
Broadening the Lens:

Toward the Collective Empathic Understanding of Product Requirements

Robert C. Fuller

Electrical and Computer Engineering

The University of British Columbia

Vancouver, Canada

e-mail: rfuller@ece.ubc.ca

Abstract— Many software product companies have embraced

the agile paradigm and gone on to create cross-functional

product development teams that fully own their product. The

expectations of these teams are very different than of

development teams in a disciplined software development

environment. The study underway examines how these

empowered cross-functional product teams, as a collective,

create and nurture a shared mental model that accurately

represents the external product domain and its realities and

that provides the context for understanding the requirements.

We also examine external factors that allow for these teams to

develop these capabilities while less-empowered teams cannot.

Using Constructivist Grounded Theory, we study individuals

and teams in several companies and varied product domains.

We find that certain organisational factors play a significant

role and we also examine an essential dynamic of broadening

the lens and blurring boundaries that cross-functional product

teams employ in order to not only fully embrace product

planning but also to grok the domain for their products.

Keywords - empathy-driven development; collective

sensemaking; design science; requirements validation; product

team organisation.

I. INTRODUCTION

Product development is a social process; thus, the

dimension of the organisational model and dynamics is the

elephant in the room, a critical factor for success or failure

of software products.

This study builds our earlier work [1] that studied

software product teams that displayed varying degrees of

collective grokking. In that study, we found that the

organisational model surrounding the teams had a profound

influence on whether the teams could grok the product

requirements at all. Building upon that work, we use the

Constructivist Grounded Theory method (described further

in Section V) to examine characteristics of collective team

grokking of the product domain and we also examine how

the extra-team organisational model affects the team’s

ability to own increasingly comprehensive product planning.

We use the concept of broadening the lens as an

explanatory mechanism that Cross-functional Product

Teams (CFPTs) use to explore further and innovate more

and we also look at some of the prerequisite conditions in

order for teams to do this.

Grokking is cognitive empathy, coupled with skilled

perspective-taking. We use a definition of cognitive

empathy to be “the ability to imaginatively step into another

domain, understand the perspectives of those in that

domain, and use that understanding to guide decisions”

[2,x]. Increasingly, the success of software product

development teams depends on the degree to which the team

collectively groks not only the product requirements

themselves but also, and importantly, the context for those

requirements.

The remainder of this paper is structured as follows:

Section II – Background and Problem provides an overview

of the historical background and description of the research

problem. Section III – Research Motivation and Focus

describes what we’re aiming to achieve and a brief

description of the research scope. Section IV – Related

Work positions this study with respect to three related areas

of research. Section V – Method and Status of the Research

overview the research methodology chosen and current

status respectively. Section VI – Emerging Observations

and Discussion describes the findings to-date followed by

Section VII – Conclusion and Future Work, offering

thoughts about contribution thus far and what work remains

to be done.

II. BACKGROUND AND PROBLEM

By the late 1990s, three forces had taken hold which

dramatically changed the nature and challenge of software

development. One was the emergence of the Internet which

introduced new uses of information technology as well as

business models. This, combined with much lower hardware

costs, computing capability rapidly appeared on almost

every desk and in almost every home. Third, the

introduction of graphical user interfaces dramatically

enriched user interaction with technology and also

complicated software design and development. These three

forces together resulted in more software being developed

as products for a market instead of predominantly bespoke

system development that was the norm prior. This shift

towards product development introduced substantially more

uncertainty into much of the software development

activities.

16Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

In response to this, a Kuhnian “model revolution” [3]

emerged that took a new view on change, risk, and

uncertainty in software development. This ‘agile’ approach

accepted that requirements could change or that further

understanding would emerge throughout the development

effort in contrast to more disciplined Software Development

LifeCycles that strived to lock down requirements in the

specification and planning stages.

The agile model placed greater focus on the development

team, recognizing that prescriptive processes were

insufficient to ensure project success in these complex and

emergent conditions and that the dynamics of the

development team, which was now usually cross-functional

and empowered to truly own the software product, was

considered a critical success factor in delivering software.

