
On the Composability of Behavior Driven Acceptance Tests

Tugkan Tuglular
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkey

mail: tugkantuglular@iyte.edu.tr

Abstract—This paper proposes a model-based approach for
composition of Behavior Driven Acceptance Tests (BDATs)
using Event Sequence Graphs (ESGs). ESGs are used to
generate test sequences automatically. For the composition
process of BDATs, the ESG formalism is extended with tags
and the technique called elimination of tags by combination is
introduced for tagged ESGs. The proposed approach improves
testability of existing behavior driven acceptance test suites. It
is validated through a real-life example. The results
demonstrate the feasibility of the proposed approach.

Keywords-model-based testing; event sequence graphs;
behavior driven acceptance tests; Gherkin.

I. INTRODUCTION
Behavior Driven Development (BDD) is focused on

defining fine-grained specifications of the behavior of the
targeted system [1]. In BDD, tests are clearly written using a
specific ubiquitous language, such as Gherkin [2]. For
developing Behavior Driven Acceptance Tests (BDATs),
there are environments like Cucumber [2], which forces
testers to use a test template using Gherkin language and
environments like Gauge [3], which does not impose any
language. The scope of this study is BDATs developed in
Gherkin.

Although Gherkin and its scenario template helps test
designers in writing test cases, they do not guide test
designers in test objectives. The test designer either develops
BDATs in an ad-hoc manner or follows rules of thumb such
as happy path testing and negative testing. In either case, the
test designer is not certain about the completeness or
coverage of the BDAT test suite. As a solution, this paper
proposes to transform Gherkin scenarios into formal test
models, so that the test designer can work on completeness
and coverage of BDATs.

The proposed approach assumes that clauses written in
Gherkin can be represented by events. In that case, an event-
based formal model would fit better to BDATs. Therefore,
this paper proposes the use of Event Sequence Graphs
(ESGs) for modeling BDATs. To model a BDAT as an ESG,
ESGs are extended with tags. This is one of the novelties
presented in this paper. Another novelty presented here is the
process of finding missing BDATs. To find missing BDATs,
the proposed approach follows elimination of tags by
combination. After the missing BDATs are completed, an
ESG without any tags is obtained. The proposed approach is
explained with a running example in Section III. For
evaluation, a BDAT test suite is selected from GithubTM and

the proposed approach is applied to this test suite. The results
are shared in Section IV.

The paper is organized as follows: In the next section, the
formal definitions of ESGs are given along with examples
and figures. The proposed approach is explained in Section
III. Section IV gives an evaluation of the proposed approach
along with a discussion in Section V. Section VI outlines
related work, and the last section concludes the paper.

II. FUNDAMENTALS

A. Gherkin
Gherkin uses a set of special keywords to give structure

and meaning to executable specifications [2]. It provides the
behavior definitions of the intended software not only to
product owners and business analysts, but also to developers
and testers [4]. Gherkin is a line-oriented language in terms
of structure and each line has to be divided by the Gherkin
keyword except feature and scenario descriptions [2]. In this
paper, some of the Gherkin keywords; namely Feature,
Scenario, Given, When, And, Then, are utilized. Throughout
the paper, the terms Gherkin scenario, scenario, and BDAT
are used interchangeably.

Tests should be independent of each other so that they
can be run in any order or even in parallel. This principle is
also applied in developing BDATs. So, each BDAT should
be run manually or automatically independent of other
BDATs. However, they should also be composable so that it
will be possible to execute a BDAT after a related one.

B. Event Sequence Graphs
A model of the system, which requires the understanding

of its abstraction, helps in testing its behavior. A formal
specification approach that distinguishes between legal and
illegal situations is necessary for acceptance testing. These
requirements are satisfied by event sequence graphs [5].

Differing from the notion of finite-state automata, inputs
and states are merged in ESG, hence they are turned into
“events” to facilitate the understanding and checking the
external behavior of the system. Thus, vertices of the ESG
represent events as externally observable phenomena, e.g., a
user action or a system response. Directed edges connecting
two events define allowed sequences among these events [5].
Definitions from 1 to 3 and related examples and
explanations along with Figure 1 are taken exactly as they
are from [6]-[9].

