
Methodology for Splitting Business Capabilities into a Microservice Architecture:
Design and Maintenance Using a Domain-Driven Approach

Benjamin Hippchen, Michael Schneider, Iris Landerer, Pascal Giessler
Sebastian Abeck

Cooperation & Management (C&M), Institute for Telematics
Karlsruhe Institute of Technology

Karlsruhe, Germany
{benjamin.hippchen, michael.schneider, iris.landerer9, pascal.giessler, abeck}@kit.edu

Abstract—The ongoing digital transformation is forcing orga-
nizations to rethink not only their business domains but also
their (often monolithic) application landscapes. A more flexible
architecture is needed: microservice architecture. Migrating,
developing and operating such a flexible architecture requires
predetermined architectural decisions. Because splitting the busi-
ness domain into a more distributed software architecture is chal-
lenging, a methodology must be created that supports software
architects by designing and systematically maintaining this kind
of architecture. During our research, we discovered that there
are only a few publications in this field that ignore the business
domain and omit the maintenance of the architecture. Therefore,
we provide a methodology for splitting business capabilities into
a microservice architecture based on concepts of domain-driven
design, which was proved over a longer time and continuously
incorporated with new results. Our results indicate that we
established a systematic and comprehensible creation process for
microservice architecture, which also has a verifiable positive
effect on the organization’s application landscape.

Keywords–Microservice; Microservice Architecture; Domain-
Driven Design; Context Map; Bounded Context.

I. INTRODUCTION

The digital transformation is in progress and organizations
must participate; otherwise, they will be left behind. Existing
business models need to be rethought and new ones created.
Tightly coupled to the business model is the organization’s
application landscape. Thus, this landscape also has to be
reimagined. Meanwhile, microservice architectures have es-
tablished themselves as an important architectural style and
can be considered enablers of the digital transformation [1].
Therefore, one major step towards a digital organization is
the migration of legacy applications into a microservice ar-
chitecture. Afterwards, the architecture must be maintained to
provide long-lived software systems. However, neither the mi-
gration, design and development of a microservice architecture
nor its maintenance are easy to achieve.

The structure of the new microservice-based application
seems straightforward for the development team. Some mi-
croservices communicate with each other and deliver business-
related functionalities over web application interfaces (web
APIs). However, at this point, the corresponding development
team must ask itself decisive questions: How many microser-
vices do we need? In which microservice do we put which
functionality? Do we interact with third party applications?
Domain-driven design (DDD) by Evans [2] can provides
important concepts which help answering this questions. As

a software engineering approach, DDD focuses on the cus-
tomer’s domain and wants to reflect this structure into the
intended application. The business and its business objects are
the focus of each developing activity. Technical details, like the
deployment environment or technology decisions, are omitted
and do not appear in design artifacts. Domain-driven design
emphasizes the use of a domain model as a main development
artifact: all relevant information about the domain, or business,
is stored in it.

For microservice architecture, DDD helps structuring the
application along business boundaries. Likely, these bound-
aries match the customer’s domain boundaries. In his book
Domain-Driven Design: Tackling Complexity in the Heart of
Software, Evans introduces the “context map” diagram. This
diagram’s main purpose is to explore the customer’s domain
and state it as visual elements. The context map focuses on
the macro structure of the domain, sub domains, departments
and so on instead of micro elements like business objects.
A further essential DDD element and pattern is the “bounded
context,” which represents a container for domain information.
This container is filled with the mentioned domain’s micro
structure, creating a domain model. The name bounded context
is derived from its explicit boundary. Through this boundary,
the container’s content is only valid inside of the bounded
context. From the strategic point of view, a bounded context
is a candidate for a microservice. Thus, the context map could
display the organisation’s microservice architecture.

Like most DDD concepts, creating a context map is
challenging and the tasks are not straightforward. The vague
definitions and lack of process description create problems.
The following example illustrates the problem. A development
team wants to establish a microservice architecture at Karl-
sruhe Institute of Technology (KIT) for the administration of
students. Typically, for this purpose, universities introduce Stu-
dent Information Systems (SIS) to support the business process
execution for their employees. There are several problems with
those SIS: (1) in the hands of software companies, (2) little
to no understanding of the university’s domain, (3) primarily
monolithic architecture, and, (4) little to no insights for third
parties. Because the development team has no affect on the
SIS and its architecture, the goal is to advance the SIS with
social media aspects to support interaction between students. A
microservice architecture is planned for the new functionality.
Starting with the development and using DDD, the team must
gather information about the domain and create a domain
model and a context map. The first uncertainty is the artifacts

53Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

creation order. Both artifacts rely on information from each
other. While creating the domain model, the development team
needs to know where to look for specific domain information,
which is stated in the context map. When creating the context
map, several bounded contexts are needed, which contain
a domain model. In addition to this problem, the content
of a context map is not precisely defined. The literature
states that the context map contains bounded contexts and
relationships but does not state how to elicit them or even
what they represent in the real world. This lack of real-world
representation is especially a problem for development teams,
who need to interact with an existing application. On the one
hand, it is necessary to provide the third party application
in the context map, because the context map can capture
the information transferred between the third-party and the
university. On the other hand, it is unclear how to represent the
third-party application in the context map. A bounded context
needs a domain model, and there is no domain model in this
case. These are only two problems with the application of the
context map, but they illustrate how import it is to enhance
usability. In the following sections, we discuss these and other
problems in more detail.

