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Abstract—Continuous integration and deployment are enablers
of quick innovation cycles of software and systems through
incremental releases of a product within short periods of time. If
software qualities can be predicted for the next release, quality
managers can plan ahead with resource allocation for concerning
issues. Cumulative metrics are observed to have much higher cor-
relation coefficients compared to non-cumulative metrics. Given
the difference in correlation coefficients of cumulative and non-
cumulative metrics, this study investigates the difference between
metrics of these two categories concerning the correctness of pre-
dicting code smell which is internal software quality. This study
considers 12 metrics from each measurement category, and 35
code smells collected from 36,217 software revisions (commits) of
242 open source Java projects. We build 8,190 predictive models
and evaluate them to determine how measurement categories of
predictors and targets affect model accuracies predicting code
smells. To further validate our approach, we compared our
results with Principal Component Analysis (PCA), a statistical
procedure for dimensionality reduction. Results of the study show
that within the context of continuous integration, non-cumulative
metrics as predictors build better predictive models with respect
to model accuracy compared to cumulative metrics. When the
results are compared with models built from extracted PCA
components, we found better results using our approach.

Keywords–Software metrics; code smells; effects of measure-
ment types; cumulative metrics; organic metrics; random for-
est; training-test-split cross-validation; time-series cross-validation;
principal component analysis; interactions.

I. INTRODUCTION

Continuous integration and deployment shorten the release
cycles and speed up the innovation cycles [1]. Fortunately,
Agile software development can support continuous integration
and deployment through sprints, time-boxes of one to four
weeks, during which a releasable product increment is created
[2]. As the release cycles are becoming shorter, it would
be helpful for quality managers if they can predict internal
and external software quality within a short span of time.
For example, if quality managers have tools to predict the
maintainability of code base at the end of the current sprint,
they can already start allocating hours on the maintainability
issue or plan for the next sprint. With the introduction of
modern version control systems, we can address the problem
of how to predict internal quality changes between different
revisions of software code base? A version control system
stores every revision or commit of a project; such commit-
level data are much fine-grained with the possibility to reflect

actual software development within a short span of time. Now
we ask the question: can such refined-level data explain or
predict software qualities at a short time span better compared
to the traditionally counted cumulative way of measures?

Software metrics can be measured in various ways, or
they have different measurement types. By organic or non-
cumulative metrics, we refer to delta measures or code churn
measures. If we take the example of Lines Of Code (LOC),
the organic measure of LOC for a software revision or commit
is the actual number of LOC written since the previous
commit. On the other hand, cumulative measurement is the
most commonly used technique in software engineering. The
cumulative-way of measuring LOC for a commit would be to
sum the organic measure of LOC for a specific commit with
the cumulative measure of LOC from the previous commit.
Therefore, cumulative measures develop as a moving sum. If
ten new LOC are added for a commit, the organic measure
of LOC for that specific commit would be ten, reflecting the
actual change of LOC. However, when measured cumulatively,
the value of LOC should be ten plus the total LOC from the
previous commit. For each cumulative metric, a corresponding
organic metric can be constructed. These measurement types
are explained in Section II. A recent study [3] exclusively
targeting cumulative and organic measures confirms that cor-
relations of cumulative metrics are much higher than their
corresponding organic metrics. Since that study [3] is still in
the final minor review round, we are reporting the relevant
part of the results in Table I. In addition, in a previous study
[4], we had indications that correlations between cumulative
metrics are higher than their corresponding organic metrics.

High correlation coefficients between metrics imply high
collinearity between them. If the correlation coefficient is as
high as 0.9, it can be considered as very strong [5]. Thus, cor-
responding metrics can be considered collinear meaning they
are redundant. Non-collinearity is mentioned as a validation
criterion for software metrics [6]. However, some methods
for predictive analyses, such as multiple linear regression,
rely on the assumption that input features are non-collinear.
Thus, it is to be expected that combinations of cumulative
metrics (which have higher collinearity) are less fit to be used
in predictive models compared to their corresponding organic
metrics. However, to our knowledge, to this day no studies
have investigated whether organic metrics can lead to better
predictions of aspects, such as code smells or bugs compared
to their corresponding cumulative metrics. Therefore, we want
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Day-wise changed Written so far
Day Lines of Code Lines of Code

(Organic Measure) (Cumulative Measure)
1 10 10
2 15 25
3 30 55
4 0 55
5 50 105
6 5 110
7 10 120
8 8 128
9 75 203

10 47 250
11 39 289
12 61 350
13 34 384
14 7 391
15 0 391
16 0 391
17 12 403
18 35 438
19 23 461
20 20 481

(a) Textual Representation
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(b) Equivalent Graphical Representation

Figure 1. Organic and Cumulative Measures.

to investigate this. Code smells are internal software qualities
that are associated with code maintainability [7] [8] and using
code smells has significantly less internal validity threat in
the context of this research because unlike the bugs, we can
precisely determine which code smells are originated from
which revisions. Thus, code smell is a good candidate as a
target for this study. Note that we are using code smell as an
interesting example to validate whether there is any difference
between the two measurement categories, our objective is not
to build the best predictive model for code smells. This study
has the following research question:

• RQ: What is the difference between organic and
cumulative measures with respect to the correctness
of predicting code smells within the context of con-
tinuous integration?

