
Client-Side XSS Filtering in Firefox

Andreas Vikne and Pål Ellingsen
Department of Computing, Mathematics and Physics

Western Norway University of Applied Sciences
Bergen, Norway

Email: andreas.svardal.vikne@stud.hvl.no, pal.ellingsen@hvl.no

Abstract—One of the most dominant threats against Web appli-
cations is the class of script injection attacks, also called cross-
site scripting. This class of attacks affects the client-side of a
Web application, and is a critical vulnerability that is difficult to
both detect and remediate for website owners, often leading to
insufficient server-side protection, which is why the end-users
need an extra layer of protection at the client-side, utilizing
the defense in depth principle. In this paper, a client-side filter
for Mozilla Firefox is presented, with the goal of protecting
against reflected cross-site scripting attacks while maintaining
high performance. By conducting tests on our implemented
solution, although still in an early phase, we can conclude that
our filter does provide more protection than the original Firefox
browser, at the same time achieving high performance, which with
further development would become an effective option for end-
users of Web applications to protect themselves against reflected
cross-site scripting attacks.

Keywords–cross-site scripting; client-side filtering; Web browser
protection.

I. INTRODUCTION

Cross-site scripting has for long been among the top
threats against Internet security as defined in the Open Web
Application Security Project (OWASP) Top 10 report, which
presents the 10 most common security vulnerabilities found
in Web applications [1]. Even if cross-site scripting has fallen
to 7th place in the OWASP Top 10 2017 report [1], cross-
site scripting remains one of the most serious attack forms.
Another report being published annually for the past 12 years
by WhiteHat Security, WhiteHat Security Application Security
Statistics Report [2], also identifies that cross-site scripting
is among the top two most critical Web vulnerabilities. An
interesting observation made in this report is that even though
cross-site scripting is considered one of the most critical
vulnerabilities, it is not being prioritized for remediation by
websites. The statistics being presented suggest that the vul-
nerabilities receiving most remediation are vulnerabilities that
are easy to fix, which is not the case for cross-site scripting. It
is suggested organizations must adopt a risk-based remediation
process, to prioritize the most critical vulnerabilities first,
like cross-site scripting. A report [3] published by Bugcrowd
Inc., a Web-based platform that uses crowdsourced security
for companies to identify vulnerabilities in their applications,
analyze data from their platform, including information about
the most common vulnerabilities found. The data in this report
is based on all Bugcrowd data from January 2013 through
March 2017, which contains of over 96 000 submissions,
where the most reported vulnerability is cross-site scripting
with a submission rate of 25%. They also have data on the
most critical vulnerabilities by type, where cross-site scripting

is considered the second most critical, which is the same
result found in WhiteHat Security’s report. These are some
of the most recent numbers regarding cross-site scripting, but
there have been published numerous of studies done on XSS
vulnerabilities and attacks. One study [4] from 2014 conducted
a systematic literature review were they reviewed a total of
115 studies related to cross-site-scripting. They concluded
that XSS still remains a big problem for Web applications,
despite all the proposed research and solutions provided so
far. As seen from the recent numbers from OWASP, WhiteHat
and BugCrowd, this conclusion still holds true, that XSS
vulnerabilities remains to be at large. With the observation
about how prevalent this type of attack is, and the fact that it
is not prioritized nor easy for websites to fix and remediate it,
it becomes clear that the user needs some means of protecting
themselves at the client-side, since it is mainly the end-users
of vulnerable Web applications that are affected by potential
attacks.

A. Cross-Site Scripting Attacks

Cross-site scripting vulnerabilities are caused by insuffi-
cient validation/sanitation of user submitted data that is used
and returned by the website in the response, which could com-
promise the user of the site. An attacker could potentially use
this vulnerability to steal users’ sensitive information, hijack
user sessions or rewrite whole website contents displaying fake
login forms. The end-users of websites are the main victims
of these attacks, but the actual websites are also affected, as
the attacks might negatively impact the reputation of the site,
which again could lead to fewer visitors. There exist three
main types of cross-site scripting attacks, which is one of the
reasons why remediation for such vulnerabilities is not an easy
task, as each of the different types operate differently and thus
require small differences in how to properly handle and secure
them. All three types rely on insecure handling of JavaScript
code, and are called Reflected, Stored and Document Oject
Model (DOM) Based Cross-Site Scripting (XSS) attacks [5]:

Stored XSS occurs when user input attack code is stored on
a publicly accessible area of a website, typically in a comment
section, message board post, visitor log or in chat rooms.
When a user visits a page where such an attack is stored,
the browser will retrieve the data and render it, which in turn
will execute the stored XSS attack in the browser’s context.
This type of XSS is very difficult to protect against on the
client-side, as the client have no means to identify whether the
JavaScript code coming from a website is legitimate, or if it
is malicious JavaScript code injected by an attacker. From the
client’s perspective, all JavaScript code coming from a website
is legitimate and should be rendered accordingly.

24Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

Reflected XSS occurs when the user input data is sent
in a request to a website, which immediately returns data in
the response to the browser, without the site first making the
data safe. Reflected XSS attacks are performed by entering
data into search fields, creating an error message or by other
means where the response use data from the request. In a
reflected XSS attack, the JavaScript attack code is not stored
on the website itself. For this attack to work, a user needs to
visit a specially crafted URL, containing the exploit code, for
the attack to be successfully done, executing the attack in the
user’s browser. A Reflected XSS attack thus contains a request
to and response from a website, where the code inserted in
the request is being used in the response. Client-side filters
can, therefore, compare the contents of the request with the
response, to identify a potential attack. The proposed filter in
this paper utilizes this technique, which means it focuses on
primarily stopping Reflected XSS attacks.

DOM Based XSS is a type of XSS attack where the
malicious data that exploits a flaw never leaves the browser.
This means that from an attacker inputs malicious data to a
website until the code is executed in the browser, the malicious
data is not part of neither the request or the response of the
website, but rather part of the DOM of the Web-page. This
is because DOM based attacks rely solely on flaws using
JavaScript code.

B. Counter-Measures for XSS Attacks

Counter-measures for XSS attacks can be achieved in sev-
eral ways. The first step would be to properly identify and map
the attack surface of the Web application, before implementing
the desired option for protection, ideally a combination of
several of the following methods:

Validation/Sanitization of all untrusted data input to a
Web application makes sure that malicious input is either
being rejected or manipulated into being safe for usage in the
output. It might be difficult to implement this properly as it
can be challenging to know what a malicious input looks like,
considering all the possible attack vectors that use advanced
obscuration techniques.

Output encoding is the most effective remediation for
cross-site scripting attacks when done properly. It is important
to implement the output encoding according to the context
it is being used in, because different encodings are needed
depending if HTML or JavaScript code is being used.

Content Security Policy (CSP) is another common way
for preventing cross-site scripting attacks, which is a declar-
ative policy that let Web application owners create rules for
what sources the client is expecting the application to load
resources from. As stated in the World Wide Web Consortium
(W3C) Recommendation [6], CSP is not meant as a first line
of defense mechanism, but rather an element in a defense-in-
depth strategy.

Disabling JavaScript is also a possibility that would
totally stop XSS, since these attacks rely on a JavaScript
environment for execution. This solution can be effective for
simple static websites, but most dynamic websites require
some sort of JavaScript support for basic functionality, which
means this remediation would not be suited as an overall
solution.

In the following Section II, different filter techniques are
being discussed before presenting a client-side filter implemen-
tation for the Mozilla Firefox browser in Section II-A. Then,
in Section III, the presented filter is analyzed, and finally, we
end the article in Section IV with the conclusion and further
work.

II. CLIENT-SIDE XSS FILTERING

When a website is vulnerable to cross-site scripting attacks,
an attacker could exploit this vulnerability and possibly steal
sensitive information or hijack sessions of the users accessing
the exploited website. Filters try to stop these attacks by
utilizing a set of rules to detect potential malicious input
data, before either blocking it or sanitizing it for safe usage.
There exists many XSS filter implementations, with varying
focus on the different areas such as security, performance, low
false-positives and usability. All of these areas are in focus
of most filters, but it is not common for a filter to be best
in all categories, as they do not necessarily compensate each
other. There is, however, one clear way to differentiate between
filters, by dividing them into two groups, server-side and client-
side filters:

Server-side filters are implemented on the server side of a
website, which means it can only detect input data that are sent
via the server. The DOM based XSS attack, as discussed in
Section I, is an attack only relying on client-side code, which
means a server-side filter would not be able to detect the attack
at all, which implies it would not be able to stop the attack.
This is one of the reasons why only relying on server-side
protection is not enough, and why we need client-side filters.

