows a set of sample programs used in this
study, which is stored in a project named Sample_File_IO in
Eclipse. The sample program can be stored in packages.
There is no limitation to the depth of the package hierarchy.
As discussed later sections, these programs are concerned
with binary and string file I/O. Programs can be stored in
any directory other than an Eclipse project.

Figure 2. Sample programs stored in Eclipse project.

The code analyzer in Figure 1 extracts method

declarations and invoked method names from all Java files
under the specified directory or project. A list of method
names being invoked is used for clustering the declared
methods and ranking them.

B. Automatic Identification of Subjects and Clusters

Following code analysis, the Apriori algorithm [11] is
started to identify the set of invoked methods that occur
frequently. Based on the frequent method set, programming
subjects are automatically identified. Each subject
corresponds to a cluster. Figure 3 shows an example of
identified clusters.

Figure 3. Identified programming subjects and clusters.

This study uses a soft-clustering technique based on a

maximal frequent itemset [12], i.e., a compact itemset that
represents a frequent itemset. Strictly, the method names
displayed in each cell of the combo box in Figure 3 are
elements of a maximal frequent itemset. For example,
“BufferedInputStream close FileInputStream read” suggests
from the method names that the cluster is related to the
subject of reading binary data.

2Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

C. Calculation of Recommended Ranking

Selecting a cell in the combo box in Figure 3 causes to
specify a cluster of methods, which starts calculations of
recommendation values for each of the declared methods in
the cluster. Figure 4 shows an example of a method
recommendation. The values of recommendation for each
declared method are normalized so that the maximum value
is equal to one.

Figure 4. Sample of program recommendation.

Method names are prefixed with class names, so that a

student can easily check method source code using an IDE,
such as Eclipse, NetBeans and IntelliJ IDEA.

III. IMPLEMENTATION

This section describes the implementation of three major
steps of the proposed system. Those steps are code analysis,
clustering, and ranking.

A. Code Analysis for Extracting Invoked Method Set

Functions necessary for system development are typically
provided as runtime methods in Java. After learning the
control structure of programs and object-oriented techniques,
students and developers enhance their programming skills by
learning how to use the runtime methods provided by Java
communities. Therefore, the methods being invoked are
closely related to the functionality of the program. In this
study, we make the assumption that program similarity can
be computed by the similarity of the method sets being
invoked.

The code analyzer in Figure 1 extracts a declared method
signature and a set of invoked methods. We implemented the
code analyzer using the Scanner class [13], a tokenizer in
Eclipse Java Development Tools (JDT) core. This class
provides the ability to classify the tokens in a Java program
into more than 100 types, and excludes comments allowing
efficient analysis of executable statements. The class is
widely used in Eclipse for navigating Java programs,
including a class-method hierarchy.

Figure 5 shows a sample of a Java program. Figure 6
shows a list of declared methods and invoked ones that are
generated from the Java program. A method with the same
name is usually invoked multiple times in a declared method.
Therefore, the analyzer extracts the method name and the
number of times invoked, which are used for calculating
cosine similarity. For example, the main() method in the
Sample1607 class in Figure 5 invokes the timeMeasure()
method four times.

Figure 5. Sample Java programs.

Figure 6. Extracted method names and the number of times invoked.

It should be noted that the methods, such as println() and

printStackTrace(), are intentionally excluded from the
extraction process because they are often used to print data
values for debugging purpose and fail to characterize the
function of a declared method.

B. Apriori Algorithm for Identifying Subjects and Clusters

Apriori algorithm proposed by Agrawal and Srikant [11]
starts by identifying the frequent individual items and
extending them to larger itemset as long as those itemset
frequently appear in the database under consideration.

Let a database D be a set of transactions t, i.e., D= {t1, t2,…,
tn}. Let each transaction ti be a nonempty set of itemset, i.e.,
ti = {ii1, ii2,…, iim}. The itemset is a nonempty set of items
observed together.

A support value of an itemset refers to the number of
transactions that contain the itemset. In terms of D and ti, the
support value of an itemset X is defined by the following
formula:

Support(X)= | { ti∈D : X⊆ti & 1 ≤ i ≤ n } | (1)

A set of items is called frequent if its support value is

greater than a user-specified minimum support value, i.e.,
minSup.