In this paper, we provide the following contributions to
enhance the application of the context map and support the
design and maintenance of a microservice-based application:

• Context Map Foundations: One major problem of
DDD is the lack of integration and placement in
existing software development processes. It is unclear
in which phases the context map must be created and
in which phases it supports the development. There-
fore, in Section III, we provide the first integration
and placement of this map. In addition, we discuss
the foundations of the context map and define the
elements in this section.

• Context Choreography: While applying DDD for the
development of microservice-based applications, we
realized the existing artifacts did not capture all rele-
vant information. Thus, in Section II and Section III,
we introduce a new type of diagram, the “context
choreography”. This diagram’s purpose is to display
the choreography between multiple microservices for
the application.

• Artifact Creating Order: As mentioned, it is unclear
in which order the DDD artifacts must be created.
Therefore, in Section III, we also provide a detailed
order with an emphasis on the context map. The
application of the order is presented in our case study
in Section IV.

II. PLACEMENT AND INTEGRATION OF THE CONTEXT
MAP

One main problem of DDD is its lack of placement in
the field of software development. Neither its models nor its
patterns, including the context map, are placed in common
software development processes. For our placement, we focus
on the context of microservices. Because the context map has
some weakness in development, a new diagram is introduced
to close the gap.

A. Placement
As mentioned in Section I, the use of the context map

is not straightforward. The development team must analyze
the domain, create a domain model, and develop a context
map. On the one hand, the context map has a great benefit for
microservice architectures. On the other hand, applying the
map correctly is difficult.

Each DDD practice should be performed with the focus on
an intended application [2]. This ensures the “perfect fit” of the
gathered information, called “domain knowledge,” for the ap-
plication. Domain knowledge is captured in domain models. At
this point, the pattern “bounded context” becomes important.
An application consists of multiple bounded contexts, which
all have their own domain models. With respect to the com-
plexity of the domain knowledge, it makes sense to split the
domain knowledge into multiple domain models. The validity
of each domain model is limited through the bounded context.
Furthermore, each bounded context has its own “ubiquitous
language,” which is based on the domain knowledge and acts
as a contract for communication between project members
and stakeholders. For the development of microservice-based
applications especially, the multiple bounded contexts support
the idea of a microservice architecture. Through connections
between the bounded contexts, the domain knowledge is
joined together in the application. The arising relationships are
application-specific and differ from application to application.
There are several types of relationships [3]. Modeling the
bounded contexts and their relationships is the purpose of a
context map.

Considering a microservice architecture, the purpose of a
context map is not only to elicit domain knowledge. Orga-
nizations that introduce microsevices need to manage their
application landscape to maintain the microservice architec-
ture. Without the knowledge about which microservices are
available and who is in charge of them, the microservice
architecture loses its advantages. Existing microservices are
simply not used, even the domain knowledge they provide
is required, due to the fact that other development teams
could not find it, oversee it or forgot about it. The required
domain knowledge is redeveloped in new microservices and
the existing microservices become legacy. Sustaining the ad-
vantages of a microservice architecture is therefore important
for organizations and the context map is one tool which helps
to achieve this. In addition, the aspect that DDD focus its
development artifacts on the customer’s domain, supports the
maintenance of the microservice architecture. Aligning the
context map to the customer’s domain leads to a natural-
looking architecture [4]. Conway’s Law [5] also supports
the idea behind a natural-looking microservice architecture.
The organizational structure is adapted in the microservice
architecture and vice versa. Looking at concepts like Martin
Fowler’s “HumaneRegistry” [6] or API management products
like “apigee” [7], the idea and approach of the context map
is required and furthermore it supports such concepts and
products.

Using the context map as a tool for maintaining the
microservice architecture is contrary to one DDD aspect:
focus always on an application. The mentioned maintenance
does not require any kind of application-specific information.
A microservice is firstly an application-independent software
building block [8] and needs to be treated as such while main-

54Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

taining the microservice architecture. Even if the development
of a microservice is motivated through the development of an
application. Thus, we see the context map as an application-
independent diagram.

Application

Presentation

Backend
-For-

Frontend (BFF)

Application

Domain

Infrastructure

Application

Domain

Infrastructure

Microservice Microservice

Context
Choreography

Context
Map

Figure 1. Placement of context mapping artifacts regarding the software
building blocks from [8]

According to [8], for microservice-based applications,
microservices are choreographed in applications through a
backend-for-frontend (BFF) pattern. This is where application-
specific information comes into play. Fig. 1 depicts the soft-
ware architecture, including the application’s BFF. To capture
the choreography in the BFF, a new type of diagram is needed.
The “context choreography” provides a view of the bounded
context necessary for the application. Furthermore, the context
choreography indicates which domain knowledge the bounded
context transfers.