While the agile approaches improve many of the issues

that were breaking down during the crisis period, many still

cling to the notion that there is a customer (or, an internal

surrogate), an authoritative voice that the development team

can iteratively interact with to clarify requirements and

validate results. However, as software solutions address

more complex and subtle needs and as development is often

more product-oriented, intended for a market rather than a

single customer, a new and critical challenge emerges for

software teams and that is how to gain a deep understanding

of the world for which the product is intended, an

understanding that cannot be passed on to the team by an

internal market surrogate. Certainly, techniques to ‘hear’

from the market are helpful but, as Polyani [4] noted,

market participants have tacit knowledge -- people can

know more than they can tell and they know more than can

be easily observed.

In early times when requirements were less complex,

could be more precisely expressed, and quite often coming

from an identifiable customer, techniques such as having at

least one domain expert on (or available to) the team were

often sufficient. Today, however, with much more technical

and problem complexity, heterogenous customer targets,

and competitive uncertainties, it is insufficient to simply

have one person with this deep understanding, typically

creating the requirements specification. Yet, many software

development organisations operate this way, often resulting

in requirements fixation [5].

Rather it is important that everyone on the team have a

deep domain understanding. It is also critical that the entire

team understands it in a compatible and consistent way

because team members (individually, in sub-teams, and

across all functional roles) make decisions almost

continually based on their individual understanding of the

context of the requirements, and much of that context

understanding is tacit. This challenged is expressed well by

Berry [6] when discussing assumptions in requirements

engineering amongst team experts:

“It seems that among experts, a common disease is the

presence of unstated assumptions. Because they are

unstated, no one seems to notice them. Worse than that, it

seems that no two people have the same set of assumptions,

often differing by subtle nuances that are even more tacit

than the tacit assumptions. It is these assumptions that

confound attempts to arrive at consensus, particularly

because none of the players is even consciously aware of his

or her own assumptions and certainly not of the differences

between the players’ assumptions” (p.180)

Thus, product development teams have to strive for a

deep collective understanding of the context of their

product, a shared mental model of the supra-domain, since

many decisions are unconsciously made within the team’s

understanding of the domain context. Some teams achieve

success in this aspect more than others and software

development leaders have no theories that help explain why.

We observed earlier [1] that the organisational model

surrounding the cross-functional teams has an impact on the

team’s ability to grok, hence the scope of this inquiry

expands from there to examine additional factors both

internal and external to the teams.

III. RESEARCH MOTIVATION AND FOCUS

This study aims to develop theory offering insights into

factors that support or impede CFPTs in collectively

achieving a deep understanding of the context of their

products.
The differences between teams that achieve a reasonable

degree of collective grokking in terms of team vision,
cohesion, and quality of work product is observable by
practitioners and researchers, yet the reasons are generally
unclear. Without explanatory models, industry leaders are
unable to proactively create and nurture the relevant factors.
This study is aimed at helping industry practitioners explain
why certain prevailing techniques and empirical approaches
for understanding software solution needs are often
inadequate, why some succeed while others do not.

The focus of this research is practicing software product

teams in action, including teams empowered to own their

product and those that are not. For contrast, we also include

organisations that are not product companies. The study

examines the empirical adaptations these teams make

toward furthering their understanding of the context in

which their users operate. We also examine important

organisational factors that either allow or inhibit a team’s

ability to collectively grok the domain.

IV. RELATED WORK

We reviewed published material in 3 areas -

requirements engineering, design science, and collective

sensemaking.

This inquiry is primarily related to requirements

engineering (attempting to obtain and understand the true

needs). Reviewing all the papers at the IEEE International

Requirements Engineering Conference over the past decade,

plus many other published papers in the area, we found

growing sentiments expressed about the shortcomings of

prevailing approaches to requirements engineering which

17Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

tend to focus on techniques and methods rather than

deepening practitioner and team understanding, e.g., (Schon

et al. [7], Ralph and Mohanani [8]). This general sentiment

led to the formation of the NaPiRE initiative (Naming the

Pain in Requirements Engineering) [9], a community

endeavour run by a multitude of researchers world-wide.

While there are certain domains where the ‘techniques and

methods’ approach is entirely adequate and appropriate, our

focus is on problem domains that do not lend themselves

well to complete and unambiguous specifications and,

therefore, where it is necessary for the CFPTs to have their

own deep understanding of the product domain beyond just

the requirements specifications.

The design science space has considerable material

regarding empathy-driven design (translating human needs

to experiences), e.g., (Koppen and Meinel [10], van Rijn et

al. [11], Postma et al. [12], Woodcock et al. [13], Dong et al.

