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Abstract— One effective way to learn programming techniques 
is to refer to sample programs. As the number of sample 
programs increases, however, it becomes difficult and time-
consuming to find appropriate sample code visually. To 
overcome this shortcoming, research and development of 
program recommendation systems have been actively 
conducted. This paper discusses a recommendation system for 
Java sample programs using an unsupervised machine 
learning technique. The proposed system includes three major 
steps: (1) extracting invoked methods used in each sample 
program, (2) clustering the sample programs by applying a 
data mining technique to the extracted methods, and (3) 
ranking the programs by calculating a weighted average of the 
extracted methods. Experiments using file input and output 
sample programs indicate that the proposed system has 
sufficient potential to support programming education. 
 
Keywords—Recommendation System for Software Engineering; 
Mining Software Repository; Maximal Frequent Itemset; Tf-idf; 
Unsupervised Machine Learning; Programming Education. 

I.  INTRODUCTION 

Sample programs are an important source for learning new 
programming technologies. In particular, sample programs 
for using Application Programming Interfaces (API) related 
to open-source programs are available on the Internet. Since 
the amount of publicly concerning sample code becomes 
enormous, it might become time-consuming and error-prone 
to find appropriate sample code visually. Over the past few 
decades, there has been a great deal of research and 
development on the systems that provide useful 
programming information for students and developers. 

Recommendation systems are generally employed in 
online stores and video/music websites, where rankings of 
items are calculated based on users’ reactions and similarities 
among products and/or works. The recommendation system 
for software development deals with artifacts, such as sample 
programs, specifications, test cases and bug reports. Several 
techniques have been developed to collect, rank, and 
visualize similar artifacts based on various indicators 
reflecting their nature. These techniques are often specific to 
software engineering and cause a recommendation system to 
be called a Recommendation System for Software 
Engineering (RSSE) [1]. 

Gasparic and Janes [2] survey 46 research and 
development articles on RSSE published between 2003 and 
2013, and categorize them with respect to the covered data 

and the methods for recommendation. The most common 
type of covered data is source code with 21 papers, followed 
by help information to perform changes with 6 papers. As for 
ranking method, list format is the most common with 33 
papers, followed by document format with three papers, and 
table format with two papers. 

Hsu and Lin [3] propose a recommendation system based 
on frequent patterns in source code. They originally define 
17 syntax patterns and extract them from the source code 
under study. A sequence pattern extraction algorithm based 
on frequency known as Prefix-Span is applied to recommend 
API usage patterns. 

Katirtzis, Diamantopoulos, and Sutton [4] discuss an 
algorithm that extracts API call sequences and then clusters 
them to create an API usage summary known as a source 
code snippet. Hierarchical clustering is performed by 
calculating the distance of extracted API call sequences 
using the longest common subsequence algorithm. Then, 
code slice techniques are applied to create a source code 
snippet. 

Diamantopoulos and Symeonidis [5] develop a system to 
recommend sample code stored in software repositories on 
the Internet, such as GitHub, GitLab and Bitbucket. The 
input to the system is a code fragment presented by a user, 
and the output is a set of sample codes similar to the code 
fragment. Similarities among source codes are calculated 
based on the vector space model and the Levenshtein 
distance. 

Hora [6] discusses a source code recommendation system 
that analyzes source code contained in a particular project 
and creates ranked API usage examples on a web site. The 
system ranks the source code based on three quality 
measures, i.e., similarity, readability, and reusability. The 
similarity is calculated using the cosine similarity in data 
analysis, while readability and reusability are calculated 
using indicators developed in software engineering studies. 

Nguyen, Rocco, Sipio, Ruscio, and Penta [7] implement a 
system to present API usage in a timely manner during a 
coding process, and discuss the evaluation of experimental 
results. The system calculates the similarity among similar 
projects by Term Frequency-Inverse Document Frequency 
(tf-idf) [8] and ranks API usage patterns using a collaborative 
filtering technique [9]. 