Here, we cite the Apriori principle:
If an itemset is frequent, then all of its subsets are

also frequent.
This means that if a set is infrequent, then all of its

supersets are infrequent. The Apriori algorithm works based
on this principle, in which k-frequent item sets are utilized
to identify k+1 frequent item sets.

Sample1607::main(String[])
 timeMeasure,4
Sample1607::ReadByte()
 FileInputStream,1
 close,1
 read,1
 toHexString,1

3Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

Since the frequent itemset generated by the Apriori
algorithm tends to be very large, it is beneficial to identify a
compact representation of all the frequent itemset for a
particular database. One such approach is to use a maximal
frequent itemset [12].

Definition:

A maximal frequent itemset is a frequent itemset for
which none of its immediate supersets are frequent.

By definition, all frequent itemset can be derived from the
set of maximal itemset. Table I shows an example of a
database consisting of five transactions of itemset. Figure 8
illustrates an example of the maximal frequent itemset in a
lattice structure where a node corresponds to an itemset and
arcs correspond to the subset relation [12]. MinSup is set to
1 or 20% (= 1/5*100).

TABLE I. EXAMPLE OF DATABASE

In Figure 7, the nodes surrounded by solid lines indicate
the frequent itemset, while the nodes with yellow
backgrounds indicate the maximal frequent itemset.

Figure 7. Maximal frequent itemset in lattice structure.

The frequent itemset can be soft-clustered by the maximal
frequent itemset. For example, the subsets of {A, C, D} are
{A, C}, {A, D}, {C, D}, {A}, {C}, {D}. The subsets of {A,
B} are {A}, {B}. Analogously, the subsets generated from
{B, C, D} are {B, C}, {B, D}, {C, D}, {B}, {C}, {D}.
These subsets formulate three soft-clusters sharing the
subsets, such as {A}, {B}, {C}, {D}.

Table II shows the number of the frequent itemset, the
maximal frequent itemset, and the compression ratio of
when the minimum support minSup varies. The experiment
is performed using 33 methods declared in 23 Java files.
The number of unique invoked methods is 36.

TABLE II. NUMBER OF ELEMENTS IN ITEMSET

For example, when minSup is 12%, the number of
frequent itemset is 127 and the number of maximal frequent
itemset is 6. The number of elements compresses to 4.7%.
The maximal frequent itemset headlines the frequent itemset
and defines the cluster.

C. Clustering Methods Using Maximal Frequent Itemset

More than ten binary programs that implement the Apriori
algorithm are available on the web page maintained by
Borgelt [14]. For the sake of openness and efficiency of
implementation, this study uses fpgrowth.exe listed on the
web page. Specifically, we implement a maximal-frequent-
itemset generating function by calling fpgrowth.exe using
java.lang.Runtime.exec() that executes the specified
command and arguments in a separate process. The input
data for this program is the set of invoked methods for each
declared method shown in Figure 6, ignoring the number of
invoked methods citations.

Figure 8 shows the maximal frequent itemset obtained
from the sample program shown in Figure 2, with a minSup
of 11%. The maximal frequent itemset corresponds to the
programming subjects and is shown in Figure 3 as well.

Figure 8. Example of generated maximal frequent itemset.

Figure 9 shows a list of declared methods that contain at

least two invoked method names that are elements of a
maximal frequent itemset. These clusters are broadly
classified into two categories, i.e., those related to reading
files and those related to writing files.

4Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

Figure 9. Methods belonging to each cluster.

Due to soft-clustering, one method belongs to multiple

clusters. For example, Sample1607::ReadByte() is included
in clusters 0 and 5, and Sample1607::ReadText() is included
in clusters 0, 4 and 5.

D. Calculation of Recommendation Ranking

1) Definition of tf-idf
The Term Frequency-Inverse Document Frequency (tf-

idf) weight [8] is one that commonly used in information
retrieval. In the context of our study, the tf-idf can be
rephrased as follows:

Tf (term frequency) means the frequency of an invoked
method name in a sample program,

Idf (inverse document frequency) indicates a numerical
value that reflects how rare or important an invoked
method name in a set of sample programs.