[14], Kourprie and Visser [15], Kolko [16]). However, we

found this falls short of addressing our inquiry question in

three critical respects: 1) focus on the design activity as part

of an essentially sequential product development process

rather than design as part of an on-going continuous product

development effort, 2) it tends to focus on the design

individual or only the design team rather than the whole

development team and, 3) when even the design team is

considered, it tends not to be viewed as a unit regarding its

empathic ability. Design science models described by

Wieringa [17] acknowledge the challenge that empathy-

driven requirements understanding attempts to address but

stops short of suggesting how those challenges could be

addressed. We aim to offer insights into how this level of

understanding is achieved and how to nurture the pre-

requisite conditions.

Collective sensemaking (the process by which people

give meaning to their collective experiences) does consider

the collective (team) but only with respect to its relationship

to the organisation, not to its understanding of an external

domain. Of interest in this area is the Cynefin framework

(Kurtz and Snowden, [18]) which is a sensemaking

framework that is designed to allow shared understandings

to emerge which could be insightful with respect to how

teams ingest, socialise, and collectively store insights. As

with other collective sensemaking models, however, it has

resonance in early problem-solving stages and for formal

and finite periods of time whereas our focus is on the full

product lifecycle.

V. METHOD AND STATUS OF THE RESEARCH

We take an interpretive epistemological stance,

employing the Constructivist Grounded Theory qualitative

research methodology described by Charmaz [19].

Constructivist Grounded Theory is highly applicable in

research such as this because the method is explicitly

emergent, taking an inductive approach where no adequate

prior theory exists. This method is particularly appropriate

for a “What is going on here?” type of qualitative inquiry as

this study is. The use of Grounded Theory in computer

science research has risen significantly since 2005 and

specifically used successfully to study Agile software

development teams, e.g. Adolph et al., [20], Dagenais et al.,

[21], Coleman and O’Connor, [22], Martin, [23], Hoda,

[24], Stol et al, [25].

Using theoretical sampling where the analysis of the data

collected prior informs the selection of and inquiry with the

next participants, individual participants and corporate sites

selected are ones involved with software product

development (teams developing software for market) and

that claim to have cross-functional product development

teams. The primary data collection methods are

observations of team meetings and team interactions,

enriched by semi-structured interviews (recorded and

transcribed) with open-ended questions that can allow real

issues to emerge. Thus, the method is grounded in the

participants’ world and the emerging and evolving theory is

constructed by the researcher and the participants.

We employ various strategies (Maxwell, [26]) to mitigate

threats to validity (credibility, dependability, reliability).

Intensive, on-going involvement, e.g., extended

participation and the ability to live in the participants’

workplace, provides richer data and data types, less

dependence on inference, and opportunity for repeated

observations and interviews, all which will help rule out

spurious associations and premature theories. Participant

checks (obtaining participant and peer feedback on the data

collected and conclusions drawn) help rule out possibilities

of misinterpretation. Select codes and concepts from the

analysis are highlighted below as bold italics.

To date, we are working with six software firms. Four of

these firms produce commercial enterprise-class software

products, one creates sophisticated virtualisation solutions,

while another develops large-scale aerospace systems as

bespoke system development. Three of these firms have

adopted agile as a paradigm, two as a methodological

approach, while the other employs a highly prescriptive

methodology due to the dictates of its market. The firms

range in size from ten to several hundred employees and the

firms range in age from 2 to 50 years old. To-date, 18

product development teams across these companies have

participated, resulting in 26 individual semi-structured

interviews and 19 team observation sessions. The

individuals interviewed have been 2 senior managers, 8

senior engineer / team leads, 5 product managers, 1 quality

assurance specialist, and 10 intermediate-level software

engineers. Participant sampling and data gathering is on-

going.

VI. EMERGING OBSERVATIONS AND DISCUSSION

We have identified three contexts that contribute to a

CFPT’s ability to collectively grok the product

requirements. The first is the organisational context which

we identified in isolation in our earlier work [1]. The second

is the product planning context (the ability of CFPTs to own

18Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

a broader responsibility for product planning), influenced by

the organisational context but having its own independent

dynamics. The final context is the product domain context

itself (the ability for the CFPT to grok the product domain),

heavily dependent on the previous two contexts.

A. The Organisational Context and Its Impact on CFPTs

Fuller [1] described the impact the broader

organisational model has on the CFPT team. Impacts of note

were intra-team deference, the team’s concern and

ownership horizon, and the team robustness. Certain aspects

of individual participation on the team (e.g. primary

affiliation, individual agenda) were also highlighted. In this

sub-section, we summarise those findings.