Client-side filters are located in the client, which typically
would be the Internet browser used to access the website.
Client-side filtering would be able to detect DOM based
XSS attacks, providing the extra protection server-side filters
are missing. However, even though client-side filters could
possibly detect all types of XSS attacks, it should not be
used alone, without server-side filtering. By placing the filter
on the client-side, it means that the user might be able to
modify it to circumvent the filtering. It is, therefore, strongly
recommended to utilize both server- and client-side filtering,
to be able to detect all attack types and achieving defense in
depth protection.

Filtering techniques: There exist several implementations
for cross-site scripting filters both on the client-side and server-
side of Web applications, which use many different techniques,
but where most also contain some limitations [7]. This paper
focuses on client-side filtering, where some of the most used
techniques will be discussed here. A popular technique is to
use regular expressions, which has been proved to contain
several flaws in its design [8]. A popular client-side XSS filter
using regular expressions is NoScript [9] for Mozilla Firefox,
first released in 2005 and actively updated by the maker
Giorgio Maone. The filter is matching HTML code for injected
JavaScript in the request by utilizing regular expression rules
for simulating the HTML parser, which would potentially lead
to false-positives, as it is better to over-approximate these rules
than to let an attack bypass the filter [8]. Another method
for client-side XSS filtering is string-matching, used by the
filter in the Google Chrome browser, XSS Auditor [8]. Auditor

25Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

works by matching the HTML code for injected JavaScript
code for the request with the response from the website after it
is been parsed by the browser’s HTML parser, see [8] for more
details. This means that Auditor does not need to approximate
any of the HTML parser rules, since the parsing is already
done when the matching algorithm starts. This is achieved by
the location of Auditor, which is between the HTML parser
and the JavaScript engine, which makes it possible to block
scripts after parsing, by blocking them from being sent to the
JavaScript engine for execution.

Regular expressions and string matching is among the
techniques being implemented in the top five most used
Web browsers for desktop, which according to the online
measurements from StatCounter [10] are Chrome, Firefox,
Internet Explorer/Edge and Safari. Both Chrome and Safari use
the mentioned string matching based XSS Auditor filter. XSS
Auditor was first build into the browser engine WebKit, which
Safari uses, before also being integrated into a fork of WebKit
called Blink, which Chrome uses. Internet Explorer and Edge
both have a filter implemented based on the regular expression
technique, first introduced in Internet Explorer 8 [11]. Firefox
however, being the second most used Web browser, does not
have a built-in filter, but rather relies solely on CSP support,
which again relies on websites to properly define the CSP
rules. By not having a client-side filter the defense in depth
principle is also lost, where a potential filter would provide an
extra layer of security for the end-users of the application. In
this paper we present an implementation for a built-in client-
side filter for this extra layer of security.

A. Implementation of Client-Side Filter in Firefox

The client-side XSS filter for Firefox proposed in this paper
is based on the Google Chrome browser’s XSS Auditor, but
with some design modifications. Due to various differences
in Chrome’s and Firefox’s internal architecture, the proposed
filter in this paper is tightly coupled to Firefox and is, hence,
not meant to be a copy of XSS Auditor. The basis of the filter
is to first get the input data to the website, before checking
if any of this data is considered dangerous, in which case a
matching comparison is done for all the scripts before they
are sent to the browser for execution. Both filters are doing
the filtering after the HTML parser, but the proposed Firefox
filter is doing the actual matching later in the rendering process
than Auditor. Whereas Auditor is doing the matching before
the JavaScript engine, by examining all the DOM tree nodes,
the proposed Firefox filter is not doing the matching before
it is actually prepared to be sent to the JavaScript engine,
in Firefox’s internal ScriptLoader.cpp class, as seen in
Figure 1 below. This means that the Firefox filter is only doing
matching on the scripts sent to Firefox’s internal script handler,
and not the whole DOM tree.

The implementation of the proposed filter is focusing on
the most common way to inject and execute JavaScript on a
webpage, by using the HTML script tag. The rules for filtering
are based on different ways of making JavaScript code from
script tags execute in the browser. OWASP’s guidelines XSS
Filter Evasion Cheat Sheet [12], which contains many attack
vectors trying to circumvent typical XSS filtering techniques,
provided a lot of examples for the creation of this paper’s
filtering rules.