This paper discusses a lightweight recommendation 
system for analyzing Java sample programs that are collected 
from the Internet. The system clusters Java sample programs 
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based on the methods that are invoked by the programs so 
that each cluster represents a programming subject. The 
system ranks the sample programs using a tf-idf weighted 
vector space model for each clustering. Since the higher 
ranked samples contain more invoked methods than those 
ranked lower, this system assists a student in selecting 
sample code suitable for learning. 

The contributions of this study are as follows: 
I. In general, method call patterns differ from one 

programming subject to another. This system can 
automatically cluster sample programs by programming 
subjects and represent them to students. 

II. The RSSEs proposed so far employ hard-clustering, if 
any. In hard-clustering, the results depend on the initial 
values and have the restriction that one sample belongs to 
only one cluster. This study employes soft-clustering. 
Therefore, a sample program can belong to multiple 
clusters, and a cluster only contains related programs. 

III. By modifying tf-idf to give greater weights to the 
methods that frequently appear in a cluster, sample 
programs that fit the subject of a cluster and invoke many 
rare methods are ranked higher. 

IV. The proposed system employs unsupervised machine 
learning, making it lightweight to use, operate and 
maintain the system. 

The remainder of the paper is organized as follows. 
Section II gives the architecture of the proposed system. 
Section III describes the implementation of the main 
functions of the proposed system. Section IV shows the 
experimental results using file I/O sample programs. Section 
V discusses other implementation options. Section VI 
concludes the paper with our plans for future work. 

II. OVERVIEW OF PROPOSED SYSTEM 

This section describes the architecture of the proposed 
system from the functional point of view, and outlines 
typical usage. 

A. Code Analyzer 

Figure 1 depicts the architecture of the proposed system. 
The input for this system is sample programs available on 
the Internet. Currently, sample programs are collected 
manually and stored in a specific project typically in Eclipse, 
an Integrated Development Environment (IDE) for Java [10]. 
In this study, we assume that all sample programs are 
correct and work properly. 

 

 
Figure 1. Overview of the proposed system. 

Figure 2 shows a set of sample programs used in this 
study, which is stored in a project named Sample_File_IO in 
Eclipse. The sample program can be stored in packages. 
There is no limitation to the depth of the package hierarchy. 
As discussed later sections, these programs are concerned 
with binary and string file I/O. Programs can be stored in 
any directory other than an Eclipse project. 
 

 

Figure 2. Sample programs stored in Eclipse project. 

 
The code analyzer in Figure 1 extracts method 

declarations and invoked method names from all Java files 
under the specified directory or project. A list of method 
names being invoked is used for clustering the declared 
methods and ranking them. 

B. Automatic Identification of Subjects and Clusters 

Following code analysis, the Apriori algorithm [11] is 
started to identify the set of invoked methods that occur 
frequently. Based on the frequent method set, programming 
subjects are automatically identified. Each subject 
corresponds to a cluster. Figure 3 shows an example of 
identified clusters. 

 

 

Figure 3. Identified programming subjects and clusters. 
 
This study uses a soft-clustering technique based on a 

maximal frequent itemset [12], i.e., a compact itemset that 
represents a frequent itemset. Strictly, the method names 
displayed in each cell of the combo box in Figure 3 are 
elements of a maximal frequent itemset. For example, 
“BufferedInputStream close FileInputStream read” suggests 
from the method names that the cluster is related to the 
subject of reading binary data.  
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C. Calculation of Recommended Ranking 

Selecting a cell in the combo box in Figure 3 causes to 
specify a cluster of methods, which starts calculations of 
recommendation values for each of the declared methods in 
the cluster. Figure 4 shows an example of a method 
recommendation. The values of recommendation for each 
declared method are normalized so that the maximum value 
is equal to one. 

 

 
Figure 4. Sample of program recommendation. 

 
Method names are prefixed with class names, so that a 

student can easily check method source code using an IDE, 
such as Eclipse, NetBeans and IntelliJ IDEA. 