The context map can also be placed into software devel-
opment activities. In [8], the first steps to place DDD into
the software development activities from Brügge et al. [9]
were taken. However, the context map itself was omitted.
We built on these results for our placement of the context
map. Domain-driven design introduces two types of “design
activities” [2]. The first is the “strategic design,” with tasks in
modeling and structuring the domain’s macroarchitecture (e.g.,
departments are used to define boundaries). This macroarchi-
tecture is captured in the context map. Secondly, the “tactical
design” further refines the macroarchitecture and enriches
the bounded contexts with domain knowledge. This activity
represents the microarchitecture of the domain and therefore
of the microservice. Both activities rely on creating diagrams.
Considering the software development activities from Brügge
et al., Evans’ designation as strategic and tactical “design”
is misleading. Those focus more on the analysis than on
the design phase. Many DDD practices and principles, such
as “knowledge crunching,” aim to analyze the domain. The
development team explores the customer’s domain and should
simultaneously create the context map and domain model.
Thus, the strategic and tactical designs are completed out,
which is why the context map must be integrated at this point.

As mentioned, the content of the context map depends
on its purpose. This is even the case for the relationships
between the bounded contexts. Developing a monolithic ap-
plication requires a different viewpoint on these relationships
than a microservice-based application requires. A microser-
vice architecture has many different microservices, which are
managed by different development teams. By choreographing
microservices in applications, development teams are auto-
matically interdependent. This dependency is illustrated in the
relationships in the context map. They could also be seen as
communication paths between those development teams.

Our placement indicates that the context map has several
possibilities to support the development of microservice archi-
tectures and microservice-based applications. We distinguish
between a microservice architecture and the development of a
microservice-based application. With regard to the microser-
vice architecture style, the context map provides an overview
of all in the application landscape existing microservices
and further the dependencies of the responsible development
teams—which are also necessary information for maintain-
ing the microservice architecture. Due to the application-
independence of these information, the context map is an
application-independent diagram. Additionally, we saw a lack
of the context map while specifying microservice-based ap-
plications. Information transferred between microservices was
missing a specification, which is necessary for choreograph-
ing the BFF of the application. Thus, we introduced the
context choreography, which displays the application-specific
dependencies between the microservices and their transferred
domain knowledge. With this placement, we make a first step
in advancing the use of the context map.

III. FOUNDATIONS AND ARTIFACT ORDER

In addition to the placement, we see a high need for clear
definitions and guidance in creating the context choreography
and context map. Therefore, this section provides definitions
for terms regarding both artifacts. Afterward, we explain how
the artifacts could be created.

A. Foundations
We found that, in addition to the development process,

terminology around the context map is not clearly defined.
This also leads to difficult application. Therefore, we want to
provide some basics.

1) Bounded Context: The bounded context is the main
element for the context map and is an explicit boundary for
limiting the validity of domain knowledge [2]. Thus, within
this context, there is a domain model and its ubiquitous
language. A bounded context does not represent an application.
This is based on the layered architecture of DDD, which
consists of four layers: (1) presentation, (2) application, (3)
domain, and (4) infrastructure. Domain-driven design and
its artifacts focus only on the domain layer and omit the
others. Therefore, without any application logic in a domain
model, a bounded context cannot represent an application.
This definition is necessary, when creating a context map.
An intended application is usually integrated into an existing
application landscape.

When developing a microservice-based application, a
bounded context initially only represents a candidate for a
microservice [4]. Thus, a bounded context is either large

55Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

enough that two or more microservices are necessary or small
enough that they are included in one microservice. The best
practice, however, should be the one-to-one relationship. This
relationship eases the maintenance of the architecture through
a clearer mapping between bounded contexts, microservices,
and the responsible development teams. Reconsidering the size
of the bounded context helps achieve this mapping. Therefore,
we have collected several indicators, or more precisely possible
influence factors, for the size of bounded contexts from our
experiences in research and practice. This list should not be
considered complete or verified with an empirical study but
should rather be seen as an aid. A bounded context (1) has a
high cohesion and low coupling, (2) can be managed by one
development team, (3) has ideally a high autonomy to reduce
the communication/coordination effort between development
teams, (4) has a unique language that is not (necessarily)
shared, and (5) represents a meaningful excerpt of the domain.

2) Context choreography: As mentioned (see Section II),
the specification of a microservice-based application was
lacking some information. Thus, we introduced the context
choreography as a new diagram.