23Copyright (c) IARIA, 2021. ISBN: 978-1-61208-843-3

SOFTENG 2021 : The Seventh International Conference on Advances and Trends in Software Engineering

Definition 1. An event sequence graph ESG = (V, E, X, G) is
a directed graph where V ≠ ∅ is a finite set of vertices
(nodes), E Í V´V is a finite set of arcs (edges), X,G Í V are
finite sets of distinguished vertices with x Î X, and γ Î Γ,
called entry nodes and exit nodes, respectively, wherein "v
Î V there is at least one sequence of vertices áξ,v0, . . . ,vkñ
from each ξ Î Ξ to vk = v and one sequence of vertices áv0, . .
. ,vk,γñ from v0 = v to each γ Î Γ with (vi,vi+1) Î E, for i = 0, .
. . ,k-1 and v ≠ξ,γ.

To mark the entry and exit of an ESG, all ξ Î Ξ are

preceded by a pseudo vertex ‘[’ Ï V and all γ Î Γ are
followed by another pseudo vertex ‘]’ Ï V. The semantics of
an ESG are as follows. Any v Î V represents an event. For
two events v, v’ Î V, the event v’ must be enabled after the
execution of v iff (v, v’) Î E. The operations on identifiable
components of the GUI are controlled and/or perceived by
input/output devices, i.e., elements of windows, buttons,
lists, checkboxes, etc. Thus, an event can be a user input or a
system response; both of them are elements of V and lead
interactively to a succession of user inputs and expected
desirable system outputs.

Example 1. For the ESG given in Figure 1: V={a,b,c},
Ξ={a}, Γ={b}, and E = {(a,b), (a,c),(b,c),(c,b))}. Note that
arcs from pseudo vertex [and to pseudo vertex] are not
included in E.

Furthermore, α(initial) and ω(end) are functions to
determine the initial vertex and end vertex of an ES, e.g., for
ES= (v0, . . . ,vk) initial vertex and end vertex are α(ES)=v0,
ω(ES)=vk, respectively. For a vertex vÎV, N+(v) denotes the
set of all successors of v, and N-(v) denotes the set of all
predecessors of v. Note that N-(v) is empty for an entry xÎΞ
and N+(v) is empty for an exit gÎΓ.

Figure 1. An ESG with a as entry and b as exit and pseudo vertices [,].

Definition 2. Let V, E be defined as in Definition 1. Then,
any sequence of vertices áv0, . . . ,vkñ is called an event
sequence (ES) iff (vi,vi+1) Î E, for i=0, . . . ,k-1.

The function l(length) of an ES determines the number of

its vertices. In particular, if l(ES)=1 then ES=(vi) is an ES of
length 1. Note that the pseudo vertices [and] are not
considered in generating any ESs. Neither are they included
in ESs nor considered to determine the initial vertex, end
vertex, and length of the ESs. An ES = ávi,vkñ of length 2 is
called an event pair (EP).

Definition 3. An ES is a complete ES (or, it is called a
complete event sequence, CES), if α(ES)=xÎΞ is an entry
and ω(ES)=gÎΓ is an exit.

A CES may or may not invoke no interim system

responses during user-system interaction. If it does not, that
means that it consists of consecutive user inputs and only a
final system response. CESs represent walks from the entry
of the ESG to its exit, realized by the form (initial) user
inputs → (interim) system responses → ··· (interim) user
inputs → (interim) system responses → ··· → (final) system
response.

III. PROPOSED APPROACH
The proposed approach improves completeness of a

BDAT test suite and enables coverage-based test sequence
generation. With the assumption that Gherkin clauses can be
represented by events, the proposed approach suggests the
use of ESGs for modeling BDATs. To model a BDAT as an
ESG, ESGs are extended with tags. This is explained first in
this section. Then, how BDATs are combined using tagged
ESGs is presented. After that, elimination of tags by
combination process that is used to find missing BDATs is
outlined. This section concludes with an example where all
BDATs, i.e., original, missing, and additional BDATs, are
composed into one ESG without any tags.

A. Representation of BDATs with tagged ESGs
Best practice for Gherkin scenarios is to describe

behavior rather than functionality.

A behavior driven acceptance test is a specification of the

behavior of the system, which verifies the interactions of the
objects rather than their states [10]. A scenario that makes up
a BDAT is composed of several steps. A step is an
abstraction that represents one of the elements in a scenario
which are: contexts, events, and actions [1]. So, a Gherkin
scenario template is as follows:

Given context
When event
Then action

Contexts, events, and actions can be represented by

events. A context is formed after a sequence of events. For
instance, the line Given I am on the homepage in a scenario
indicates that the context is being on the homepage and the
user can reach the homepage by a sequence of events. So, we
can say that a context is the result of a sequence of events.
Sometimes, the sequence of events may be empty. An action
is an event or results in an event depending on your
standpoint. For instance, the line Then product list is displayed
in a scenario is the action of the software, but for the user it
is an event.