III. IMPLEMENTATION 

This section describes the implementation of three major 
steps of the proposed system. Those steps are code analysis, 
clustering, and ranking. 

A. Code Analysis for Extracting Invoked Method Set 

Functions necessary for system development are typically 
provided as runtime methods in Java. After learning the 
control structure of programs and object-oriented techniques, 
students and developers enhance their programming skills by 
learning how to use the runtime methods provided by Java 
communities. Therefore, the methods being invoked are 
closely related to the functionality of the program. In this 
study, we make the assumption that program similarity can 
be computed by the similarity of the method sets being 
invoked. 

The code analyzer in Figure 1 extracts a declared method 
signature and a set of invoked methods. We implemented the 
code analyzer using the Scanner class [13], a tokenizer in 
Eclipse Java Development Tools (JDT) core. This class 
provides the ability to classify the tokens in a Java program 
into more than 100 types, and excludes comments allowing 
efficient analysis of executable statements. The class is 
widely used in Eclipse for navigating Java programs, 
including a class-method hierarchy. 

Figure 5 shows a sample of a Java program. Figure 6 
shows a list of declared methods and invoked ones that are 
generated from the Java program. A method with the same 
name is usually invoked multiple times in a declared method. 
Therefore, the analyzer extracts the method name and the 
number of times invoked, which are used for calculating 
cosine similarity. For example, the main() method in the 
Sample1607 class in Figure 5 invokes the timeMeasure() 
method four times.  

 

 

Figure 5. Sample Java programs. 

 
 
 
 
 
 
 
 

 
Figure 6. Extracted method names and the number of times invoked. 

 
It should be noted that the methods, such as println() and 

printStackTrace(), are intentionally excluded from the 
extraction process because they are often used to print data 
values for debugging purpose and fail to characterize the 
function of a declared method. 

B. Apriori Algorithm for Identifying Subjects and Clusters 

Apriori algorithm proposed by Agrawal and Srikant [11] 
starts by identifying the frequent individual items and 
extending them to larger itemset as long as those itemset 
frequently appear in the database under consideration. 

Let a database D be a set of transactions t, i.e., D= {t1, t2,…, 
tn}. Let each transaction ti be a nonempty set of itemset, i.e., 
ti = {ii1, ii2,…, iim}. The itemset is a nonempty set of items 
observed together. 

A support value of an itemset refers to the number of 
transactions that contain the itemset. In terms of D and ti, the 
support value of an itemset X is defined by the following 
formula: 

 

Support(X)= | { ti∈D : X⊆ti & 1 ≤ i ≤ n } |  (1) 

 
A set of items is called frequent if its support value is 

greater than a user-specified minimum support value, i.e., 
minSup.  

Here, we cite the Apriori principle: 
If an itemset is frequent, then all of its subsets are 

also frequent. 
This means that if a set is infrequent, then all of its 

supersets are infrequent. The Apriori algorithm works based 
on this principle, in which k-frequent item sets are utilized 
to identify k+1 frequent item sets. 

Sample1607::main(String[]) 
    timeMeasure,4 
Sample1607::ReadByte() 
    FileInputStream,1 
    close,1 
    read,1 
    toHexString,1 
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Since the frequent itemset generated by the Apriori 
algorithm tends to be very large, it is beneficial to identify a 
compact representation of all the frequent itemset for a 
particular database. One such approach is to use a maximal 
frequent itemset [12]. 

 
Definition:  

A maximal frequent itemset is a frequent itemset for 
which none of its immediate supersets are frequent. 
 

By definition, all frequent itemset can be derived from the 
set of maximal itemset. Table I shows an example of a 
database consisting of five transactions of itemset. Figure 8 
illustrates an example of the maximal frequent itemset in a 
lattice structure where a node corresponds to an itemset and 
arcs correspond to the subset relation [12]. MinSup is set to 
1 or 20% (= 1/5*100). 