When a functional organisational structure exists in the

software product enterprise, e.g., separate engineering,

design, product management departments, each contributing

individuals to form CFPTs, team members are more likely

to limit their contributions to topics directly relating to their

area of functional expertise and tend to show marked

deference to team members of other functions on topics

outside their area of primary functional expertise. The

individual sense of primary affiliation was stronger toward

their functional department than it was with the software

product team. Simply put, an individual in this

organisational environment is located via function more

than via team membership. This results in team members

being much more concerned about how a product is to be

built and defer to others regarding the what and why.

Illustrative comments from team members were “I just do

what I’m asked to do” when referring to involvement with

requirements specifications or “They’re the experts, I trust

them” when referring to team members in other functional

roles.

Team members in this model tended to show less

investment in the overall success or failure of the product

and the teams themselves much less likely to take collective

responsibility for success or failure of the product. They are

more likely to shift responsibility to management decisions

or to other teams/functions rather than attempt to reconcile

differing mandates of the participating functional

departments.

In contrast, organisations without a functional structure

surrounding the CFPTs seem more likely to have teams with

richer intra-team interactions with softer (sometimes an

absence of) functional interfaces amongst individual team

members, placing the interests of the product foremost and

above any functional tensions. In short, the sense of team

and commitment to the product tended to be much stronger.

In one of our participant companies with multiple products,

it is common for product team members’ LinkedIn profiles

showing the product name as the company they work for

with no reference to the overall firm, making it very clear

where they belong and what they are committed to.

Studies by Gladstein [27] and Anacona [28] noted that

contextual factors have a greater influence on team

effectiveness than do internal team processes. Our emerging

results to-date support this and suggest further that the two

are not unrelated – that the operating context of the team has

a significant impact on internal team factors, which include

internal team processes.

In summary, a CFPT’s progression along a spectrum

from an assembly of experts to a true empowered cohesive

team is heavily influenced by whether a broader functional

department organisational structure exists around the team

and how strong those departmental distinctions are.

B. The Product Planning Context and CFPTs

 We observed that CFPTs that have strong internal

connections and softer functional role deference showed

more interest in the broader product planning context. These

teams ask broader questions, are more curious, and attempt

to explore more - essential ingredients for innovation.

 However, our observations also included teams in some

companies that did not have the organisational structure

and/or culture that allowed their CFPTs to own as much of

the product planning process that the teams often wished

they could own. This was often the case where strategic

planning for product occurred in another functional area and

communicated to the product development group to execute

upon. Some companies will take this even further and have

a separate product management function that define product

evolution details that are then handed off to software

engineering for development. We observed that CFPTs with

strong internal cohesion have a propensity to own something

and will, therefore, narrow or broaden their lens on the

product development work to match what they are permitted

to own. This action of Broadening the Lens allows the team

to identify control boundaries and also to see patterns and

relationships so that they may more purposefully and

knowledgeably re-focus.

 This lens adjustment also aligns their definition of

success with what the company expects. Individuals and

teams will colour within the lines they are given or

allowed. This is reflected in what completed work the

development teams celebrate, e.g. a successful iteration,

meeting a release deadline, or being part of a successful

product in the market.

 The spectrum of this context ranges from full strategic

and execution ownership of the product on one end to the

team being spoon-fed tasks on the other.

 As with the Organisational Context, the focus of a

team’s product planning lens also shows in the verbal

language used by the teams. The broader the team’s

planning scope is, the more the conversations will indicate a

deep understanding of (or, at least references to) product

needs from the domain perspective, product/market

opportunities, etc. Teams low on this spectrum reference

those considerations less and make more reference to

internal entities and artefacts such as other functions/teams,

processes, specifications, etc.

19Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

C. The Product Domain Context and CFPTs

 As Fuller [1] observed, empowered and cohesive CFPTs

play a longer game. With less internal deference in the team

and less individual tentativeness with respect to their

membership on the team, conditions exists that encourage

full participation and commitment (both individual and

collective) to the long-term product roadmap.

 In our analysis to-date, we find that CFPTs that exhibit

little to no functional deference across functions within the

team and who are not being spoon-fed their development

tasks almost always exhibit some degree of collective

grokking of the context of their product domain and, hence,

the product requirements.