In this paper, we analyzed 36,217 revisions of 242 open
source Java projects to mine various measures and code
smells. Our results show that measurement types of metrics
have a significant impact on model accuracies. The findings
will help to build predictive models specifically targeted to
predict software artifacts within a short period of time. Our
findings are also significant to clearly understand the difference
between cumulative and organic measures of software artifacts.

Section II of this paper describes the ideas of cumulative
and organic measures, followed by related work in Section. III.
The design of this study including project selection (IV-A),
data collection (IV-B), analysis procedure (IV-C) and threats
to validity (IV-D) are discussed in Section IV.

II. CUMULATIVE AND ORGANIC MEASURES

In this section, we explain cumulative and organic measures
with a simple example, as illustrated in Fig. 1. The figure
illustrates the change of the measure lines of code of a fictional
example system developed over 20 days with daily commits.
Considering LOC as a measure, the actual changes in values
of LOC from each day compared to the day before reflects
the organic measurement of LOC. However, if we calculate

the total LOC written up to a day by summing up the changes
of LOC from day one up to that day, we get the cumulative
measurement of LOC. In this example, we have considered
“daily commits” or “day” as a unit of time, but it can also be
week, sprint, or release.

Correlation of various size and complexity metrics of type
cumulative result in high coefficients, which is observed by
many studies [9]–[13]. Correlations between organic metrics
are significantly lower than their corresponding cumulative
metrics. We have observed this phenomenon in earlier research
[4] and in a recent study (in submission) specific to this topic,
the result of which is presented in Table I. The reported
correlation coefficients (τb) in Table I are mean values of
Kendall τb from 11,874 software revisions of 21 open source
Java projects. In Table I, if a τb value is greater than or
equal to 0.9 (i.e., with very strong correlation coefficient),
we can consider the corresponding two metrics of the τb as
collinear, meaning they are redundant and either of them can
represent the other. Because their r2 (coefficient of determi-
nation) becomes minimum 0.81, meaning one metric can at
minimum explain 81% variability in the other. Based on this,
eight metrics out of 12 metrics in the cumulative category
in Table I become redundant. On the other hand, from the
corresponding organic metrics, we do not see a single pair of
metrics for which the correlation coefficient is greater than 0.9.
Thus, we can expect that combinations of organic metrics can
bring added value to predict code smells. This observation is
one of the key motivations for this study where we want to
see how these two groups of measures, i.e., cumulative and
organic, perform predicting code smells.

III. RELATED WORK

After Fowler et al. [15] first introduced the term bad
code smells, there have been many studies investigating this
subject. Zhang et al. [16] report on a systematic literature
review on code smells and find that most of the studies in
this area are focused on the identification or detection of code
smells. Automated detection of code smells has become an
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TABLE I. KENDALL’S τ [14] CORRELATION COEFFICIENTS (τb) FOR CUMULATIVE AND ORGANIC METRICS.
The whole range of τb (−0.1 6 τb 6 +1.0) is labeled into four levels according to strength. Three gray-scale cell colors indicate three levels of τb (Very

Strong: 0.9 6 abs(τb) 6 +1.0, Strong: 0.7 6 abs(τb) < 0.9, and Moderate: 0.4 6 abs(τb) < 0.7). Weak τb (0 6 abs(τb) < 0.9) is indicated with red font
color. A dot (.) in a cell indicates zero value. All cells in the diagonal represent correlation of a metric with itself (always having τb = 1) are left blank.
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ncloc .97 .98 .97 .93 .93 .94 .87 .86 .71 .63 .64 .64 .03 . .01 .01 . . .01 .02 .01 . .02 .02 .01

functions .97 .96 .98 .93 .92 .94 .88 .86 .71 .64 .65 .65 .03 .01 .02 .01 .01 . .01 .02 .01 . .02 .02 .01

statements .98 .96 .97 .92 .91 .94 .87 .86 .7 .63 .65 .64 .03 . .02 .01 . . .01 .02 .02 . .02 .02 .01

complexity .97 .98 .97 .92 .91 .93 .87 .86 .71 .63 .65 .65 .03 . .02 .01 . . .01 .02 .01 . .02 .02 .01

classes .93 .93 .92 .92 .98 .92 .86 .84 .73 .63 .63 .64 .03 . .02 .01 .01 .01 .02 .02 .01 . .02 .02 .01

files .93 .92 .91 .91 .98 .91 .85 .84 .73 .62 .63 .63 .03 . .02 .02 .01 .01 .03 .03 .01 . .02 .02 .01

public_api .94 .94 .94 .93 .92 .91 .91 .85 .7 .64 .64 .64 .01 .01 .01 .01 . . .03 .02 .02 . .02 .01 .01

pub_undoc_api .87 .88 .87 .87 .86 .85 .91 .77 .66 .62 .61 .62 .01 . . .01 ‐.01 . .02 .02 . .01 . .01 .