For microservice-based application development, it is im-
portant to state the other needed microservices—and thus
the bounded context also. Furthermore, the exchanged data
between those microservices are important information. As
a microservice-based application is developed, existing mi-
croservices could still be used, while new ones are developed.
In both cases, the context choreography is supportive. Regard-
ing the application itself, the context choreography states all
necessary microservices and the transferred domain knowledge
between them, literally displaying the choreography of the mi-
croservices to achieve the application functionality. According
to the software architecture provided by [8], the application’s
BFF is specified. Independent from the application, the con-
text choreography states the microservice interfaces. Both the
consumed and the provided interfaces of the microservice are
provided. Thus, while developing the application, the first hints
of the API can be derived. With regard to the subsequent
maintenance of the microservice, development teams are able
to identify the microservices that rely on them and vice versa.

3) Context Map: The DDD’s original purpose for the
context map differs from the one provided in this paper. In
the context of microservice architecture, the context map is a
useful diagram for maintaining the architecture and supporting
application development.

One major advantage is the comprehensive overview of
existing microservices. According to the best practice from
Section III-A1, each bounded context in the context map rep-
resents a microservice. Further, in software architecture, social
and organization aspects have to be considered [10]. Therefore,
dependencies between microservices, and thus development
teams, are stated. When development teams want to evolve
their microservices, it is important to ask who depends on
these microservices. At this point, the dependencies on other
teams must be considered because any change could affect the
stability of the other microservices. Thus, changes have to be
communicated.

Also, for the development of a microservice-based ap-
plication, the context map is advantageous. Regarding the
context choreography, existing microservices are used to com-
pose functionality for the intended application. Using existing

microservices is only possible if they are traceable in the
microservice architecture. This is where the context map comes
into play. After developing a microservice, it is placed as a
bounded context into the model. While the application is in
development, the development team can use the context map
as a tool to locate the needed microservices.

4) Domain Experts and other Target Groups: The interac-
tion between domain experts and developers is one principle of
DDD [2]. Each artifact is created for and with domain experts.
Thus, the artifacts should be understandable without a software
development background.

The context map according to DDD’s definition is also
relevant for domain experts [11]. However, according to our
definition, we do not see any advantages for domain experts
since the context map provides an overview of bounded con-
texts and communication paths between development teams.
Furthermore, the context choreography is irrelevant. Only
the subdomains, which represent the organization’s structure,
contain helpful information.

B. Process for Establishing a Context Map
To develop a microservice-based application, it is necessary

to establish the bounded contexts needed for the application.
The developed application also may reuse existing microser-
vices, which should be integrated into the application land-
scape. To obtain an overview of the microservice landscape,
the context map is useful. In this section, we focus on the
establishment of the bounded contexts, the context choreog-
raphy, and the context map. For developing an application,
we build on a development process based on behavior-driven
development (BDD) [12] and DDD [2] introduced in [8]. We
omit the steps in [8] and focus on the creation of context chore-
ography and a context map. Therefore, this section describes
how the context map is established and enhanced within the
development process.

1) Forming the Initial Domain Model: Forming the initial
domain model occurs in the analysis and design phases. Before
developing an application, the requirements are specified with
BDD in the form of features. As Fig. 2 illustrates, a tactical
diagram is derived from the features (e.g., the domain objects
and their relationships). If a domain model already exists
(e.g., from an existing microservice), this should be taken into
account. The resulting diagram represents the initial domain
model, which contains the application’s business logic. Thus,
the domain model provides the semantic foundation for all the
specified features. The resulting diagram is comparable to a
Unified Modeling Language (UML) class diagram and displays
the structural aspects of the domain objects. If the domain
structure is still vague when the number of features is satisfied,
more features are considered until the domain model appears
to be meaningful. Afterward, as presented in Fig. 2, this initial
domain model is examined and structured into several bounded
contexts.

2) Forming the Bounded Contexts: The model is strate-
gical analyzed and separated based on the business and its
functionality. This step depends on the domain knowledge and
the structure of the business. Therefore, knowledge crunching
from DDD [2] is applied to gather that knowledge. Often, a
business’s domain knowledge is scattered through the whole
business. Therefore, analyzing the business is important to

56Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

Bounded Contexts

Tactical Diagrams

Context Choreography

Context Map

Specifying features

Extracting Domain
Knowledge from Various

Sources

Deriving Data Exchange
Between Bounded Contexts

Summarizing of all Context
Choreographies and

Applying Communication
Patterns

Artifact OrderActivities

forms

input for

leads to

establishes

Figure 2. Creating order for artifacts their and impacting activities

understand the business processes and the interaction of differ-
ent departments. By default, each department knows its tasks
the best. To extract the domain knowledge, various sources
should be considered. These sources include domain experts
who are part of a department, as well as documents and
organizational aspects. This domain knowledge provides hints
for structuring the domain and has to be considered while
forming the bounded contexts. Considering the application
analysis and the business analysis from [8] leads to the
bounded contexts, as illustrated in Figure 2. If a context map
has been established, then the context map is searched for the
required domain knowledge of the application. If a bounded
context representing the domain knowledge already exists, then
this bounded context is taken into account. A new bounded
context is established if the context map does not contain
the required domain knowledge. For example, we integrated
a profile context into an existing context map of the campus
management domain.