 This is significant because all software is developed in

context and it is context that guides decisions. If the team is

cohesive, their context will be more collective than if it is

not (Organisational Context). If the team owns more of the

product planning, that context will be more comprehensive

than if they own less (Product Planning Context). And if

they collectively grok the product domain to a reasonable

degree, their context will more accurately reflect the world

for which their product is intended (Product Domain

Context).

 The spectrum of collective domain understanding ranges

from just do what the story says to intellectual domain

understanding (deep knowledge of vocabulary, workflows,

objectives, etc.) to true felt (lived) understanding of the

domain. The further a team moves along this spectrum, the

more the team groks - blurs the boundaries between itself

and the domain in order to achieve some degree of empathic

understanding.

 In this context of requirements engineering, we suggest

that empathy, specifically collective cognitive empathy, is a

fundamentally important ability in order to deeply

understand a domain which the team is otherwise unfamiliar

with. Exercising that ability, stepping into that other

domain, involves a certain temporary softening of the

distinction between the collective and the domain, a

blurring of the boundaries, in order to truly understand

perspectives in that domain. Broadening the lens is

necessary for the team to be able to see the other domain

and its context, the blurring of the boundaries is an effort

to understand. Smith et al. [29] suggest that empathy can

become collective and that it can be an attribute of the group

that is more than just the aggregation of individuals’

attributes.

 We observed some teams that did not even attempt to

grok the product domain, a reflection of the culture of the

team and its organisational environment. Certain other

teams that did try had modest success due to influences

from the organisational and/or product planning contexts.

For a CFPT to be able to collectively step into another

domain, it is necessary for it to see itself as a cohesive unit.

This can only be achieved when there is a high level of

transparency across all functions on the team, little to no

deference shown within the team, and a strong sense of

collective ownership for the product. In other words, a true

team with a strong product mandate – blurred boundaries

with strong connections. It requires team members to feel

psychologically safe, have open minds, and a strong sense

of curiosity. If any of these are weak or missing,

discoveries, innovation, and collective grokking are

inhibited [30].

As we examined the teams that made some progress at

collective grokking of the product domain, we observed a

special form of the broadening the lens behaviour that

teams performed when refining their product planning

context. In these cases, the teams were purposefully

blurring boundaries in order to achieve a deeper collective

empathic understanding of the product domain.

VII. CONCLUSION AND FUTURE WORK

Many of these observations sit in opposition to common

organisational practices that emphasise specialisation (for

management and control convenience) and focus (to meet

deadlines). Further work is needed to bring more clarity

about whether there are other, more subtle, factors at play.

Our data strongly indicates that blurred boundaries

within CFPTs are a reflection of blurred boundaries outside

of the teams and, similarly, there may well be even further

team environmental factors to explore.

There appears to be a certain blurring of functional and

domain boundaries necessary for a team to become a true

product team rather than a collection of functional experts

assembled around a product. Further, this appears to be a

pre-condition for the team to be able to behave as a

collective and achieve some degree of collective grokking

of the context of the product requirements.

While we observed teams using the broadening the lens

mechanism to blur the boundaries between the team and

the domain, we allow that this mechanism and the pre-

requisite or enabling conditions may paint only a partial

picture. Thus, we believe there remains much to explore

with respect to why some teams, even in the same

organisational context, observably achieve more grokking of

the product domain than do other teams.

ACKNOWLEDGMENT

This work is supported in part by the Institute for
Computing, Information and Cognitive Systems (ICICS) at
UBC.

REFERENCES

[1] R. Fuller, “What T-shirt Are You Wearing? Towards the Collective
Team Grokking of Product Requirements,” in SOFTENG 2019, The

Fifth International Conference on Advances and Trends in Software
Engineering, pp. 37–40, 2019.

[2] R. Krznaric, Empathy: why it matters, and how to get it. New York:
Penguin Random House, 2014.

[3] T. S. Kuhn, The Structure of Scientific Revolutions. 4th ed. University
of Chicago Press, 2012.

[4] M. Polanyi, The tacit dimension. Chicago: University of Chicago
Press, 2009.

20Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

[5] R. Mohanani, P. Ralph, and B. Shreeve, “Requirements Fixation,” in
Proceedings of the 36th International Conference on Software
Engineering, pp. 895–906, 2014.