comment_ln .86 .86 .86 .86 .84 .84 .85 .77 .71 .55 .56 .59 .01 . .01 .01 . . .02 .01 .02 . .02 .02 .02

directories .71 .71 .7 .71 .73 .73 .7 .66 .71 .57 .59 .62 .01 ‐.01 .01 .01 ‐.01 .01 . .01 . .01 .02 .02 .02

dup_lines .63 .64 .63 .63 .63 .62 .64 .62 .55 .57 .86 .84 .02 .01 .02 .02 ‐.01 . .01 .01 .02 .01 .03 .03 .02

dup_blocks .64 .65 .65 .65 .63 .63 .64 .61 .56 .59 .86 .85 .02 .01 .02 .02 . . .01 .01 .02 . .03 .03 .02

dup_files .64 .65 .64 .65 .64 .63 .64 .62 .59 .62 .84 .85 .02 . .02 .03 . .01 .02 .01 .02 .01 .03 .03 .04

_ncloc .03 .03 .03 .03 .03 .03 .01 .01 .01 .01 .02 .02 .02 .75 .89 .82 .55 .52 .68 .64 .49 .24 .25 .25 .26

_functions . .01 . . . . .01 . . ‐.01 .01 .01 . .75 .75 .81 .65 .59 .82 .76 .54 .26 .26 .28 .28

_statements .01 .02 .02 .02 .02 .02 .01 . .01 .01 .02 .02 .02 .89 .75 .85 .54 .51 .69 .65 .49 .23 .26 .27 .27

_complexity .01 .01 .01 .01 .01 .02 .01 .01 .01 .01 .02 .02 .03 .82 .81 .85 .56 .53 .7 .66 .52 .23 .25 .26 .27

_classes . .01 . . .01 .01 . ‐.01 . ‐.01 ‐.01 . . .55 .65 .54 .56 .88 .67 .64 .46 .4 .25 .27 .29

_files . . . . .01 .01 . . . .01 . . .01 .52 .59 .51 .53 .88 .65 .6 .45 .44 .26 .29 .32

_public_api .01 .01 .01 .01 .02 .03 .03 .02 .02 . .01 .01 .02 .68 .82 .69 .7 .67 .65 .89 .51 .31 .24 .26 .26

_pub_undoc_api .02 .02 .02 .02 .02 .03 .02 .02 .01 .01 .01 .01 .01 .64 .76 .65 .66 .64 .6 .89 .4 .29 .24 .27 .26

_comment_ln .01 .01 .02 .01 .01 .01 .02 . .02 . .02 .02 .02 .49 .54 .49 .52 .46 .45 .51 .4 .25 .23 .22 .23

_directories . . . . . . . .01 . .01 .01 . .01 .24 .26 .23 .23 .4 .44 .31 .29 .25 .14 .15 .17

_dup_lines .02 .02 .02 .02 .02 .02 .02 . .02 .02 .03 .03 .03 .25 .26 .26 .25 .25 .26 .24 .24 .23 .14 .84 .75

_dup_blocks .02 .02 .02 .02 .02 .02 .01 .01 .02 .02 .03 .03 .03 .25 .28 .27 .26 .27 .29 .26 .27 .22 .15 .84 .81

_dup_files .01 .01 .01 .01 .01 .01 .01 . .02 .02 .02 .02 .04 .26 .28 .27 .27 .29 .32 .26 .26 .23 .17 .75 .81
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integral part of many static analysis tools, e.g., SonarQube
[17], SpotBugs [18], Jtest [19], JArchitect [20], PMD [21], etc.
In a proposed method to identify two code smells (lazy class
and temporary field), Munro [22] used five code metrics (LOC,
number of methods, weighted methods per class, coupling, and
depth of inheritance tree). He used a programmatic approach,
meaning studying the characteristics of the code smells he
devised rules using the metrics to identify the code smells.
Fontana et al. [23] performed an empirical investigation to
code smells detection and how frequent certain code smells
are in various application domains. They also investigated
the Spearman ranks correlations between software metrics
and code smells. In an extensive study, Fontana et al. [24]
experimented with 16 machine learning algorithms to detect
four code smells. They worked on 74 software systems with
1986 validated code smells and found Random Forest and J48
as the best performing algorithms. While some of these studies
have used code metrics to detect code smells, we are using
code metrics to predict code smells in the future software
revisions.

Few studies have focused on the impact of code smells.
Monden et al. [7] performed a quantitative study on a legacy
system to assess the impact of duplicated code smells on soft-

ware reliability and maintainability. Yamashita and Moonen
[25] identified various factors that affect software maintain-
ability and investigated to what extent code smells reflect those
factors. Kapser and Godfrey [26] also studied duplication on
software quality. Other studies [27], [28] attempted to reveal
relations between code smells and software faults. Another
study [29] investigated whether source code files with code
smells are more prone to change and found that classes with
code smells are more change-prone.

Maneerat and Muenchaisri [30] possibly made the first
attempt to predict code smells. They used seven machine
learning algorithms to predict seven code smells. However,
they used K-folds cross-validation, which is inappropriate
for time-series data. According to our experience, the high
accuracy of their predictive models is due to the wrong choice
of cross-validation technique. When we evaluated our models
using K-folds, we get model accuracies greater than 90%.
However, we have avoided it as K-folds is methodologically
wrong to validate time-series data. A recent study by Gupta et
al. [31] build entropy based statistical model to predict six code
smells on different versions of Apache Abdera project. Among
the three selected entropies, Shannon performed best with a r2
value 0.567. This study differs from their research in different
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ways. First, we have taken a machine learning based approach.
Seconds, we are focusing on code smells prediction in the
continuous integration environment where the release cycle is
very short. Their measure of code smells is cumulative whereas
we focus on only new code smells that might be added to the
future revisions. Moreover, we have a focus on the difference
between cumulative and organic predictors, and our study is
based on a large number of randomly selected projects.