TABLE I. EXAMPLE OF DATABASE 

 
 

In Figure 7, the nodes surrounded by solid lines indicate 
the frequent itemset, while the nodes with yellow 
backgrounds indicate the maximal frequent itemset. 
 

 
Figure 7. Maximal frequent itemset in lattice structure. 

The frequent itemset can be soft-clustered by the maximal 
frequent itemset. For example, the subsets of {A, C, D} are 
{A, C}, {A, D}, {C, D}, {A}, {C}, {D}. The subsets of {A, 
B} are {A}, {B}. Analogously, the subsets generated from 
{B, C, D} are {B, C}, {B, D}, {C, D}, {B}, {C}, {D}. 
These subsets formulate three soft-clusters sharing the 
subsets, such as {A}, {B}, {C}, {D}. 

Table II shows the number of the frequent itemset, the 
maximal frequent itemset, and the compression ratio of 
when the minimum support minSup varies. The experiment 
is performed using 33 methods declared in 23 Java files. 
The number of unique invoked methods is 36.  

TABLE II. NUMBER OF ELEMENTS IN ITEMSET 

 
 

For example, when minSup is 12%, the number of 
frequent itemset is 127 and the number of maximal frequent 
itemset is 6. The number of elements compresses to 4.7%. 
The maximal frequent itemset headlines the frequent itemset 
and defines the cluster.  

C. Clustering Methods Using Maximal Frequent Itemset 

More than ten binary programs that implement the Apriori 
algorithm are available on the web page maintained by 
Borgelt [14]. For the sake of openness and efficiency of 
implementation, this study uses fpgrowth.exe listed on the 
web page. Specifically, we implement a maximal-frequent-
itemset generating function by calling fpgrowth.exe using 
java.lang.Runtime.exec() that executes the specified 
command and arguments in a separate process. The input 
data for this program is the set of invoked methods for each 
declared method shown in Figure 6, ignoring the number of 
invoked methods citations. 

Figure 8 shows the maximal frequent itemset obtained 
from the sample program shown in Figure 2, with a minSup 
of 11%. The maximal frequent itemset corresponds to the 
programming subjects and is shown in Figure 3 as well. 
 
 

 

Figure 8. Example of generated maximal frequent itemset. 

 
Figure 9 shows a list of declared methods that contain at 

least two invoked method names that are elements of a 
maximal frequent itemset. These clusters are broadly 
classified into two categories, i.e., those related to reading 
files and those related to writing files. 
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Figure 9. Methods belonging to each cluster. 

 
Due to soft-clustering, one method belongs to multiple 

clusters. For example, Sample1607::ReadByte() is included 
in clusters 0 and 5, and Sample1607::ReadText() is included 
in clusters 0, 4 and 5. 

 

D. Calculation of Recommendation Ranking 

1) Definition of tf-idf 
The Term Frequency-Inverse Document Frequency (tf-

idf) weight [8] is one that commonly used in information 
retrieval. In the context of our study, the tf-idf can be 
rephrased as follows: 

Tf (term frequency) means the frequency of an invoked 
method name in a sample program, 

Idf (inverse document frequency) indicates a numerical 
value that reflects how rare or important an invoked 
method name in a set of sample programs. 

Among several options to calculate the tf and idf, we 
adopt the following definitions.  

Tfi is defined as the number of occurrences of an invoked 
method i. 

Idfi is defined as log(N/DFi), where N is the total number 
of declared methods that occur in a set of sample 
programs, and DFi is the number of declared methods 
where an invoked method i appears at least once. It 
should be noted that idfi of an invoked method i that 
appears in all declared methods is equal to log(N/N), 
which is equal to 0. 

 

2) Calculating Tf-idf for Sample Program Recommendation 
As mentioned earlier, the maximal frequent itemset 

consists of a set of method names that suggest programming 
subjects. The maximal frequent itemset is displayed on the 
combo box in the GUI as shown in Figure 3. The proposed 
system identifies a set of declared methods when a user 
selects a cell on the combo box, and then starts to compute tf 
and idf for the set of declared methods. Table III lists the tf 
and idf values of the invoked method names corresponding 
to the maximal frequent itemset {BufferedInputStream, 
close, FileInputStream, read} that is shown at the top of 
Figure 9. There are 19 invoked methods in the sample 
programs related to the maximal frequent itemset. 