3) Toward the Context Choreography: Forming the
bounded contexts is only the first step towards a working
application. Each previously established bounded context is
considered a microservice and requires or offers a unique
interface for communication that can be based on REST or
other architectural styles. Without interfaces, a microservice-
based application would not work. The microservices are
choreographed with the BFF. To allow choreography, the data
exchange between the bounded contexts is considered next.
The required data exchange is modeled in the context chore-
ography. For each bounded context, a context choreography
diagram is modeled. Domain objects that need to be shared or
consumed from other bounded contexts are modeled as shared
entities. The considered bounded context can either share the
domain object itself or consume the domain object. This model
also provides hints for the API of a bounded context if the
bounded context shares entities.

4) Toward the Context Map: In microservice architectures,
each established bounded context represents a microservice
and is implemented by autonomous development teams. Thus,
for relating bounded contexts, teams may need to communicate
with each other. Therefore, the communication effort between
the teams should be considered. The communication effort
indicates how much communication between the teams is
required. Clear communication paths are necessary, because
a team needs to know which other team is responsible for

TABLE I. Overview of communication patterns and their impact

Comm. pattern Description Effort
Partnership Cooperation between bounded contexts

to avoid failure
Very high

Shared Kernel Explicit shared functionality between
different development teams

Medium to
high

Customer/
Supplier

Supplier provides required functionality
for the customer. The customer has in-
fluence on the supplier’s design deci-
sions

High to
very high

Conformist Similar to customer/supplier but with no
influence on design decisions.

Low to
medium

Separate Ways No cooperation between development
teams

Low

Anticorruption
Layer

Additional layer that transforms one
context into another

Low

Open Host Ser-
vice

Uniform interface for accessing the
bounded context

Low

Published
Language

Information exchange is achieved using
the ubiquitous language of the bounded
context

Low

relating bounded contexts. Therefore, dependencies and com-
munication channels between teams are defined. Depending
on the teams and the possible communication effort, a com-
munication pattern is chosen based on [2] [3] (see Table
I). The last three communication patterns listed in Table I
are special patterns designed to reduce the communication
between different teams, as well as the impact on interface
changes. Other benefits and drawbacks of particular patterns
exist but they are out of the scope for the current discussion.
The context map illustrates the determined communication
path between the bounded contexts. For example, when the
communication between teams is not possible, such as when
foreign services are adopted, DDD patterns need to be applied.
For foreign services, the ACL pattern should be applied. In the
last step, as depicted in Figure 2, the relationships (including
the pattern) and the bounded contexts are added to the context
map diagram.

Adding those bounded contexts and communication rela-
tionships is an essential part of the context map. This concludes
the first cycle of the analysis and design phases.

5) Adjustments of the models: After the design phase,
the implementation phase follows. In this phase, the models
are implemented and tested. Afterward, specific parts of the
application are developed. Following the iterative process, new
features are implemented into the next cycle. These features
need to be analyzed and may change the domain model. In
addition, this may lead to the establishment of new bounded
contexts. Thus, the models, including the tactical diagrams,
the context choreography, and the context map, are refined
according to the features and the knowledge crunching process
in the previous steps.

IV. CASE STUDY: CAMPUS MANAGEMENT

In our case study, we illustrate our approach of establishing
a new bounded context and integrating it into an existing
context map. The case study orientates itself on the process as
described in Section III. Over three semesters, we expanded the
campus management system of KIT with microservice-based
applications. The case study represents our recent project in
this field and adds a social media component to the campus
management system.

57Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

A. Project Scope
Our vision is to simply and efficiently support the exchange

of information and facilitate cooperation between students. For
this purpose, we wanted to introduce a profile service in the
campus management system. This profile service should allow
students to create custom profiles to display information about
their studies, like currently visited lectures and future exams.
The purpose of this service is to assist students with their
studies and their search for learning partners. For example,
students can find learning partners with the help of the profile
service when other students share the lectures they attend.

B. Requirement Elicitation
In our process, we began by eliciting the requirements with

BDD and formulating them as features. Fig. 3 presents one of
the main features that enables students to edit their profile.

1. Feature: Providing student profiles
2. As a student
3. I can provide relevant information about myself
4. So that others can see my interests and study information

5. Scenario: Publish profile
6. Given I was never logged in to the ProfileService
7. When I log in to the ProfileService for the first time
8. Then my study account is linked to the ProfileService
9. And I choose which profile information I want to publish

Figure 3. Example of a BDD feature for publishing an user profile

C. Initial Domain Model
Analyzing the features leads to the initial domain model

by deriving domain objects and their relationships. In our
previously defined feature (see Section IV-B), we identified,
the terms “Profile,” “Examination,” and “Student” and added
them to the initial domain model. By repeating this procedure
with all features, the domain model is enriched with the
business logic. The result of the initial tactical diagram is
presented in Fig. 4.