This paper proposes the use of event sequence graphs for
modeling BDATs. To model a BDAT as an ESG, ESGs are
extended with tags.

24Copyright (c) IARIA, 2021. ISBN: 978-1-61208-843-3

SOFTENG 2021 : The Seventh International Conference on Advances and Trends in Software Engineering

Definition 4. A tagged ESG is an ESG, where a node or
vertex may contain a tag instead of an event.

A tagged ESG is useful in transforming Gherkin

scenarios or BDATs to ESGs. Contexts and actions are
represented by tags and this way, tags become connection or
composition points for ESGs. For instance, in the following
Scenario cart02, Given event is tagged with #productPage
and Then event is tagged with #shoppingBasket. Its ESG
representation is shown in Figure 2.

 Scenario: cart02 - Adding a product to cart
 Given I am on a product detail page #productPage
 When I select the amount
 And I click the add to cart button
 Then the product is added to my shopping cart
#shoppingCart

Figure 2. Tagged ESG for Scenario cart02.

Annotating Gherkin clauses with tags and representing
BDATs with tagged ESGs enable us to combine BDATs.

B. Combining two BDATs on tagged ESG
To combine two BDATs, the following approach is

proposed. Ending Gherkin clause can be combined with
starting Gherkin clause if they have the same tag. This means
two Gherkin scenarios can be run in a sequence. We can
connect Scenario cart02 with Scenario check01 presented
below, where Given event is tagged with #shoppingBasket
and Then event is tagged with #orderConfirmed. ESG
representation of Scenario check01 is shown in Figure 3.

 Scenario: check01 - Successful checkout
 Given I have added an item to my shopping bag
#shoppingCart
 When I proceed to the check out
 And I enter valid delivery details
 And I select a payment method
 And I confirm the order
 Then I am redirected to the thank you page
#orderConfirmed

Figure 3. Tagged ESG for Scenario check01.

As seen, tags are used as connection points. Following
the approach presented in Section III-A, we can combine
these two BDATs on a tagged ESG, since both are
represented as a tagged ESG. The resulting tagged ESG is
shown in Figure 4.

Figure 4. Tagged ESG for combined Scenarios cart02 and check01.

C. Finding missing BDATs
To find missing BDATs, elimination by combination is

proposed. As seen in Section III-B, once two BDATs are
combined using a tag, that tag is eliminated. Therefore, first
all possible tagged scenarios or their graphical
representations, i.e., tagged ESGs, are combined. It should be
noted that a combined tagged ESG may be combined with
another simple or combined tagged ESG. The goal is to
reach an ESG without any tags, as shown in Figure 5. After
all possible combinations are completed, if a tag remained on
a tagged ESG indicates that there is a missing BDAT. If
there are more than one tag, that may mean more missing
BDATs.

For instance, in the following Scenario acc03, Given
event is tagged with #atHome and Then event is tagged with
#orderDetail.

 Scenario: acc03 - Check orders
 Given I am logged in on the site #atHome
 When I navigate to my orders
 Then I see a list of my orders
 And I can open an order to see the order details
#orderDetail

This BDAT is the only Gherkin scenario that has the tag
#orderDetail. Since there is no match, it indicates that a
BDAT that starts with #orderDetail tag is missing. We can
complete this missing BDAT as follows:

Scenario: acc10 - Back to order list page
 Given #orderDetail
 When I press OK button

 Then order list page is displayed #orderList

As seen in the running example, elimination by

combination shows us clues about completeness of BDATs.
The approach proposed here is to check whether all tags are
combined. Any tag that is not combined suggests a missing
BDAT.

25Copyright (c) IARIA, 2021. ISBN: 978-1-61208-843-3

SOFTENG 2021 : The Seventh International Conference on Advances and Trends in Software Engineering

Figure 5. Composed ESG.

D. Composition of BDATs on tagged ESG
After completing the missing BDATs and improving

existing BDATs, the BDATs are composed on an ESG. The
resulting ESG is shown in Figure 5. There are no tags on the
resulting ESG, which means that all tags can be eliminated
by combination. Elimination by combination enables us to
find five missing BDATs, which are drawn in red on the
resulting ESG in Figure 5.