TABLE III. TF AND IDF VALUES OF INVOKED METHOD NAMES 

 
 

Since the proposed system uses clustering based on a 
maximal frequent itemset, the method names that are 
included in the Maximal Frequent Itemset (MFI) should be 
considered to characterize the sample programs more 
strongly than the others. In this study, the weights of the 
invoked method names are adjusted using the following 
formula. 

0  BufferedInputStream close FileInputStream read 
    FileInOut08::main(String[]) 

    FileInOut09::main(String[]) 

    Sample1602::main(String[]) 
    Sample1603::main(String[]) 

    Sample1604::main(String[]) 

    Sample1607::ReadByte() 
    Sample1607::ReadByteBuffered() 

    Sample1607::ReadText() 

1  BufferedOutputStream close FileOutputStream write 
    FileInOut07::main(String[]) 

    FileInOut09::main(String[]) 

    Sample1608::main(String[]) 
    Sample1609::main(String[]) 

    Sample1610::main(String[]) 

    Sample1613::byteBufferedWrite() 
    Sample1613::byteWrite() 

2  FileWriter write close 

    Sample1611::main(String[]) 
    Sample1612::main(String[]) 

    Sample1613::textBufferedWrite() 

    Sample1613::textWrite() 
3  PrintWriter close File FileOutputStream OutputStreamWriter 

    FileInOut01::main(String[]) 

    FileInOut02::main(String[]) 
    FileInOut03::main(String[]) 

    FileInOut06::main(String[]) 

    FileInOut07::main(String[]) 
    FileInOut09::main(String[]) 

    Sample1610::main(String[]) 

4  readLine close File FileInputStream InputStreamReader BufferedReader 

    CountUniqueMathod::main(String[]) 

    FileInOut04::main(String[]) 

    FileInOut05::main(String[]) 
    FileInOut06::main(String[]) 

    FileInOut08::main(String[]) 

    FileInOut09::main(String[]) 
    GetCurrentPath::main(String[]) 

    Sample1604::main(String[]) 

    Sample1607::ReadText() 
5  toHexString close FileInputStream read 

    FileInOut08::main(String[]) 

    FileInOut09::main(String[]) 
    Sample1602::main(String[]) 

    Sample1603::main(String[]) 

    Sample1604::main(String[]) 
    Sample1607::ReadByte() 

    Sample1607::ReadByteBuffered() 

    Sample1607::ReadText() 
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Let MFI be the maximal frequent itemset specified by a 
user and idfmax be the maximum idf values. 
 

Adjusted idfj= idfj + idfmax    if j ∊MFI  (2) 

                  = idfj                if j ∉MFI   

 
Table IV shows the adjusted idf values for the maximal 

frequent itemset {BufferedInputStream, close, 
FileInputStream, read}. 

TABLE IV. ADJUSTED IDF VALUES 

 
 

The degree of recommendation DegRi for a declared 
method i is calculated as: 

where tfik is the number of occurrences of the invoked 
method k in the declared method i, and idfk is the inverse 
document frequency of the invoked method k.  

Table V shows the degrees of recommendation for the 
declared method related to the maximal frequent itemset 
{BufferedInputStream, close, FileInputStream, read}. 

TABLE V. DEGREES OF RECOMMENDATION FOR SAMPLE PROGRAMS 

 
 

The maximal degree of recommendation is normalized to 
be 1 and displayed in the GUI. For the lists in Table 3, the 
normalized degrees of recommendation are obtained by 
dividing all the degrees by 11.885. This calculation 
generates the final list of recommendations shown in Figure 
4. 

Performance is measured 10 times for the following two 
processes that comprise this system. Both include the time 
displayed in the GUI. 