The filter is implemented as its own class, which could
then be used in parts of Firefox requiring filtering protection.
This class contains several methods for detecting potential
attacks, as inline scripts and external scripts needs to be
processed differently. When using the filter, it start by fetching
all the input data to the website in form of GET- and POST-
parameters, before checking each of these parameters if they
contain any potential malicious code that can be used for
executing a cross-site scripting attack. In this case, the filter
checks for opening HTML script tag, <script. If there are
any occurrences of this tag in any of the input parameters,
the filter will continue its examination of the input. There are
now two cases in which the input data will be considered and
marked as dangerous. Either if the script tag is non-empty
or it contains a non-empty attribute src. If any of these
two conditions are being fulfilled, the filter marks the input
parameter as dangerous before a matching algorithm is started
to try and find the input data in any of the JavaScript code
sent to Firefox for execution. This is done by comparing the
actual string representation of the parameter with the string
representation of all JavaScript code entered through Firefox.
If this matching algorithm does find a match, the whole script
that contains the input data will be blocked from execution in
the browser, stopping a potential attack. If no match is found,
the webpage and all its contents will load and function without
any intervention from the filter.

B. Mozilla Firefox Architecture

For implementing this filter into Firefox, it is important
to know how the source code is built up and how the scripts
are being evaluated. Mozilla Firefox source code has a layered
architecture where the code is organized as separate modular
components. Firefox is multi-threaded and follows the rules of
object-oriented programming, where access to internal data is
achieved through public interfaces of the classes [13]. One
of the primary requirements of Firefox is that it must be
entirely cross-platform, which is why the browser consists
of several components focusing on this area, like making
sure the operation system dependent logic is hidden from the
application logic. The main components can be divided up
into the user interface XML User Interface Language (XUL)
[14] and the browser and the rendering engine Gecko [15].
XUL is Mozilla’s own language for building portable user
interfaces, which is an XML language. Gecko is Mozilla’s
browser engine built to support many different Internet stan-
dards, including HTML 5, CSS 3, DOM, XML, JavaScript
and others. Gecko contains many different components for
document parsing (HTML and XML), layout engine, style
system (CSS), JavaScript engine called SpiderMonkey, image
library, networking, security, as well as other components. The
implementation of the proposed filter is located in Gecko,
right before JavaScript code from a site is being sent to
SpiderMonkey for processing. Both inline and external scripts
from HTML script tags are being loaded into the class
ScriptLoader.cpp, where they are passed on to the
JavaScript engine for compiling and execution. Because all
scripts from script tags pass through this class, this is the
main area where the filter will be used. The flow of such
scripts through the application is shown in Figure 1. This
makes sure that all scripts are caught and can be effectively
stopped from executing by simply not sending them to the

26Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

Server HTML parser

nsHtml5Parser.cpp

All <script>’s X enter here
For every script X:
Call XSSFilter with script X

Execute JavaScript
Block script X
X could currently be a
whole .js file

Is parameter
contained
inside any
script(X)?

Loop through all GET params
Loop through all POST params
Check if params could be harmful

Response
<script> tag

content

Send script X to XSSFilter Found
paramParam not found

Possible dangerous parameter

Safe param

ScriptLoader.cpp

XSSFilter.cpp

Firefox

Figure 1: Information flow in application

JavaScript engine at all. Even though all script content from
script tags enter through the class ScriptLoader.cpp, not
all input that should be interpreted as JavaScript’s gets sent
here. Gecko handles scripts differently based on where they
originate from. HTML event handlers are being processed in
another class EventListenerManager.cpp, before sent
to the JavaScript engine. This means that for the proposed
filter to work on all possible scripts from a website, it would
be necessary to also use the filter in this location.

III. ANALYSIS

A main challenge during the implementation was to prop-
erly understand the application architecture. Depending on
how JavaScript code is inserted into a website, Firefox is
processing the input in different modules in the application,
which proved challenging to identify. The proposed filter for
Firefox presented in this paper is as described in the previous
section only focusing on the HTML script tag, which means
all the script processing could be done in the same place in
the Firefox source. However, by neglecting other means of
injecting JavaScript code into a website, the filter is not capable
of detecting all possible XSS attacks. Some other common
HTML tags used for cross-site scripting attacks are tags like
’svg’, ’object’ and the usage of event handlers. It is however
very possible to locate where in the Firefox source JavaScript
code from other HTML tags is being processed, and to add
filtering capabilities to those areas in a similar fashion done
with the ’script’ tag. A similar limitation is the fact that the
filter only considers GET- and POST- parameters for the input.
It is possible to use other input entry points like cookies,
local storage, or HTTP header fields for executing cross-site
scripting attacks. Neglecting support for these alternative attack
vectors is also a limitation in XSS Auditor [16], but since they
are valid attack vectors, they should at least be considered for
improving the proposed filter in this paper.

