
On the Effect of Minimum Support and Maximum Gap for Code Clone Detection

－ An Approach Using Apriori-based Algorithm －

Yoshihisa Udagawa
Computer Science Department, Faculty of Engineering,

Tokyo Polytechnic University
Atsugi-city, Kanagawa, Japan

e-mail: udagawa@cs.t-kougei.ac.jp

Abstract— Software clones are introduced to source code by
copying and slightly modifying code fragments for reuse. Thus,
detection of code clones requires a partial match of code
fragments. The essential idea of the proposed approach is a
combination of a partial string match using the longest-
common-subsequence (LCS) and an apriori-based mining for
finding frequent sequences. The novelty of our approach
includes the maximal frequent sequences to find the most
compact representation of sequential patterns. After outlining
the proposed methods, the paper reports on the results of a
case study using Java SDK 1.8.0_101 awt graphics package
with highlighting the effect analysis on thresholds of the
proposed algorithm, i.e., a minimum support and a maximum
gap. The results demonstrate the proposed algorithm can
detect all possible code clones in the sense that code clones are
similar code segments that occur at least twice in source code
under consideration.

Keywords—Code clone; Maximal frequent sequence; Longest
common subsequence(LCS) algorithm; Java source code.

I. INTRODUCTION

Two fragments of source code are called software clones
if they are identical or similar to each other. Software clones
are very common in large software because they can
significantly reduce programming effort and shorten
programming time. However, many researchers in clone
code detection point out that software clones introduce
difficulties in software maintenance and cause bug
propagation. For example, if there are many copy-pasted
code fragments in software source code and a bug is found in
one code clone, the bug has to be detected within a piece of
software thoroughly and fixed consistently.

Different types of software clones exist depending on the
degree of similarity between two code fragments [1][2].
Type 1 is an exact copy without modification, with the
exception of layout and comments. Type 2 is a slightly
different copy typically due to renaming of variables or
constants. Type 3 is a copy with further modifications
typically due to adding, removing, or changing code units of
at least one code unit.

Research on Type 3 clones has been conducted in recent
decades because there are substantially more significant
clones of Type 3 than there are of Types 1 or 2 in software
for industrial applications. Our approach also focuses on
finding Type 3 clones. To find such type of clone, the
following problems must be addressed.

(1) How to handle gaps in a context of similarity.
There are many algorithms that are tailored to handle
gaps in similarity measure such as sequence alignment,
dynamic pattern matching, tree-based matching and
graph-based matching techniques [2].

(2) How to find frequently occurring patterns.
The detection of frequently occurring patterns in a set of
sequence data has been conducted intensively, as
reported in sequential pattern mining literature [3]-[8].
There are several studies [9]-[12] using the apriori-
based algorithm to discover software clones in source
code.

Code clones are defined as a set of syntactically and/or
semantically similar fragments of source code [1][2]. Since
source code is represented by a sequence of statements,
finding clone code is a problem of finding similar sequences
that occur at least twice. Apriori-based sequential pattern
mining algorithms are worth studying because they are
designed to detect a set of frequently occurring sequences.
The algorithms take a positive integer threshold set by a user
called “minimum support” or “minSup” for short. The
minSup controls the level of frequency [3][8].

In [12], Udagawa shows that repeated structures in a
method adversely affect the performance especially when a
minSup is two or three. This paper pushes forward the study
using a large scale software, i.e., Java SDK 1.8.0_101 awt,
and analyzes to what extent a minSup affects the number of
retrieved sequences and time performance. For this purpose,
a proposed apriori-based sequential mining algorithm is
properly revised to deal with the repeated structures in a
method.

The contributions of this paper are as follows:
(I) the design and implementation of a code transformation

parser that extracts code matching statements, including
control statements and typed method calls;

(II) the design and implementation of a sequential data
mining algorithm that maintains performance at a practical
level until a threshold minSup reaches down to two;

(III) the evaluation of the proposed algorithm using Java
SDK 1.8.0_101 awt with respect to minSup of two to ten
and gap size of zero to three. In addition to time
performance, the number of retrieved sequences is
analyzed for each length of sequences showing that the
number of repeated structures in a method accounts for a
large part on numbers especially in the case when minSup
is two.

66Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

The remainder of the paper is organized as follows. After
presenting some basic definitions and terminologies on
frequent sequence mining technique in Section II, we
overview the proposed approach in Section III. Section IV
describes the proposed algorithm for discovering clone
candidates using an apriori-based maximal frequent
sequence mining technique. Section V presents the
experimental results using Java SDK 1.8.0_101 awt package.
Section VI presents some of the most related work. Section
VII concludes the paper with our plans for future work.