Once ESG is ready then CES for edge and for edge-pair
coverage can be generated for BDATs. The details of CES
generation can be found in [8]. We utilized the TSD tool [11]
to generate CES for both coverage criteria. The results are
given in the following section.

IV. EVALUATION
For evaluation, the proposed approach is applied to an

existing test suite for an e-commerce software [12], of which
six features out of eight are taken for evaluation. The
features locale and newsletter are left. The existing test suite
has 15 scenarios, or BDATs, with 64 Gherkin clauses.
Clause per scenario ratio is 4.26.

After applying the proposed approach, we end up with 24
BDATs and 85 Gherkin clauses. There are 9 new scenarios
but only 5 of them are missing scenarios. The other 4
scenarios are introduced to simplify and standardize some
original scenarios. So, clause per scenario ratio is decreased
to 3.54 from 4.26. The comparison of before and after the

proposed approach is given in Table I. The resulting test
suite has the scenarios that are simplified, standardized, and
tagged. Moreover, they become composable.

TABLE I. COMPARISON OF BEFORE AND AFTER PROPOSED
APPROACH

Criteria Before After

Number of scenarios 15 24

Number of clauses 64 85

Clause per scenario ratio 4.26 3.54

A further analysis of the resulting ESG shows that event

sequences are stuck in the child pages of home page. There is
no return to home page from child pages, which means that
features of the software cannot be tested in sequence. In
addition, it is discovered that there is no scenario about
cancellation of the check-out process. Those BDATs, 10 in
total, are added in green to the resulting ESG in Figure 5. It
should be noted that the graphical representation of BDATs
enables us to perform such an analysis. Without tool support,
it is very hard for test designers to conduct such analysis on
text represented BDATs.

There is another advantage of the proposed approach.
Since BDATs are transformed to ESGs and then combined,
we have an ESG from which we can automatically generate
test sequences, i.e., sequences of BDATs. CES for edge
coverage computed by the TSD tool is shown below:

26Copyright (c) IARIA, 2021. ISBN: 978-1-61208-843-3

SOFTENG 2021 : The Seventh International Conference on Advances and Trends in Software Engineering

No. of Nodes: 50
No. of Edges: 70
CES with 111 events:

[, login page is displayed, enter username, enter password, click
login button, home page is displayed, go to order list page, order list
page is displayed, click on an order, order details are displayed,
press OK button, order list page is displayed, click home icon,
home page is displayed, click shopping cart button, shopping cart
page is displayed, click check out button, check out page is
displayed, enter new address, enter new invalid payment, confirm
invalid order, "invalid payment" is displayed, press OK button,
check out page is displayed, enter new address, enter new invalid
payment, click cancel button, check out page is displayed, enter
new address, enter new valid payment, click cancel button, check
out page is displayed, select existing address, select existing
payment, click cancel button, check out page is displayed, enter
new address, enter new valid payment, confirm valid order, "order
taken" is displayed, press OK button, order list page is displayed,
click home icon, home page is displayed, enter multiple keyword,
click search button, product list page is displayed, select a filter,
click filter button, filtered product list page is displayed, click on a
product, product details are displayed, select amount, add to cart,
shopping cart page is displayed, click home icon, home page is
displayed, enter single keyword, click search button, product list
page is displayed, click on a product, product details are displayed,
click home icon, home page is displayed, select a product list page,
product list page is displayed, click home icon, home page is
displayed, click account button, account page is displayed, update
payment, "payment updated" is displayed, press OK button, account
page is displayed, update address, "address updated" is displayed,
press OK button, account page is displayed, click home icon, home
page is displayed, click shopping cart button, shopping cart page is
displayed, click check out button, check out page is displayed,
select existing address, select existing payment, confirm valid order,
"order taken" is displayed, press OK button, order list page is
displayed, click home icon, home page is displayed, select a product
list page, product list page is displayed, select a filter, click filter
button, filtered product list page is displayed, click home icon,
home page is displayed, click shopping cart button, shopping cart
page is displayed, click check out button, check out page is
displayed, click home icon, home page is displayed, click logout
button, login page is displayed, enter username, enter password,
click login button, home page is displayed, click logout button,],

CES for edge-pair coverage computed by the TSD tool
has a complete event sequence of 224 events. The CES is not
given here because of space limitations.