«entity»
Profile

«entity»
CourseOfStudy

«entity»
Examination

«entity»
Student

«value object»
ExaminationDate

«entity»
Lecture

contains

has

contains has

contains

Figure 4. Initial domain model derived from BDD features and other sources

D. Bounded Contexts and Context Choreography
While we analyzed the domain, we also considered

the existing context map of the campus management do-
main. We noticed that the bounded contexts “StudentMan-
agement,” “ExaminationManagement,” “ModuleManagement,”
and “CourseMapping” already offered the required functional-
ity. Only “ProfileManagement” had to be established as a new
bounded context. Therefore, we considered the data exchange

between the bounded contexts and created the context chore-
ography on that basis. The result is illustrated in Fig. 5. The
existing bounded contexts provide the required data as shared
entities. The new bounded context “Profiles” adapts the shared

«bounded context»
ProfileManagement

«bounded context»
ModuleManagement

Student
«shared entity»
Lecture

«bounded context»
ExaminationManagement

«bounded context»
StudentManagement

ExaminationCourseOfStudy

«bounded context»
CourseMapping

«uses» «uses»

«shares» «shares»

«shares»

«uses»

«shares»

«uses»
«shared entity»

«shared entity»

«shared entity»

Figure 5. New bounded context “ProfileManagement” in a context
choreography

entities and delivers the data required from the profile service.
Last, the microservices are choreographed in the BFF of the
intended application, to achieve the required application logic.

E. Integrating in Context Map
After we had established the bounded contexts and the

context choreography, we needed to add the profile manage-
ment context to the context map. Therefore, we determined the
dependencies and communication channels between bounded
contexts based on the context choreography. We found our
development team did not influence any other bounded context.
Thus, we applied the conformist as communication pattern. As
a result, the context map depicted in Figure 6 was enhanced
with the “Profiles” context. Afterward, we started the first

«subdomain»
CourseManagement

«bounded context»
CourseMapping

«bounded context»
ModuleManagement

«subdomain»
CampusSocialMedia

«bounded context»
ProfileManagement

«subdomain»
StudentManagement

«bounded context»
StudentManagement

«subdomain»
ExamManagement

«bounded context»
Examination-
Management

«bounded context»
Grades

«conformist»

«customer/
supplier»

«conformist»

«customer/supplier»

«partnership»

«conformist»

«conformist»

«customer/supplier»

Figure 6. “ProfileManagement” context integrated into context map

implementation cycle.

F. Context Map as Template for a Deployment Map
The resulting context map provides an overview of the

microservices that need to be deployed. Assuming that each
bounded context represents one microservice, we can enhance
the context map with technical information that is needed for

58Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

the deployment in a secure manner. For instance, we can define
which ports listen for incoming or are allowed for outgoing
requests. By following such an approach each microservice is
initially considered in isolation. We enforce this by defining
default policies on the execution environment that need to
be taken into account during deployment. The enhancement
with technical information is transferred into a new diagram
called a deployment map. For the modeling, we use a UML
deployment diagram. In addition to a general overview of the
deployment, it can also be used for an upfront security audit.
We are planning to present the derivation rules in an upcoming
publication.

For testing purpose, we have used a hosted Kubernetes
[13] cluster on a cloud provider. Kubernetes is an open source
system for provisioning and management of container-based
applications and aroused from the collected experience behind
Omega and Borg. First of all, we have defined policies to deny
all ingress and egress traffic to all running Pods by default.
A Pod groups one or more container and can be seen as the
central brick of Kubernetes when deploying applications. Each
bounded context will be represented by a microservice running
in a container (Docker or rkt). Depending on their relation to
each other (see TABLE I), we put them in corresponding Pods.
Next, we have used the ports for incoming and outgoing traffic
to derive the network policies. Finally, we have defined the
services that wrap the Pods and offer a central access point
for interaction. The application shows us that the underlying
context map can be used as a basic scaffolding for deriving
the deployment map but need to be enhanced with technical
information as well as information from the development teams
that realize the microservices. For instance, a persistent storage
is missing in a context map due to its domain orientation but
is needed for the deployment map.

V. RELATED WORK

During our research, we searched for works comparable
to the context map and its purpose. We encountered several
inspiring works regarding different aspects of the context map.
Especially, the focus on the microservice architecture is an
important part of this paper.

A. Microservice Architecture
A microservice should concentrate on the fulfilment of one

task and should be small, so a team of five to seven developers
can be responsible for the microservice’s implementation [4].
A microservice itself is not an application, but rather a software
building block [8]. In microservice architecture, applications
are realized through choreography of these building blocks. A
central aspect of microservice architecture is the autonomy of
the single microservices [14]. Each microservice is developed
and released independently to achieve continuous integration.

B. Approaches for Designing a Microservice Architecture
The objective of microservice architectures is to subdivide

large components into smaller ones to reduce complexity
and create more clarity in the single elements of the system
[14]. In this paper, we described our approach of designing
microservice architecture with a context map from DDD.
However, there are further strategies to identify microservices,
which we considered in this paper.