IV. METHODOLOGY

This empirical study is designed as a case study. We follow
the compiled guideline of software engineering case studies by
Runeson and Höst [32]. Research design related terminologies
used in this study is also adopted from the same guideline
[32]. This case study is “explanatory” according to the classi-
fication of Robson [33] which Runeson and Höst interpreted
as similar to the type “confirmatory” by Easterbrook et al.
[34]. Collected data of this case study is quantitative, and the
design of the study is more fixed than flexible, meaning we
have a defined set of measurement categories, independent
and dependent measures, machine learning algorithm, and
cross-validation techniques that we are particularly interested
in answering the research question. Triangulation is essential
because it increases the precision of empirical research. For
studies with quantitative data, triangulation is important as
it can compensate for measurement or modeling errors [32].
For triangulation, we have considered data source triangula-
tion [35], meaning, more than one data source or project is
used in this case study. Runeson and Höst mentioned three
major research methods that are related to case studies and
experiment is one of them. Since this study is involved with
quantitative data, it has some overlap with experiments, e.g.,
we have identified independent and dependent variables, and
have carefully worked with the instrumentation. Runeson and
Höst [32] have also mentioned that quasi-experiments have
many characteristics that are common with case studies. Quasi-
experiments and controlled experiments are similar except that
in quasi-experiment subjects are not randomly assigned to
treatments. However, since we have randomly selected the
projects and exhaustively created all possible models, like
a full factorial design, this study is more of a controlled
experiment than a quasi-experiment.

A. Project Selection
Open source software projects on GitHub serve as the

data source for this study. There are millions of Java projects
on GitHub. GitHub provides REST API for users through
which meta-data about projects can be collected. However, it
is very limited considering the massive number of projects.
Therefore, we have used the GHTorrent [36], a project that
gathers meta-data of publicly hosted projects on GitHub.
We downloaded GHTorrent’s database dumps of size about
300GB and extracted on a local MySQL database because,
GHTorrent’s free online database queries have limitations.

We initially selected 2,188,033 candidate GitHub Java
projects from GHTorrent’s database. We selected them in such
a way that there are no forked projects to avoid partial dupli-
cations. We also exclude projects that are marked as deleted
by GHTorrent. Fig. 2 shows the distribution of the 145,980
projects from the 2.2 million candidate projects between 50-
500 commits. Since the actual distribution consisting all the

projects is exponential, projects with commits less than 50 are
not shown for better visual presentation. About 1.3 million of
the 2.2 million projects have 5 or fewer commits.

We have randomly selected 1000 projects from the 2.2 mil-
lion candidate projects. Among them, we found 232 projects
that have zero or one commit. In case a project has multiple
commits from the same day, we consider the latest commit
and ignore others, meaning one commit from a day. We have
ignored any project that results in less than 10 commits.
Because when computing correlations between metrics using
Kendall’s τ , the minimum sample size should be 10, which
still has some bias and for an unbiased result the sample size
should be 50 [37]. We also found some projects that were no
more publicly accessible or lack the GIT master branch, which
we ignored. Finally, we have 242 projects that are considered
for this study.

B. Data Collection
Software revisions in the Git version control system is a

form of archival data, which Lethbridge et al. [39] described
as a third-degree technique for data collection. In our case,
the source of data is of third-degree. However, we have used
the SonarQube [17] tool to process the archival data and
generate measures of our interest. For data collection, we have
considered the entire commits or revision history in the master
branch of a project’s Git repository. However, if there are
multiple commits from a single day, we analyzed the latest
commit of a day using SonarQube. Therefore, for a project,
we have collected data from everyday that has at least a single
commit.

Table II shows metrics used for this study. Descriptions of
these metrics are taken from the SonarQube’s database and
metric definition page [40]. Of them, cumulative metrics are
measured by the SonarQube tool, and the organic metrics are
calculated from the difference of two consecutive values of
the cumulative metrics. In this paper, we refer to an organic
version of a cumulative metric, by adding an underscore sign

at the start of the metric name, e.g., the organic form of the
cumulative metric statements is statements.

SonarQube’s Java plugin has more than 300 code smells
classified into different categories. We have skipped all code
smells from minor and info categories because these code
smells are less severe and the probability of worst things

Figure 2. Histogram of candidate GitHub projects from 50 to 500 commits.
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TABLE II. COLLECTED CODE METRICS. ALL THE 12 METRICS IN THE INDEPENDENT SECTION ARE CUMULATIVE. WE ALSO HAVE
CORRESPONDING ORGANIC METRICS OF THESE 12 CUMULATIVE METRICS. THIS PAPER INDICATES AN ORGANIC METRIC WITH A

SIGN AT THE BEGINNING OF THE METRIC NAME. INTEGER IS THE DATA TYPE OF ALL THESE METRICS.