Among several options to calculate the tf and idf, we
adopt the following definitions.

Tfi is defined as the number of occurrences of an invoked
method i.

Idfi is defined as log(N/DFi), where N is the total number
of declared methods that occur in a set of sample
programs, and DFi is the number of declared methods
where an invoked method i appears at least once. It
should be noted that idfi of an invoked method i that
appears in all declared methods is equal to log(N/N),
which is equal to 0.

2) Calculating Tf-idf for Sample Program Recommendation
As mentioned earlier, the maximal frequent itemset

consists of a set of method names that suggest programming
subjects. The maximal frequent itemset is displayed on the
combo box in the GUI as shown in Figure 3. The proposed
system identifies a set of declared methods when a user
selects a cell on the combo box, and then starts to compute tf
and idf for the set of declared methods. Table III lists the tf
and idf values of the invoked method names corresponding
to the maximal frequent itemset {BufferedInputStream,
close, FileInputStream, read} that is shown at the top of
Figure 9. There are 19 invoked methods in the sample
programs related to the maximal frequent itemset.

TABLE III. TF AND IDF VALUES OF INVOKED METHOD NAMES

Since the proposed system uses clustering based on a
maximal frequent itemset, the method names that are
included in the Maximal Frequent Itemset (MFI) should be
considered to characterize the sample programs more
strongly than the others. In this study, the weights of the
invoked method names are adjusted using the following
formula.

0 BufferedInputStream close FileInputStream read
 FileInOut08::main(String[])

 FileInOut09::main(String[])

 Sample1602::main(String[])
 Sample1603::main(String[])

 Sample1604::main(String[])

 Sample1607::ReadByte()
 Sample1607::ReadByteBuffered()

 Sample1607::ReadText()

1 BufferedOutputStream close FileOutputStream write
 FileInOut07::main(String[])

 FileInOut09::main(String[])

 Sample1608::main(String[])
 Sample1609::main(String[])

 Sample1610::main(String[])

 Sample1613::byteBufferedWrite()
 Sample1613::byteWrite()

2 FileWriter write close

 Sample1611::main(String[])
 Sample1612::main(String[])

 Sample1613::textBufferedWrite()

 Sample1613::textWrite()
3 PrintWriter close File FileOutputStream OutputStreamWriter

 FileInOut01::main(String[])

 FileInOut02::main(String[])
 FileInOut03::main(String[])

 FileInOut06::main(String[])

 FileInOut07::main(String[])
 FileInOut09::main(String[])

 Sample1610::main(String[])

4 readLine close File FileInputStream InputStreamReader BufferedReader

 CountUniqueMathod::main(String[])

 FileInOut04::main(String[])

 FileInOut05::main(String[])
 FileInOut06::main(String[])

 FileInOut08::main(String[])

 FileInOut09::main(String[])
 GetCurrentPath::main(String[])

 Sample1604::main(String[])

 Sample1607::ReadText()
5 toHexString close FileInputStream read

 FileInOut08::main(String[])

 FileInOut09::main(String[])
 Sample1602::main(String[])

 Sample1603::main(String[])

 Sample1604::main(String[])
 Sample1607::ReadByte()

 Sample1607::ReadByteBuffered()

 Sample1607::ReadText()

5Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

Let MFI be the maximal frequent itemset specified by a
user and idfmax be the maximum idf values.

Adjusted idfj= idfj + idfmax if j ∊MFI (2)

 = idfj if j ∉MFI

Table IV shows the adjusted idf values for the maximal

frequent itemset {BufferedInputStream, close,
FileInputStream, read}.

TABLE IV. ADJUSTED IDF VALUES

The degree of recommendation DegRi for a declared
method i is calculated as:

where tfik is the number of occurrences of the invoked
method k in the declared method i, and idfk is the inverse
document frequency of the invoked method k.

Table V shows the degrees of recommendation for the
declared method related to the maximal frequent itemset
{BufferedInputStream, close, FileInputStream, read}.