One possible approach is event storming, as introduced
by Alberto Brandolini in the context of DDD [15]. Event
storming is a workshop-based group technique to quickly
determine the domain of a software program. The group starts
with the workshop by “storming out” all domain events. A
domain event covers every topic of interest to a domain
expert. Afterward, the group adds the commands that cause
these events. Then, the group detects aggregates, which ac-
cept commands and accomplish events, and begins to cluster
them together into bounded contexts. Finally, the relationships
between bounded contexts are considered to create a context
map. Like our approach, this strategy is based on DDD and
results in a context map displaying the bounded contexts.
Instead of a workshop for exploring the domain and defining
domain events, we develop our bounded contexts through an
iterative analysis and design phase. Furthermore, we enhanced
the context map with maintenance aspect for microservice
discovery and dependencies between development teams. The
purpose of the resulting context map from [15] is comparable
to the context choreography. Both focusing on the interactions
between bounded context and identify the transferred domain
knowledge.

Another method for approaching a microservice architec-
ture is described in [16]. First, required system operations
and state variables are identified based on use case speci-
fications of software requirements. System operations define
public operations, which comprise the system’s API, and state
variables contain information that system operations read or
write. The relationships between these systems operations and
state variables are detected and then are visualized as a graph.
The visualization enables developers to build clusters of dense
relationships, which are weakly connected to other clusters.
Each cluster is considered a candidate for a microservice. This
bears a resemblance to our approach because we also begin by
focusing on the software requirements and take visualization
for better understanding the domain.

A further widely used illustration of partitioning monolithic
applications is a scaling cube, which uses a three-dimensional
approach as described in [17]. Here, Y-axis scaling is important
because it splits a monolithic application into a set of services.
Each service implements a set of related functionalities. There
are different ways to decompose the application which differ
from our domain-driven approach. One approach is to use
verb-based decomposition and define services that implement
a single use case. The other possibility is to partition the appli-
cation by nouns and establish services liable for all operations
related to a specific entity. An application might use a com-
bination of verb-based and noun-based decomposition. X-axis
and Z-axis regards the operation of the microservices. The X-
axis describes the horizontal scaling which means cloning and
load balancing the same microservice into multiple instances.
Meanwhile, the Z-axis denotes the degree of data separation.
Both axis are important for microservice architectures and
currently omitted in our context map approach.

C. Software Development Approaches
The development process we apply is based on BDD and

DDD. As a method of agile software development, BDD
should specify a software system by referencing its behavior.
The basic artifact of BDD is the feature, which describes a
functionality of the application. The use of natural language

59Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

and predefined keywords allows the developer to create fea-
tures directly with the customer [18]. During our analysis
phase, we used BDD for requirement elicitation.
In our design phase, we applied DDD based on the features
we defined with BDD. DDD’s main focus is the domain
and the domain’s functionality, rather than technical aspects
[11]. The central design artifact is the domain model, which
represents the target domain. In his book Domain Driven
Design - Tackling Complexity in the Heart of Software, Eric
Evans describes patterns, principles, and activities that support
the process of software development [2]. Although DDD is
not tied to a specific software development process, it is
orientated toward agile software development. In particular,
DDD requires iterative software development and a close
collaboration between developers and domain experts.

D. Application of the Context Map
The goal of a context map, which Evans describes as one

main activity of DDD, is to structure the target domain [2].
For this purpose, the domain is classified into subdomains,
and in those subdomains, the boarders and interfaces of
possible bounded contexts are defined. A bounded context is a
candidate for a microservice, and one team is responsible for
its development and operations [4]. Moreover, the relationships
between bounded contexts are defined in a context map. Both
the technical relationships and the organizational dependencies
between different teams are considered.
A further aspect of the context map involves the maintenance
of the miscroservice architecture. Without managing the ap-
plication (or service) landscape, existing microservices are not
used, even if they provide needed domain knowledge. The
usage of a context map helps concepts like humane registry
or API management products which tries to achieve mainte-
nance goals. Martin Fowler introduced humane registry as a
place, where both developers and users can record information
about a particular service in a wiki [6]. In addition, some
information can be collected automatically, e.g., by evaluating
data from source code control and issue tracking systems.
API management products like “apigee” [7] reach maintenance
by pre-defining API guidelines such as key validation, quota
management, transformation, authorization, and access control.

VI. LIMITATIONS AND CONCLUSION

The concepts we provide in this in paper have some
limitations. These are addressed in the next section. Afterward,
we provide a short conclusion discussing our results.

A. Limitations
Domain-driven design has no special application or ar-

chitectural style in mind. The concepts should be applied
to DDD’s layered architecture but could be applied to dif-
ferent architectural styles. For a better fit while developing
microservice-based applications, we always had the microser-
vice architecture in mind. Therefore, our provided concepts are
only valid when developing a microservice-based application.