Variable Type Metric Name Description Short Name

Independent

ncloc Number of physical lines of code that are not comments ncloc
(line only containing space, tab, and carriage return are ignored)

classes Number of classes (including nested classes, interfaces, enums, and annotations) cls

files Number of files fil

directories Number of directories dir

functions Number of methods func

statements Number of statements according to Java language specifications stmt

comment lines Number of lines containing either comment or commented-out code com ln
(Empty comment lines and comment lines containing only special characters are ignored)

cognitive complexity A complexity measure of understandability of code [38] cgn cmplx

complexity Cyclomatic complexity (else, default, and finally keywords are ignored) cmplx

duplicated lines Number of duplicated lines dp ln

duplicated blocks Number of duplicated blocks. To count a block, at least 10 successive dp blk
duplicated statements are needed. Indentation & string literals are ignored

duplicated files Number of duplicated files dp fil

Dependant code smells Organic measure of identified code smells (named new code smells by SonarQube) cs
(Total count of code smells identified for the first time since the last analyzed commit)

happening due to such code smells is low. We have also
ignored code smells that seem to have an obvious linear
relation with the single predictors, e.g., a code smell reporting
cases when the complexity of a class or method reaches a
certain limit, has a high linear relation with the complexity
measures. We reviewed the rest of the code smells and selected
35 code smells from the “blocker” and “critical” categories, as
listed in Table V in the Appendix.

SonarQube calculates the metric new code smells (which
we have denoted as code smells) and saves the measure
into the database but automatically deletes measures from
the earlier runs, if there is any. We have instrumented the
database with triggers to automatically retrieve this metric
when deleted. Among all metrics, code smells is used as the
dependent variable and rest of the metrics in Table II are used
as independent variables or predictors.

C. Analysis Procedure
In Section II, we have discussed the idea, cumulative

measures have high collinearity among themselves. Therefore,
there is a reason to believe that cumulative measures are
collectively weaker as input features for predictive models
compared to their corresponding organic measures. Thus, we
are interested in investigating whether it makes a difference to
use organic measures instead of their cumulative counterparts
to predict code smells. Thus, when building our models,
we do not combine predictors or measures from both cate-
gories. Therefore, we can denote predictors of a model either
cumulative or organic since they always come from the same
category because we will not mix them. On the other hand,
our target variables code smells is from the measurement
category organic. Therefore, we will denote code smells as
organic.

For prediction, we use random forest regression for this
study. Random forest is an ensemble algorithm. It consists of

multiple decision trees making a forest where the accuracy of a
model is calculated by averaging the accuracies of every single
tree in the forest. While a decision tree algorithm generally
suffers from overfitting, a random forest prevents overfitting
by design. The random forest algorithm is suitable in our case
as it can better handle non-normal data compared to many
machine-learning algorithms. Moreover, the random forest is
known for its quick training time given its effectiveness.

Figure 3. Split of a single dataset in different iterations in a
TimeSeriesSplit cross-validation technique.

For validation of models, we like to use cross-validation
techniques from the popular Scikit-Learn Python li-
brary. Since, the collected data from the revision history is
time-bound, TimeSeriesSplit cross-validation from the
Scikit-Learn library is appropriate in our case. We use
the default number of splits (n_splits = 3) for our data.
In TimeSeriesSplit cross-validation, the order of data is
important, and unlike general cross-validation, randomization
is avoided because, if data is randomized, the training datasets
shall have a rough idea about the trend of the future already
based on the random data assigned from the later parts of
the projects. In our case, we are interested in predicting the
future based on the available data (and there is no point in
predicting the past). In TimeSeriesSplit cross-validation,
data is split without disordering time, as shown in Fig. 3.
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TABLE III. PCA COMPONENTS. HERE, WE USED SHORT NAMES FOR METRICS, AS MENTIONED IN TABLE. II.

Cumulative Metrics Organic Metrics
ncloc func stmt cmplx cgn cmplx cls fil com ln dir dp ln dp blk dp fil ncloc func stmt cmplx cgn cmplx cls fil com ln dir dp ln dp blk dp fil