TABLE V. DEGREES OF RECOMMENDATION FOR SAMPLE PROGRAMS

The maximal degree of recommendation is normalized to
be 1 and displayed in the GUI. For the lists in Table 3, the
normalized degrees of recommendation are obtained by
dividing all the degrees by 11.885. This calculation
generates the final list of recommendations shown in Figure
4.

Performance is measured 10 times for the following two
processes that comprise this system. Both include the time
displayed in the GUI.

(1) From the start of parsing to the end of clustering:
average 360.8ms, standard deviation 10.5ms

(2) After specifying a cluster to generating a list of
recommendations: average 128.6ms, standard
deviation 5.95ms

The specifications of a PC used are as follows:
CPU: AMD Ryzen 7 5700U (Laptop PC)
RAM: 16.0 GB
OS: Windows 10 Home 64 bit.

IV. EXPERIMENTAL RESULTS

This section describes experimental results. Figure 10
shows the sample program or the declared method that
corresponds to the top of the recommended list in Figure 4
with a normalized recommendation value of 1.000. The
sample program includes all of the invoked methods that
constitute the maximal frequent itemset
{BufferedInputStream, close, FileInputStream, read}. In
addition, it contains essential methods for binary file outputs,
e.g., FileOutputStream(), write().

Figure 10. Sample program with recommendation value 1.000.

Figure 11 shows a sample program with a normalized

recommendation value of 0.512. It contains all four method
names that constitute the maximal frequency itemset and
another method, i.e., toHexString(). Compared to the sample
program in Figure 10, this provides a concise one.

Figure 11. Sample program with recommendation value 0.512.

Figure 12 shows a sample program with a normalized
recommendation value of 0.350. It includes three method
names of the maximal frequency itemset and another
method, i.e., InputStreamReader().

Figure 12. Sample program with recommendation value 0.350.

6Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

Compared to the sample programs in Figures 10 and 11,
Figure 12 shows the most concise program regarding a
method usage for file read operations. These results
demonstrate that the proposed system works as expected.

V. DISCUSSION

A. Syntax Analysis

In this study, the Scanner [13] class is used for parsing
sample programs mainly because it reduces development
effort. There are several options of parsing tools, including
JavaParser [15] and ANTLR [16], both of which generate an
Abstract Syntax Tree (AST). AST is an intermediate
representation of a program’s source code in a tree structure.
“Traversing” an AST that would require a few hundred lines
of programming allows applications to perform more
complex operations than a mere method name extraction.
ANTLR can parse formal languages other than Java. All
parsing tools work independently of IDEs and can parse
sample code stored in arbitrary directories.

B. ChatGPT

ChatGPT is a chat-based tool released by OpenAI in Nov
2022 [17]. The latest ChatGPT Feb 13 version allows users
to chat about Java sample code for File I/O successfully.
However, the sample code is limited to what ChatGPT has
already learned. Since a learning process is exclusively
conducted by an OpenAI team, it is difficult for a lecturer to
configure sample programs to fit her/his classes. The
method proposed in this study allows the lecturer to
compose sample programs tailored for a class, even if those
programs are specific or even unusual.

VI. CONCLUSION AND FUTURE WORK

This study deals with a recommendation system of sample
programs using unsupervised machine learning. The
proposed system soft-clusters the sample programs based on
the set of invoked method names that frequently observed.
The clustering corresponds to programming subjects and is
performed automatically using the Apriori algorithm. The
recommended ranking of the sample programs is calculated
based on an adjusted tf-idf model that takes the method name
and number of times it is invoked.

It is confirmed through experiments using file I/O sample
programs that declared methods including useful information
on the programming subjects, such as read and write
string/binary data, are ranked in higher position. This result
indicates that the proposed recommendation system has
sufficient potential to support programming education.

The Apriori algorithm employed in this study requires the
minimum number of supports, i.e., minSup, to be specified in
advance. The ability to automatically determine the optimal
minSup is left as a topic for future research. Manual
collection of sample programs is a drawback of this study.
Sample code downloader is an issue for future development.
Additional experiments on larger sample programs are
planned to verify the effectiveness of the proposed
recommendation system for programming education.