V. DISCUSSION
The proposed approach assumes that Gherkin clauses can

be represented by events. This assumption holds for the
selected test suite used in the evaluation. Although Gherkin
is developed for behavioral description scenarios, it must be
shown that all possible Gherkin clauses and scenarios can be
represented by events. It may require some transformation.
This is left as future work.

The proposed approach shows that through modeling
BDATs, it is possible to automatically generate test
sequences. UML use case diagrams and activity diagrams
can also be used for modeling BDATs and then
automatically generate tests. The research in this area is
explained in the related work section.

Scalability of the models is an important concern. ESGs
allow us to work on some small and modular models through
sub-ESGs [6]-[9] like subroutines. The TSD tool is also
designed to support sub-ESGs. This way, it is possible to
generate manageable large models. Moreover, these sub-
ESGs can be flattened into one large ESG if necessary.

One threat to validity is internal validity, which deals
with the effects on the evaluation. The selection of BDAT
test suite used in evaluation is obtained by searching GitHub
repositories. This cannot be considered as random selection.
Moreover, the proposed approach is applied to the selected
BDAT test suite by the author.

Another threat to validity is external validity, which deals
with the generalizability of the results. The evaluation in this
study is based on a single BDAT test suite. Although this test
suite is developed for e-commerce software, which may
represent business software generally, evaluation of other
BDAT test suites from different domains with the proposed
approach will help generalize the results.

VI. RELATED WORK
Tuglular [13] proposed a model-based approach for

feature-oriented testing using Event Sequence Graphs
(ESGs). In this approach, ESGs are extended to save state
and pass it to the following ESG. This way, tests written for
features can be combined on state information. However,
capturing state is not always possible for acceptance tests.

UML use case diagrams can also be used for modeling
BDATs and then automatically generate tests. Gutierrez et al.
[14] proposed an approach for working with Gherkin
scenarios using UML use case models. They transform from
the UML use case diagrams to the Gherkin plain text syntax.
They also developed a tool for running Gherkin scenarios in
UML as test cases.

Alferez et al. [15] proposed an approach, named AGAC
(Automated Generation of Acceptance Criteria), which
supports the automated generation of AC specifications in
Gherkin. They used UML use case diagrams and activity
diagrams to create specifications, derive acceptance criteria
from them, and then generate test cases from derived
acceptance criteria.

Kudo et al. [16] proposed the software pattern meta
model that bridges requirement patterns to groups of
scenarios with similar behaviors in the form of test patterns.
This meta model is used to describe the behavior of a
requirement pattern through a time executable and easy-to-
use language aiming at the automatic generation of test
patterns.

Wanderley and da Silveria [17] proposed using a mind
model specification, which serves as a basis for transforming
the definitions of the scenario and generating a conceptual
model represented by a UML class diagram. The mind
model functions as a bond that represents the business
entities, and enables simple association, aggregation and
composition relationships between the entities.

An adjacent area is process discovery in business process
management literature. Rozinat and van der Aalst [18]
worked on whether event logs conform to the process model
and vice versa. They proposed two dimensions of

27Copyright (c) IARIA, 2021. ISBN: 978-1-61208-843-3

SOFTENG 2021 : The Seventh International Conference on Advances and Trends in Software Engineering

conformance, namely fitness and appropriateness, to be
checked along with corresponding metrics. They developed a
Conformance Checker within the ProM Framework.

Beschastnikh et al. [19] proposed algorithms for inferring
communicating finite state machine models from traces of
concurrent systems, and for proving them correct. They also
provided an implementation called CSight, which helps
developers find bugs.

Pecchia et al. [20] proposed an approach that employs
process mining for detecting failures from application logs.
Their approach discovers process models from logs; then it
uses conformance checking to detect deviations from the
discovered models. They were able to quantify the failure
detection capability of conformance checking in spite of
missing events, and its accuracy with respect to process
models obtained from noisy logs [20].

VII. CONCLUSION
This paper proposes an approach to represent BDATs

using ESGs. With the proposed approach, the test designer
not only finds and completes missing BDATs, but also
combines them to know which BDAT can be executed after
which BDAT. When the final composition is supplied to the
TSD tool, it automatically generates a test sequence that
covers all BDATs. So, the proposed approach improves
testability of BDATs.

As future work, we plan to automate the processes
explained here and develop a tool. Also as future work, our
goal is to enhance the tool with ontologies so semantically
related scenarios are easily decoded.

REFERENCES

[1] M. G. Cavalcante and J. I. Sales, "The Behavior Driven
Development Applied to the Software Quality Test," Proc.
14th Iberian Conference on Information Systems and
Technologies (CISTI), IEEE, 2019, pp.1–4.