[6] D. M. Berry, “The importance of ignorance in requirements

engineering,” Journal of System Software, vol. 28, no. 2, pp. 179–
184, 1995.

[7] E. M. Schön, D. Winter, M. J. Escalona, and J. Thomaschewski, “Key
challenges in agile requirements engineering,” in Lecture Notes in
Business Information Processing, 2017.

[8] P. Ralph and R. Mohanani, “Is Requirements Engineering Inherently
Counterproductive?,” in Proceedings - 5th International Workshop on
the Twin Peaks of Requirements and Architecture, TwinPeaks 2015,
2015.

[9] D. Mendez, S. Wagner, M. Kalinowski, M. Felderer et al.. NaPiRE:
Naming the Pain in Requirements Engineering, http://napire.org.

[10] E. Koppen and C. Meinel, “Knowing People: The Empathetic
Designer,” Design Philosophy Papers, vol. 10, no. 1, pp. 35-51, 2012.

[11] H. Van Rijn, F. S. Visser, P. J. Stappers, and A. D. Özakar,

“Achieving empathy with users: the effects of different sources of
information,” CoDesign, vol. 7, pp. 65–77, 2011.

[12] C. Postma, E. Zwartkruis-Pelgrim, E. Daemen, and J. Du,
“Challenges of Doing Empathic Design: Experiences from Industry,”
Int. J. Des. Vol 6, No 1, pp. 59-70, 2012.

[13] A. Woodcock, D. McDonagh, J. Osmond, and W. Scott, “Empathy,
Design and Human Factors,” Advances in Usability and User
Experience, pp. 569-579, 2018.

[14] Y. Dong, H. Dong, and S. Yuan, “Empathy in Design: A Historical

and Cross-Disciplinary Perspective,” Advances in Neuroergonomics
and Cognitive Engineering, pp. 295-304, 2018.

[15] M. Kouprie and F. S. Visser, “A framework for empathy in design:

stepping into and out of the user’s life,” J. Eng. Des., vol. 20, no. 5,
pp. 437–448, 2009.

[16] J. Kolko, Well-Designed: How to create empathy to create products
people love. Harvard Business Review Press, 2014.

[17] R. Wieringa, Design Science Methodology for Information Systems
and Software Engineering. Springer, Berlin, 2014.

[18] C. F. Kurtz and D. Snowden, “The New Dynamics of Strategy:
Sense-making in a Complex-Complicated World,” IBM Syst. J., vol.
42, no. 3, pp. 462–483, 2003.

[19] K. Charmaz, Constructing grounded theory (2nd ed.). London: Sage,
2014.

[20] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical Software
Engineering., vol. 16, no. 4, pp. 487–513, 2011.

[21] B. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and J. P.

De Vries, “Moving into a New Software Project Landscape,” in ICSE

’10 Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering, pp. 275–284, 2010.

[22] G. Coleman and R. O’Connor, “Using grounded theory to understand

software process improvement: A study of Irish software product
companies,” Information Software Technology, vol. 49, no. 6, pp.
654–667, 2007.

[23] A. M. Martin, “The Role of Customers in Extreme Programming

Projects,” PhD thesis. Victoria University of Wellington, New
Zealand, 2009.

[24] R. Hoda, “Self-Organizing Agile Teams : A Grounded Theory,” PhD
thesis. Victoria University of Wellington, New Zealand, 2011.

[25] K. J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software

engineering research: A critical review and guidelines,” in

Proceedings – International Conference on Software Engineering,
vol 14-22. pp. 120-131, 2016.

[26] J. A. Maxwell, Qualitative research design: An interactive approach.
Thousand Oaks, Calif.: SAGE Publications, 2012.

[27] D. L. Gladstein, “Groups in Context: A Model of Task Group
Effectiveness,” Adm. Sci. Q., vol. 29, no. 4, p. 499, Apr. 2006.

[28] D. G. Ancona and D. F. Caldwell, “Demography and Design:

Predictors of New Product Team Performance,” Organ. Sci., vol. 3,
no. 3, pp. 321–341, Oct. 2008.

[29] E. R. Smith, C. R. Seger, and D. M. Mackie, “Can Emotions Be Truly
Group Level? Evidence Regarding Four Conceptual Criteria,”. J.
Pers. Soc. Psychol., 2007.

[30] M. Harms and R. Reiter-Palmon. Team Creativity and Innovation,
Oxford: Oxford University Press, 2018.

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