(1) From the start of parsing to the end of clustering: 
average 360.8ms, standard deviation 10.5ms 

(2) After specifying a cluster to generating a list of 
recommendations: average 128.6ms, standard 
deviation 5.95ms 

The specifications of a PC used are as follows: 
CPU: AMD Ryzen 7 5700U (Laptop PC) 
RAM: 16.0 GB 
OS: Windows 10 Home 64 bit. 

IV. EXPERIMENTAL RESULTS 

This section describes experimental results. Figure 10 
shows the sample program or the declared method that 
corresponds to the top of the recommended list in Figure 4 
with a normalized recommendation value of 1.000. The 
sample program includes all of the invoked methods that 
constitute the maximal frequent itemset 
{BufferedInputStream, close, FileInputStream, read}. In 
addition, it contains essential methods for binary file outputs, 
e.g., FileOutputStream(), write(). 
 

 

Figure 10. Sample program with recommendation value 1.000. 

 
Figure 11 shows a sample program with a normalized 

recommendation value of 0.512. It contains all four method 
names that constitute the maximal frequency itemset and 
another method, i.e., toHexString(). Compared to the sample 
program in Figure 10, this provides a concise one. 
 

 

Figure 11. Sample program with recommendation value 0.512. 
 

Figure 12 shows a sample program with a normalized 
recommendation value of 0.350. It includes three method 
names of the maximal frequency itemset and another 
method, i.e., InputStreamReader(). 
 

 

Figure 12. Sample program with recommendation value 0.350. 
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Compared to the sample programs in Figures 10 and 11, 
Figure 12 shows the most concise program regarding a 
method usage for file read operations. These results 
demonstrate that the proposed system works as expected. 

V. DISCUSSION 

A. Syntax Analysis 

In this study, the Scanner [13] class is used for parsing 
sample programs mainly because it reduces development 
effort. There are several options of parsing tools, including 
JavaParser [15] and ANTLR [16], both of which generate an 
Abstract Syntax Tree (AST). AST is an intermediate 
representation of a program’s source code in a tree structure. 
“Traversing” an AST that would require a few hundred lines 
of programming allows applications to perform more 
complex operations than a mere method name extraction. 
ANTLR can parse formal languages other than Java. All 
parsing tools work independently of IDEs and can parse 
sample code stored in arbitrary directories. 

B. ChatGPT 

ChatGPT is a chat-based tool released by OpenAI in Nov 
2022 [17]. The latest ChatGPT Feb 13 version allows users 
to chat about Java sample code for File I/O successfully. 
However, the sample code is limited to what ChatGPT has 
already learned. Since a learning process is exclusively 
conducted by an OpenAI team, it is difficult for a lecturer to 
configure sample programs to fit her/his classes. The 
method proposed in this study allows the lecturer to 
compose sample programs tailored for a class, even if those 
programs are specific or even unusual. 

VI. CONCLUSION AND FUTURE WORK 

This study deals with a recommendation system of sample 
programs using unsupervised machine learning. The 
proposed system soft-clusters the sample programs based on 
the set of invoked method names that frequently observed. 
The clustering corresponds to programming subjects and is 
performed automatically using the Apriori algorithm. The 
recommended ranking of the sample programs is calculated 
based on an adjusted tf-idf model that takes the method name 
and number of times it is invoked. 

It is confirmed through experiments using file I/O sample 
programs that declared methods including useful information 
on the programming subjects, such as read and write 
string/binary data, are ranked in higher position. This result 
indicates that the proposed recommendation system has 
sufficient potential to support programming education. 

The Apriori algorithm employed in this study requires the 
minimum number of supports, i.e., minSup, to be specified in 
advance. The ability to automatically determine the optimal 
minSup is left as a topic for future research. Manual 
collection of sample programs is a drawback of this study. 
Sample code downloader is an issue for future development. 
Additional experiments on larger sample programs are 
planned to verify the effectiveness of the proposed 
recommendation system for programming education. 
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