The concepts provided by this paper are built from our
experiences which we gathered in various projects. Most of
our projects were in the academic branch, but we also worked
with industrial partners. For the context map, we developed
and proved our concepts over a longer time. The case study
describes our last project. Project members and partners gave

us useful feedback about the concepts when they applied them.
In addition, the feedback also included points we had not
yet addressed, like a modeling language for context mapping.
Nevertheless, evidence of our concepts in large microservice
architectures, such as 50 or more microservices, still lacks. Our
goal is to obtain prove for large microservice architectures in
such projects.

Another limitation to our concepts is we only applied them
in “clean” microservice architectures. However, in the real
world, there are also legacy applications in the application
landscapes of organizations. Typically, a legacy application is
not a microservice-based one; often, it is a monolithic archi-
tecture. In future work, we must determine how to integrate
legacy applications into the context choreography and context
map.

B. Conclusion
During our research, we found many different studies that

consider model-driven approaches for developing microser-
vices. Using these approaches for microservices is common.
In domain-driven design, especially, the approaches focus on
the development itself but omit the design and maintenance
phases. Therefore, we wanted to provide details on the design
and maintenance of a microservice architecture using DDD’s
context map.

The context map has great potential to aid in develop-
ing and maintaining applications and is more useful when
considering a microservice architecture. However, the context
map shares a problem with most DDD concepts: its lacking
placement in software engineering, foundations and concrete
guidelines. Therefore, we first provided placement for the con-
text map. Next, we clarified its foundations with a focus on the
bounded context, the main concept of the context map. After
the foundations were clear, we could develop a systematic
approach for creating the context map. This approach began in
the analysis phase with an initial domain model, separating the
domain knowledge into bounded contexts, stating relationships
between them, and putting the bounded contexts into a context
map. The separation of bounded contexts and their relation-
ships are stated in our new diagram, the “context choreogra-
phy.” This diagram’s purpose is to illustrate necessary bounded
contexts for microservice-based applications.

This paper’s contributions are the first step in making the
use of the context map, and now the context choreography,
more efficient. Nevertheless, we see more opportunities for
research, like a modeling language for the context map. Such
a modeling language could be UML.

ACKNOWLEDGMENT

We want to give special thanks to Chris Irrgang and
Tobias Hülsken for always providing their opinions and useful
feedback on our concepts. Furthermore, we would like to thank
the following development team, which provided the results
in our case study: Alessa Radkohl, Nico Peter, and Stefan
Throner.

REFERENCES

[1] M. Gebhart, P. Giessler, and S. Abeck, “Challenges of the Digital
Transformation in Software Engineering,” ICSEA 2016, p. 149, 2016.

[2] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2004.

60Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

[3] V. Vernon, Ed., Implementing Domain-Driven Design. Addison-
Wesley, 2013.

[4] S. Newman, Building Microservices: Designing Fine-grained Systems.
" O’Reilly Media, Inc.", 2015.

[5] M. E. Conway, “How do Committees Invent,” Datamation, vol. 14,
no. 4, pp. 28–31, 1968.

[6] M. Fowler, “HumaneRegistry,” URL:
https://martinfowler.com/bliki/HumaneRegistry.html [retrieved: 02,
2019].

[7] Google, “apigee, API management,” https://apigee.com/api-
management/ [retrieved: 02, 2019].

[8] B. Hippchen, P. Giessler, R. Steinegger, M. Schneider, and S. Abeck,
“Designing Microservice-Based Applications by Using a Domain-
Driven Design Approach,” in International Journal on Advances in
Software, Vol. 10, No. 3&4, pp. 432–445, 2017.

[9] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering
Using UML, Patterns and Java-(Required). Prentice Hall, 2004.

[10] O. Vogel, I. Arnold, A. Chughtai, and T. Kehrer, Software Architecture:
A Comprehensive Framework and Guide for Practitioners. Springer
Science & Business Media, 2011.

[11] S. Millett, Patterns, Principles and Practices of Domain-Driven Design.
John Wiley & Sons, 2015.

[12] J. F. Smart, BDD in Action: Behavior-Driven Development for the
Whole Software Lifecycle. Manning, 2015.

[13] K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running:
Dive Into the Future of Infrastructure. O’Reilly Media, 2017.

[14] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice
Architecture: Aligning Principles, Practices, and Culture. " O’Reilly
Media, Inc.", 2016.

[15] A. Brandolini, “Introducing Event Storming,”
blog, Ziobrando’s Lair, vol. 18, 2013, URL:
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
[retrieved: 02, 2019].

[16] S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, “Identifying Microser-
vices Using Functional Decomposition,” pp. 50–65, 2018.

[17] N. Dmitry and S.-S. Manfred, “On Micro-Services Architecture,” In-
ternational Journal of Open Information Technologies, vol. 2, no. 9,
2014.

[18] M. Wynne, A. Hellesoy, and S. Tooke, The Cucumber Book: Behaviour-
Driven Development for Testers and Developers. Pragmatic Bookshelf,
2017.

61Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