A. Attack mitigation efficiency

When testing the implemented filter in practice,
Firefox was able to successfully detect and block
simple cross-site scripting attacks using the script

tag for the injection point. Simple attack vectors like
<script>alert(xss)</script> and <script
src=http://xss.rocks/xss.js></script> both
were successfully blocked by the filter when injected into
a sample vulnerable website. Other more advanced attack
vectors from the OWASP XSS Filter Evasion Cheat Sheet
[12], like embedding spaces or tabs within the injected input,
neglecting to include closing tags or substituting space with a
non-alpha character were also tested, which were successfully
detected and blocked by the filter. However, there is a case
where the filter only was able to block parts of the injected
input using only the script tags: when the input contains more
than one occurrence of the script tag. An example would be
the input
<script>alert(1)</script>
<script>alert(2)</script>.
In this case, the first script tag sequence containing the
alert(1) would be blocked, at which point the filter would
stop examination and hence the alert(2) from the second
script tag would be executed, which could effectively be used
to launch a successful cross-site scripting attack. This is due
to the filter being limited to only detect and block the first
script tag found.

As seen with the implemented filter, there is a lack of
filtering rules and conditions, which makes it quite ineffective
in its current form. Even with a case of only using the script
tag, the filter was unable to detect all injected attacks. Not
to mention all the other ways attack vectors using different
HTML tags an attacker could use. By studying the OWASP’s
XSS Filter Evasion Cheat Sheet, where a lot of these different
attack vectors are shown, with the purpose of evading common
filters, the cheat sheet is effectively showing that for every
attack vector, it is possible to properly detect and block the
attack by using the correct rules and conditions. This also
applies to the proposed filter in this paper, that it is possible
to implement all these rules and their variations to be able to
filter away most cross-site scripting attacks.

Another property of the implemented filter is how it
handles a detected injected script, and how that affects its
functionality. When the filter detects that a script from the

27Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

input is found in any script loaded into the browser engine
for processing, the whole script loaded for processing is being
stopped before it is executed. The rest of the scripts on the
website would still be loaded and executed as usual. There
is however also another approach that is common for XSS
filters, which is to block loading the entire website where a
potential XSS attack was discovered. There are advantages
and disadvantages to each of these methods. An advantage
to only block specific parts of a website is that the user is still
able to browse and view the other parts of the website not
affected by the injection, making it a better user experience
with less disruptions in case of an attack. In cases of false-
positives, where there are no real attacks, this technique is
more forgiving by not blocking all the website’s content. A
disadvantage of only blocking parts of the webpage is that in
the case of a detected attack, it is not unlikely that an attacker
would probably try to use different advanced attack vectors,
which could trick the filter like the case described above, using
double script tags. Therefore in regards of security, it is best to
block the whole webpage when a potential injection attack is
detected. By utilizing blocking of the whole website instead of
only the parts where the script was detected would effectively
allow the implemented filter described to successfully block
the attack with double script tags, making the filter much more
secure by just this single modification to its design. There
are however negative effects by blocking the whole webpage,
which is the user experience would greatly be affected by
a lot of discovered attacks, which would disrupt the user
from normal browsing activities and where the user ultimately
maybe choose to disable the filter altogether. This is especially
the case with false-positives, where there actually is no attack,
but the filter still blocks the entire page from loading.

There is no simple answer to which of these techniques to
use, but there are ways that websites themselves can choose
what to do. By setting the HTTP header X-XSS-Protection,
webpages could choose to either allow, sanitize or block de-
tected cross-site scripting attacks [17]. This header is currently
supported by other major Internet browser, but not Firefox,
as Firefox does not supply built-in XSS filtering. By adding
support for this header in Firefox and the implementation of
the proposed filter in this paper, it would be possible also
for Firefox to let the webpages themselves choose how to
deal with detected cross-site scripting attacks, either allowing
everything, only blocking assumed affected content, or block
the whole webpage from loading.