[2] Cucumber Gherkin. https://cucumber.io/docs/gherkin/
reference/. [retrieved: March, 2021].

[3] Gauge. https://gauge.org. [retrieved: March, 2021].
[4] T. Tuglular and S. Şensülün. "SPL-AT Gherkin: A Gherkin

Extension for Feature Oriented Testing of Software Product
Lines." 2019 IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC). Vol. 2. IEEE, 2019,
pp.344–349.

[5] T. Tuglular, F. Belli, and M. Linschulte, "Input contract
testing of graphical user interfaces," International Journal of
Software Engineering and Knowledge Engineering, 26(02),
2016, pp.183–215.

[6] F. Belli and C. J. Budnik, "Test minimization for human-
computer interaction," Applied Intelligence, 26(2), 2007,
pp.161–174.

[7] F. Belli, C. J. Budnik, and L. White, "Event based modelling,
analysis and testing of user interactions: approach and case

study," Software Testing, Verification and Reliability, 16(1),
2006, pp.3–32.

[8] F. Belli and C. J. Budnik, "Minimal spanning set for coverage
testing of interactive systems," International Colloquium on
Theoretical Aspects of Computing. Springer, Berlin,
Heidelberg, 2004, pp.220–234.

[9] T. Tuglular, C. A. Muftuoglu, F. Belli, and M. Linschulte,
"Event-based input validation using design-by-contract
patterns," Proc. 20th International Symposium on Software
Reliability Engineering, ISSRE’09, IEEE Press, 2009, pp.
195–204.

[10] E. Evans, "Domain-Driven Design: Tackling Complexity in
the Heart of Software," Addison-Wesley Professional, 2003.

[11] TestSuiteDesigner. http://download.ivknet.de/. [retrieved:
March, 2021].

[12] Barzilay, "Example of an ECommerce cucumber web test
automation suite". https://github.com/spriteCloud/ecommerce
-cucumber-web-test-automation-suite. [retrieved: March,
2021].

[13] T. Tuglular, "Event sequence graph-based feature-oriented
testing: A preliminary study," 2018 IEEE International
Conference on Software Quality, Reliability and Security
Companion (QRS-C). IEEE, 2018, pp. 580–584.

[14] J. J. Gutiérrez, I. Ramos, M. Mejías, C. Arévalo, J. M.
Sánchez-Begines, and D. Lizcano, "Modelling Gherkin
Scenarios Using UML," Proc. 26th International Conference
on Information Systems Development (ISD), 2017,
http://aisel.aisnet.org/isd2014/proceedings2017/ISDMethodol
ogies/7.

[15] M. Alferez, F. Pastore, M. Sabetzadeh, L. Briand, and J. R.
Riccardi, "Bridging the gap between requirements modeling
and behavior-driven development," 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering
Languages and Systems (MODELS), IEEE, 2019, pp. 239–
249.

[16] T. N. Kudo, R. F. Bulcão-Neto, and A. M. Vincenzi, "A
conceptual metamodel to bridging requirement patterns to test
patterns," Proc. of the XXXIII Brazilian Symposium on
Software Engineering. 2019, pp.155–160.

[17] F. Wanderley and D. S. da Silveria, "A framework to
diminish the gap between the business specialist and the
software designer," 2012 Eighth International Conference on
the Quality of Information and Communications Technology.
IEEE, 2012, pp. 199–204.

[18] A. Rozinat and W.M.P. van der Aalst, "Conformance testing:
Measuring the fit and appropriateness of event logs and
process models," Proc. 4th Business Process Management
Workshops, Springer, 2006, pp. 163–176.

[19] I. Beschastnikh, Y. Brun, M.D. Ernst, and A. Krishnamurthy,
"Inferring models of concurrent systems from logs of their
behavior with CSight," Proc. 36th International Conference
on Software Engineering, ACM, 2014, pp. 468–479.

[20] A. Pecchia, I. Weber, M. Cinque, and Y. Ma., "Discovering
process models for the analysis of application failures under
uncertainty of event logs," Knowledge-Based Systems, 2020,
189: 105054, https://doi.org/10.1016/j.knosys.2019.105054.

28Copyright (c) IARIA, 2021. ISBN: 978-1-61208-843-3

SOFTENG 2021 : The Seventh International Conference on Advances and Trends in Software Engineering