REFERENCES

[1] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann,
“Recommendation systems for software engineering,” IEEE
Software 27, pp. 80-86, Jul. 2010, DOI: 10.1109/MS.2009.161

[2] M. Gasparic and A. Janes, “What Recommendation Systems
for Software Engineering Recommend: A Systematic
Literature Review,” Journal of Systems and Software 113, pp.
101-113, Mar. 2016, DOI: 10.1016/j.jss.2015.11.036

[3] S.-K. Hsu and S.-J. Lin, “Mining Source Codes to Guide
Software Development,” Asian Conference on Intelligent
Information and Database Systems, pp. 445-454, Mar. 2010,
DOI: 10.1007/978-3-642-12145-6_46

[4] N. Katirtzis, T. Diamantopoulos, and C. Sutton, “Summarizing
Software API Usage Examples using Clustering Techniques,”
Proc. of the 21st International Conference on Fundamental
Approaches to Software Engineering. vol. 10802, Springer, pp.
189-206, Apr. 2018, DOI: 10.1007/978-3-319-89363-1_11

[5] T. Diamantopoulos and A. Symeonidis, “Mining Source Code
for Component Reuse,” Mining Software Engineering Data for
Software Reuse, Advanced Information and Knowledge
Processing. Springer, pp. 133-174, Mar. 2020, DOI:
10.1007/978-3-030-30106-4_6

[6] A. Hora, “APISonar: Mining API usage examples,” Wiley
Online Library, Software: Practice and Experience Vol. 51,
Issue 2, pp. 319-352, Oct. 2020, DOI: 10.1002/spe.2906

[7] P. T. Nguyen, J. D. Rocco, C. D. Sipio, D. D. Ruscio, and M.
D. Penta, “Recommending API Function Calls and Code
Snippets to Support Software Development,” IEEE
Transactions on Software Engineering, Vol. 48, Issue 7, pp.
2417-2438, Jul. 2022, DOI: 10.1109/TSE.2021.3059907

[8] G. Sidorov. “Vector Space Model for Texts and the tf-idf
Measure,” In Syntactic n-grams in Computational Linguistics,
pp.11-15, Apr. 2019, Springer, Cham, ISBN: 978-3-030-
14770-9.

[9] A. Roy, “Introduction to Recommender Systems-1: Content-
Based Filtering and Collaborative Filtering,” Available from:
https://towardsdatascience.com/introduction-to-recommender-
systems-1-971bd274f421 [retrieved: Jul. 2020]

[10] Eclipse foundation, “Download Eclipse Technology that is
right for you,” Available from:
https://www.eclipse.org/downloads/ [retrieved: Mar. 2023]

[11] R. Agrawal and R. Srikant, “Mining sequential patterns,” Proc.
11th IEEE International Conference on Data Engineering
(ICDE), pp.3-14, 1995, DOI: 10.1109/ICDE.1995.380415

[12] J. Rousu, “Finding frequent itemsets - concepts and
algorithms,” University of Helsinki, Available from:
https://www.cs.helsinki.fi/group/bioinfo/teaching/dami_s10/da
mi_lecture4.pdf [retrieved: Apr. 2010]

[13] IBM Rational Software Architect, “Interface IScanner,” in
org.eclipse.jdt.core.compiler, Available from:
https://www.ibm.com/docs/ja/developer-for-zos/9.5.1?topic=
SSQ2R2_9.5.1/org.eclipse.wst.jsdt.doc/reference/api/org/eclips
e/wst/jsdt/core/compiler/IScanner.htm [retrieved: Mar. 2021]

[14] “Christian Borgelt’s Web Pages,” Available from:
https://borgelt.net/fpgrowth.html [retrieved: Nov. 2022]

[15] JavaParser.org, “Tools for your Java code,” Available from:
https://javaparser.org [retrieved: 2019]

[16] T. Parr, “Download ANTLR”, Available from: https://
www.antlr.org/download.html [retrieved: Feb. 2023]

[17] OpenAI, “Introducing ChatGPT,” Available from:
https://openai.com/blog/chatgpt [retrieved: Nov. 2022]

7Copyright (c) IARIA, 2023. ISBN: 978-1-68558-042-1

SOFTENG 2023 : The Ninth International Conference on Advances and Trends in Software Engineering