PC 1 .79 .09 .32 .14 .08 .01 .01 .32 .00 .36 .01 .00 -.89 -.14 -.31 -.16 -.07 -.02 -.02 -.24 .00 -.09 .00 .00

PC 2 -.38 .02 -.29 -.04 -.09 -.01 .00 .40 .00 .77 .01 .00 -.20 .08 -.01 .01 -.09 -.01 .01 .42 .01 .88 .02 .01

PC 3 -.21 -.04 .19 .02 .04 -.02 -.01 .84 .00 -.46 -.01 .00 -.24 .25 .04 .14 -.07 -.01 .01 .80 .00 -.47 -.01 .00

PC 4 .41 .02 -.82 -.16 -.21 .06 .04 .18 .01 -.23 -.01 .00 .33 -.02 -.85 -.25 -.27 .09 .03 .15 .00 -.03 -.01 .00

PC 5 -.05 .14 -.31 .49 .79 -.01 -.02 .00 -.01 -.03 .09 .00 .04 -.67 -.11 -.09 .65 -.09 -.12 .29 -.05 -.01 -.02 -.02

PC 6 .09 -.76 -.01 -.48 .43 -.03 -.03 .02 .01 .07 -.01 .01 .04 -.40 .40 -.63 -.50 .02 -.01 .15 .03 -.06 -.01 .00

PC 7 .00 -.30 -.04 .40 -.11 -.05 .10 -.01 .02 .01 -.85 -.02 .05 -.26 -.06 .40 -.38 -.57 -.47 -.01 -.17 -.01 .22 .00

PC 8 .02 -.52 -.05 .54 -.33 -.24 -.08 -.01 -.04 -.01 .49 .12 .01 .42 .01 -.51 .29 -.32 -.25 -.01 -.04 .00 .55 -.02

PC 9 -.04 -.16 .04 .13 -.03 .78 .55 .01 .14 .01 .14 .03 -.02 -.25 .00 .23 -.09 .34 .33 .02 .10 -.02 .80 .03

PC 10 .00 .08 .00 -.09 .05 -.56 .75 .00 .28 .00 .04 .16 .02 -.03 -.03 -.02 .01 -.66 .70 .00 .26 .00 -.04 .09

PC 11 .00 .04 .00 -.01 .01 .10 -.30 .00 .58 .00 -.06 .74 .00 .01 .02 -.04 -.01 -.04 .34 .00 -.90 .00 .01 -.27

PC 12 .00 -.04 .00 .05 -.03 -.03 -.16 .00 .75 .00 .06 -.64 .00 -.01 .00 .03 -.02 -.03 -.01 .00 .28 .01 .01 -.96

Figure 4. The overall process of model evaluation. At least one sub-level
process is expanded from each horizontally highlighted level (i.e., projects,

predictors, targets, etc.) Unexpanded sub-processes are indicated with
open-ended vertical lines or connectors (e.g., the small vertical lines

connected to Random Forest (RF) at Level 4). Any unexpanded or
open-ended vertical connector contains the same expanded sub-process tree

from the same level.

A simpler cross-validation technique compared to
TimeSeriesSplit is training_test_split, where
the dataset is split only once. For training_test_split
cross-validation for time-series data, if we avoid randomization
when splitting the training and the test sets, we get a coarse-
level cross-validation compared to TimeSeriesSplit,
which is still valid. For training_test_split, we
will use 70% data for training set and 30% data for test
set. K-folds is another popular cross-validation technique,
which is similar to time-series cross-validation. However, the
k-folds technique has no strict ordering of time, meaning
older data corresponding to the earlier commits can be in
the test sets and newer data corresponding to the recent
commits can appear in the training set. Due to this, it is
methodologically wrong to evaluate time-series data with

k-folds cross-validation. Therefore, we have avoided it.
The overall process of model evaluation is pictured in

Fig. 4. This figure shows how the selected machine learn-
ing regressor with two cross-validation methods are used to
process the data from the selected projects and calculate the
accuracies of regression models. Since, this study has a strong
focus to understand the impact of using multiple features
from different measurement categories (i.e., cumulative and
organic) when predicting the target measures, we want to
exhaustively check all possible combinations of the predictors
while building machine learning models to predict the target
measures. In Level 2 of Fig. 4, we can select one or multiple
predictors to predict the metric in Level 3. Then, in Level
4, machine learning models are built based on the selections
from the prior two levels. Table IV shows all possible number
of models that can be generated based on the process shown
in Fig. 4, considering all possible lengths of predictors and
all possible number of evaluations of such a number of total
possible models.

TABLE IV. NUMBER OF MODELS AND EVALUATIONS BASED ON
THE STUDY DESIGN.

‘Combination length’ No. of prediction No. of r2 No. of aggregated
of predictors (k) models (nopm) values r2 values

1 24 168 48
2 132 924 264
3 440 3,080 880
4 990 6,930 1,980
5 1,584 11,088 3,168
6 1,848 12,936 3,696
7 1,584 11,088 3,168
8 990 6,930 1,980
9 440 3,080 880

10 132 924 264
11 24 168 48
12 2 14 4

Total 8,190 57,330 16,380

Accuracies of the predictive models are calculated as r2,
which is also known as the coefficient of determination. It
expresses the proportion of the variance in the dependent
measure or target, predictable from the independent measures
or predictors. The maximum value of r2 is +1, which implies
100% variability of the target measure has been accounted. It
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can also be negative suggesting the model has even a worse
fit than a horizontal line on the x-axis.

Within the context of this study, ‘no. of predictor’ (n) =
12, ‘no. of category of predictors’ (pc) = 2, ‘no. of target’ (t)
= 1, ‘no. of regressor’ (r) = 1, and ‘no. of cross-validation’
(cv) = 2. This study has considered generating all possible
models and all possible evaluations of the models, as shown in
Table IV. Therefore, we build in total 8,190 predictive models
and this numerical figure is calculated as total nopm =∑12

k=1(
(
n
k

)
× pc × t × r). Then, we evaluate these models

57,330 times and generate the same number of r2 values by
total norv =

∑12
k=1(

(
n
k

)
× pc× t× r × 4). In this equation,

the numerical term four comes as we have one r2 value
from training_test_split and three r2 values from
TimeSeriesSplit cross-validations. Then, aggregating r2
values for TimeSeriesSplit, we have the total 16,380 r2
values calculated by total noarv =

∑12
k=1(

(
n
k

)
×pc× t× r×

cv) that will be used for results of this study. All evaluations
are based on test data sets while models are built with training
data sets. The whole model training and evaluation process is
automated using Python scripts and MySQL database. When
reporting the results, we select the best r2 value (which means
the associated predictive model is best) for each combination
length of predictors (k).