An additional limitation of the implemented filter is the
support for different input encodings. When receiving input
into a webpage, the input might be encoded with different
encodings, like hex encoding, which is not currently supported
by the filter. This is however easily fixed by first adding a check
for what encoding is used, if any, before properly decoding the
input. This is a very important feature that needs to be taken
into consideration, as using different character encodings is a
common way to obscure cross-site scripting attacks.

B. Performance

The performance of the implemented filter is an important
factor for its usefulness. We followed Mozilla’s own methodol-
ogy for comparing page load times across browsers [18], using
popular websites to load in the browser, repeated several times,

while measuring the loading time for each page. We chose 10
of the most popular news websites from Alexa [19], knowing
that news sites typically contain a lot of scripts for ads and
tracking. To make sure the modified browser actually ran the
code for our implemented filter, we used the search function on
each of the websites and tested with two different parameters,
one safe and one unsafe, which would activate the filtering. We
also wanted to conduct a performance test for actual vulnerable
Web applications. From a website containing a list of Web
applications vulnerable to XSS attacks [20], even though it was
an old archive, we collected four different websites all vulner-
able to XSS attacks, and then injecting them with the sim-
ple script <script>console.log(1)</script>. This
simple script injection was chosen because it makes it easy
to compare the load time between the modified Firefox and
original Firefox, as this simple script would not alter the
rendering of the page itself, but still be a valid cross-site
scripting attack. As we also injected the 10 chosen news site
with a script input, we did not expect any big different in
performance between these sites and the acutual vulnerable
sites, as the filter would run the same matching algorithm on
all sites. As expected, even though the filter from this paper
successfully detected and blocked this injection on all these
vulnerable websites, there were no overhead compared to the
news sites. For the full performance test, a total of 1040 page
loads were performed for each browser, including both the 10
news sites and the four vulnerable sites. This resulted in an
average difference of only 32.1 ms for each page load, which
equals a performance overhead for the modified browser of
about 0.7 % compared to the average loading times for the
original Firefox browser, which is an insignificant overhead. As
there are several limitations with the current implementation of
the filter, a more complete version addressing these limitations
would probably incur a higher overhead, but at a starting point
at 0.7 % it is reason to believe the added overhead would not
be of any significance. This was however a test with several
limitations, as there might have been too few total page loads
for each browser, the visitor traffic to the tested websites might
be different and there might have been small interferences in
the Internet connection when performing the test. Although
there these factors might have affected the results, it is worth
noting the the two browsers were tested in the same time span,
which should not incur too much variation. After taking the
average of the 1040 page loads for each browser, the achieved
results do highly indicate that the modified browser do not
incur any significant performance overhead.

IV. CONCLUSION AND FUTURE WORK

Information flow vulnerabilities can occur when applica-
tions handle untrusted data. When this happens, users of the
application might be negatively affected, without any means
of protecting themselves. By utilizing client-side filtering,
like proposed in this paper, the user do have a means to
protect themselves from malicious attackers. By default, the
Firefox browser have no such protection mechanism built
in, which this paper has a proposal for adding. As seen in
the analysis in Section III, there are still many important
additions to be done before the filter is ready for everyday
usage, but the filter do work for basic cases, which already
provides more protection than the default Firefox browser,
proving a solution efficient enough to work, achieving high

28Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

performance with almost no overhead. When the rest of the
presented additions is implemented, this filter would work as
an important extra protection for the end-users of vulnerable
Web applications, efficiently protecting against reflected cross-
site scripting attacks.

A reasonable next step would be to further expand the
filtering capabilities of the filter. This would be achieved
by implementing the proposed improvements from Section
III, covering all attack vectors from all possible injection
points, adding more rules and conditions for the filtering,
have proper decoding of input and adding support for the
X-XSS-Protection header. After making these improvements,
it is also necessary to do further testing, for both loading
speeds and focus on security, with specially crafted attack
vectors, and to make sure the filter is as robust and secure
as desired, making it an effective way for protecting the
end-users of websites from cross-site scripting attacks on the
client-side.