To validate our model building and prediction approach,
we have performed PCA on both sets of metrics and extracted
the maximum possible components, i.e., the total number of
metrics in each category, which is 12. The details of the
extracted components are shown in Table III. For cumulative
metrics, the first two components explain about 98.3% and
for cumulative metrics 97.6% variability. Therefore, it would
be enough to consider these two components to build models.
However, as we have exhaustively built models in the first
approach, we want to develop models using PCA by using
all the components. For each measurement category, we will
build 12 prediction models where the first model would only
use the first PCA component and the last model would use all
12 components.

D. Threats to Validity

A general weakness of case study research is generalizabil-
ity due to the reason that samples are not randomly selected
from the population. However, this study has randomly se-
lected the projects from the population.

According to GitHub’s statistics for 2017 [41], 6.7 million
new users joined the platform, of them 48% are students,
45% are entirely new to programming, and 4.1 million people
created their first repository. This means, there are a lot of
classroom projects or projects that have little or no code base.
Here, we have a trade-off, we want to be inclusive by equally
letting all projects the same chance to appear as subjects. But
we do not want to include meaningless projects. As we have
disregarded all projects that result in less than 10 commits, a
lot of such unwanted projects was removed.

Programming languages have different constructs. There-
fore, measures of code metrics may vary due to programming
languages. To minimize the effects of programming languages,
we have selected projects that are mainly labeled as Java
projects.

We have selected 35 code smells for this study. This
could be seen as a threat as not all code smells are equally
severe and we have not tracked which code smells are more
present than the others. To minimize this threat, we selected
code smells from the top two severity-levels (“blocker” and
“critical”). We have removed code smells that are subjective
to projects (e.g., code smells related to coding conventions)
and that seem to have obvious correlations with the input
feature metrics. Since we have collectively predicted the code
smells, it would not be possible to differentiate which code
smells are more predictable than others. From our results, we
have an overall understanding of predictability of the selected
code smells as a whole. Therefore, it was important that
the severity of the selected code smells do not vary much.
From another point of view, since our research question is
specific to the context of prediction accuracies between organic
and cumulative measures, our approach of not differentiating
between the selected code smells do not pose any significant
threat to the validity of this study.

V. RESULTS AND DISCUSSIONS

We are interested in distinguishing the difference between
cumulative and organic measures predicting code smells in
the continuous integration environment where we want to
predict quality change within a short period. Results from our
predictions are reported in Fig. 5. All sub-figures in this figure
have 12 data points each depicting the best found r2 value for
that specific length and choice of predictor category, target,
regressor, and cross-validation from the total available 16,380
r2 values.

When we look at the model performance from cumulative
predictors to code smells in Fig. 5b, all r2 values for both
cross-validations result in negative values. The maximum r2

values of -0.25 (for training_test_split) and -0.88
(for TimeSeriesSplit) come from the single predictor
duplicated files. Since we have all negative r2 in Fig. 5b,
results from such models are not useful in practice but we can
still interpret the results relatively in comparison to Fig. 5a
to understand how prediction accuracies vary when predictor
types are different.

For organic metrics predicting code smells, we see pos-
itive prediction accuracies in Fig. 5a. Here, both cross-
validation methods yield positive results (r2 ≥ 0). It is
clear from this sub-figure that the model accuracy in-
creases as the number of predictor increases. In Fig. 5a for
training_test_split, we see that the maximum r2

value is 0.25 for a combination of six predictors; then the
model accuracy gradually decreases as the number of predictor
increases. The six predictors are ncloc, statements, classes,

comment lines, duplicated lines, and duplicated blocks.
For training_test_split cross-validation, the maxi-
mum model accuracy r2 = 0.18 is found for four predic-
tors, which are ncloc, directories, duplicated lines, and
duplicated blocks.

We see that TimeSeriesSplit cross-validation
results in lower model performance compared to
training_test_split. This is most likely because
the r2 value of TimeSeriesSplit comes from three r2

values or three models where the first model is trained with
only 25% of the data to evaluate 25% of the data, which is
‘Split 1’ in Fig. 3. Models corresponding to ‘Split 1’ not only
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(a) Predictor: Organic metrics, Target: code smells (b) Predictor: Cumulative metrics, Target: code smells

Figure 5. Prediction Accuracies using Random Forest Regressor.

have less portion of training data but also the split between
training and test is equal. Still, the r2 graphs corresponding to
both cross-validation techniques in two sub-figures in Fig. 5
roughly follow a similar trend concerning shape or slope.

The interactions among predictors are more
visible in the TimeSeriesSplit graphs than
training_test_split in both sub-figures in Fig. 5.
For example, in Fig. 5a, if we carefully look at the
TimeSeriesSplit graph, we see that combination
lengths 5 and 6 yield lower accuracies than combination
lengths 4 and 7. Similar observations are seen for
training_test_split, e.g., model accuracy for
combination length 4 is lower than accuracies for combination
lengths 3 and 5. Such observations could most likely be due
to the interactions among the predictors. Interactions among
predictors are interesting. However, we have not investigated
them further, as it falls beyond the scope of this study.