REFERENCES

[1] OWASP Foundation, “Owasp top 10 - 2017 the ten most critical
web application security risks,” accessed: 2017-12-27. [Online].
Available: https://www.owasp.org/images/7/72/OWASP Top 10-2017
(en).pdf.pdf

[2] WhiteHat Security, Inc., “2017 whitehat security application
security statistics report,” 2017, accessed: 2017-12-21. [On-
line]. Available: https://info.whitehatsec.com/rs/675-YBI-674/images/
WHS 2017 Application Security Report FINAL.pdf

[3] Bugcrowd Inc., “2017 state of bug bounty report,” 2017, accessed:
2018-01-09. [Online]. Available: https://pages.bugcrowd.com/hubfs/
Bugcrowd-2017-State-of-Bug-Bounty-Report.pdf

[4] Hydara, Isatou and Sultan, Abu Bakar Md and Zulzalil, Hazura and
Admodisastro, Novia, “Current state of research on cross-site script-
ing (XSS)–A systematic literature review,” Information and Software
Technology, vol. 58, 2015, pp. 170–186.

[5] OWASP Foundation, “Types of cross-site scripting,” March 2017,
accessed: 2018-03-05. [Online]. Available: https://www.owasp.org/
index.php/Types of Cross-Site Scripting

[6] The World Wide Web Consortium, W3C, “Content security policy
level 2,” December 2016, accessed: 2018-01-11. [Online]. Available:
https://www.w3.org/TR/2016/REC-CSP2-20161215/

[7] S. Gupta and B. B. Gupta, “Cross-Site Scripting (XSS) attacks and
defense mechanisms: classification and state-of-the-art,” International
Journal of System Assurance Engineering and Management, vol. 8,
no. 1, 2017, pp. 512–530.

[8] D. Bates, A. Barth, and C. Jackson, “Regular expressions considered
harmful in client-side xss filters,” in Proceedings of the 19th interna-
tional conference on World wide web. ACM, 2010, pp. 91–100.

[9] G. Maone, “NoScript - JavaScript/Java/Flash blocker for a safer
Firefox experience! - features - InformAction,” accessed: 2017-12-28.
[Online]. Available: https://noscript.net/features

[10] StatCounter, “Desktop browser market share worldwide dec 2016 -
dec 2017,” December 2017, accessed: 2018-01-11. [Online]. Available:
http://gs.statcounter.com/browser-market-share/desktop/worldwide

[11] D. Ross, “Ie8 security part iv: The xss filter,” July 2008, accessed:
2018-01-11. [Online]. Available: https://blogs.msdn.microsoft.com/ie/
2008/07/02/ie8-security-part-iv-the-xss-filter/

[12] OWASP Foundation, “Xss filter evasion cheat sheet,” October 2017,
accessed: 2017-12-27. [Online]. Available: https://www.owasp.org/
index.php/XSS Filter Evasion Cheat Sheet

[13] Mozilla Developer Network, “An introduction to hacking mozilla,”
Mars 2017, accessed: 2017-12-28. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Mozilla/An introduction to hacking Mozilla

[14] ——, “Introduction,” September 2014, accessed: 2017-12-28. [Online].
Available: https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL/
Tutorial/Introduction

[15] ——, “Gecko faq,” September 2015, accessed: 2017-12-28. [Online].
Available: https://developer.mozilla.org/en-US/docs/Gecko/FAQ

[16] Stock, Ben and Lekies, Sebastian and Mueller, Tobias and Spiegel,
Patrick and Johns, Martin, “Precise Client-side Protection against DOM-
based Cross-Site Scripting.” in USENIX Security Symposium, 2014, pp.
655–670.

[17] Mozilla Developer Network, “X-xss-protection,” October 2017,
accessed: 2017-12-28. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

[18] D. Strohmeier, P. Dolanjski, “Comparing browser page load time:
An introduction to methodology,” November 2017, accessed:
2018-01-15. [Online]. Available: https://hacks.mozilla.org/2017/11/
comparing-browser-page-load-time-an-introduction-to-methodology/

[19] Alexa Internet, Inc., “The top 500 sites on the web,” January
2018, accessed: 2018-01-15. [Online]. Available: https://www.alexa.
com/topsites

[20] “Xss archive,” accessed: 2018-03-05. [Online]. Available: http:
//www.xssed.com/archive

29Copyright (c) IARIA, 2018. ISBN: 978-1-61208-632-3

SOFTENG 2018 : The Fourth International Conference on Advances and Trends in Software Engineering