Results from the 24 prediction models where features are
extracted through PCA, are presented in Fig. 6. Since we
evaluated these models only using training_test_split
cross-validation technique, we would compare these results
with training_test_split graphs in Fig. 5a and 5b.
We see that our approach outperformed PCA in both cases.
For organic metrics predicting code smells, we get the best r2
value 0.10 when eight components are used together. However,
if we had used maximum two components, we could have
achieved 0.05 as the maximum accuracy which is half of 0.10.
For cumulative metrics predicting code smells, all r2 values
are negative. However, the best r2 is -1.96 compared to -0.25
in Fig. 5b. Interestingly, for PCA, we have similar observations
as seen for Random Forest in Fig. 5, i.e., when we use more
organic metrics to build predictive models the model accuracy
increases. Six metrics for Random Forest in Fig. 5a and 8
components for PCA in Fig. 6 produce the best results.

Based on the observations, we can answer the RQ as
organic metrics can better predict code smells compared to
cumulative metrics. Furthermore, as more organic measures
are combined to form sets of predictors, the accuracies of
the models increase as seen in Fig. 5a. Compared to this,
cumulative measures do not contribute to the model accuracies
as observed in Fig. 5b. This could be an indication that organic

Figure 6. Prediction accuracies of Random Forest Regressors evaluated with
training_test_split where features are extracted through PCA.

measures collectively contribute more to the predictive models
than their corresponding cumulative measures. This could
potentially be due to the multicollinearity of the cumulative
metrics.

Among the 12 organic metrics used in this study, a combi-
nation of six metrics gives the best prediction accuracy (r2
= 0.25) concerning training_test_split as seen in
Fig. 5a. Concerning TimeSeriesSplit in the same figure,
a set of four metrics gives the best prediction accuracy (r2
= 0.18). The model accuracies are not that high and it can
be noted that finding the best predictive model was not an
objective of this study. Nevertheless, organic metrics better
predict code smells in the continuous integration environment
compared to their corresponding cumulative metrics which is
the main focus of this study.
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Results of this study would help the practitioners, tool
developers, and researchers to be aware of the potential of
organic metrics to predict code smells in the continuous
integration environment. Our results are particularly interesting
for the researchers to focus on building improved predictive
models for code smells in the continuous integration environ-
ment involving more metrics.

VI. CONCLUSIONS AND OUTLOOK

This empirical study set out to investigate whether organic
measures perform better in predicting software artifacts than
their corresponding cumulative measures and whether there
exists any relationship between measurement types of pre-
dictors and a target. Considering code smells as the desired
target, we have found that measurement categories play a
vital role regarding the accuracies of random forest regression
models. Organic measures are found to be much better predict-
ing organic code smells than their corresponding cumulative
predictors. Furthermore, organic measures exhibit increased
model accuracies when more than one organic measures are
combined to form the set of predictors compared to their
corresponding cumulative measures. We think, this happens
due to the high multicollinearity of the cumulative measures
or due to the high correlation among the cumulative measures.
We validated our model building and prediction approach by
performing PCA to extract components to build models. Using
PCA, we have observed similar results but our approach to
build models with cumulative and organic metrics as predictors
outperformed PCA.

The results of this study are expected to be general within
the context of Java projects since it is based on randomly
selected projects. Therefore, this study is essential to generally
understand the difference between cumulative and organic
measures predicting code smells within this context. Further
studies are required to understand how model accuracies
differ when projects with specific criteria are considered,
e.g., size (small vs. large), duration (short vs. long-lived),
type (classroom vs. real), programming languages, etc. Our
results indicate possible interactions among various predictors
which is important knowledge to understand the software
metrics better. Therefore, more research can be conducted to
investigate the interactions between software metrics. More
importantly, further research should be carried out primarily
focusing on building improved models to predict code smells
in the continuous integration environment using more metrics.
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APPENDIX

TABLE V. LIST OF CODE SMELLS USED IN THIS STUDY.

“main” should not “throw” anything
Class names should not shadow interfaces or superclasses
Short-circuit logic should be used in boolean contexts
Future keywords should not be used as names
String literals should not be duplicated
Modulus results should not be checked for direct equality
“readResolve” methods should be inheritable
Methods & field names should not be the same or differ only by
capitalization
Switch cases should end with an unconditional ”break” statement
“if ... else if” constructs should end with “else” clauses
“switch” statements should not be nested
Fields in a “Serializable” class should either be transient or
serializable
The Object.finalize() method should not be overriden
Execution of the Garbage Collector should be triggered only by
the JVM
Constructors should only call non-overridable methods
Methods returns should not be invariant
“switch” statements should not contain non-case labels
“clone” should not be overridden
Assertions should be complete
“for” loop increment clauses should modify the loops’ counters
Method overrides should not change contracts
Exceptions should not be thrown in finally blocks
Classes should not access their own subclasses during initialization
“Object.wait()” and “Condition.await()” should be called inside a
“while” loop
“Cloneables” should implement “clone”
“Object.finalize()” should remain protected (versus public) when
overriding
Child class fields should not shadow parent class fields
Factory method injection should be used in “@Configuration”
classes
Threads should not be started in constructors
“indexOf” checks should not be for positive numbers
Instance methods should not write to “static” fields
Tests should include assertions
Null should not be returned from a “Boolean” method
Lazy initialization of “static” fields should be “synchronized”
IllegalMonitorStateException should not be caught
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