II. BASIC DEFINITIONS

Defnition 1 (sequence and sequence database). Let I = { i1,
i2,…, ih} be a set of items (symbols). A sequence sx is an
ordered list of items sx= xj1→ xj2→…→xjn such that xjk ⊆ I
(1 ≤ jk ≤ h). A sequence database SDB is a list of sequences
SDB = <s1, s2,…, sp> having sequence identifiers (SIDs) 1,
2,…,p.

Denition 2 (sequence containment). A sequence sa = a1→

a2→…→an is said to be contained in a sequence sb = b1→b2

→…→bm (n ≤ m) iff there exists the strictly increasing
sequence of integers q taken from [1, n], 1 ≤ q[1] < q[2] <
… < q[n] ≤ m such that a1=bq[1], a2=bq[2],…, an=bq[n]
(denoted as sa ⊑ sb).

Definition 3 (gapped sequence containment). Let maxGap
be a threshold set by the user. A sequence sa = a1→a2→…→
an is said to be contained in a sequence sb = b1→b2→…→bm
with respect to maxGap iff we have a1=bq[1], a2=bq[2],…,
an=bq[n] and q[j] – q[j – 1] – 1 ≤ maxGap for all 2 ≤ j ≤ n.

Denition 4 (prefx and postfix with respect to maxGap). A
sequence sa = a1→a2→…→an is called a prefix of a sequence
sb = b1→b2→…→bm iff sa is a gapped sequence containment
of maxGap. A subsequence s'b= bn+1→…→bm is called
postfix of sb with respect to prefix sa donoted as sb= sa→s'b.

Denition 5 (support with respect to maxGap). Given a
maxGap, the support of a sequence sb in a sequence
database SDB with respect to maxGap is defined as the
number of sequences s ∊ SDB such that sb ⊑ s with respect
to maxGap and is denoted by supmaxGap(sb).

Denition 6 (multi occurrence mode and single
occurrence mode). Given a maxGap and a sequence sb = b1

→b2→…→bm with a prefix sa, the sequence sb has the
support of supmaxGap(sb) that is greater than zero.

When the prefix sa is contained in a postfix of sb, i.e., s'b=
bn+1→…→bm, the support is calculated as supmaxGap(sb) + 1.

This calculation is recursively applied for each postfix of
sb to count the support number. The support number
recursively calculated is named the support number in multi
occurrence mode in this paper. This mode is critical when
dealing with long sequences such as nucleotide DNA
sequences [4] [5] and periodically repeated patterns over
time [6]. On the other hand, the support number without the

calculation of the postfix of sb is named the support number
in single occurrence mode. The algorithm proposed in the
paper supports both of the modes.

Denition 7 (frequent sequences with maxGap). Let
maxGap and minSup be a threshold set by the user. A
sequence sb is called a frequent sequences with respect to
maxGap iff supmaxGap(sb) ≤ minSup. The problem of
sequence mining on a sequence database SDB is to discover
all frequent sequences for given integers maxGap and
minSup.

Definition 8 (closed frequent sequence). A closed frequent
sequence is defined to be a frequent sequence for which
there exists no super sequence that has the same support
count as the original sequence [5][8].

Definition 9 (maximal frequent sequence). A maximal
frequent sequence is defined to be a frequent sequence for
which none of its immediate super sequences are frequent
[7][8].

The closed frequent sequence is widely used when a
system is designed to generate an association rule [3][8] that
is inferred from a support number of a frequent sequence.
On the other hand, the maximal frequent sequence is
valuable, because it provides the most compact
representation of frequent sequences [7][13].

III. OVERVIEW OF PROPOSED APPROACH

Fig. 1 depicts an overview of the proposed approach [12].
According to the terminology in the survey [1], our approach
can be summarized in three steps, i.e., transformation, match
detection and formatting, and aggregation.

Figure 1. Overview of the proposed approach.

A. Extraction of code matching statements

Under the assumption that method calls and control
statements characterize a program, the proposed parser
extracts them in a Java program. Generally, the instance
method is preceded by a variable whose type refers to a class

67Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

object to which the method belongs. The proposed parser
traces a type declaration of a variable and translates a
variable identifier to its data type or class identifier as
follows. The translation allows us to deal with Type 2 clone.

<variable>.<method identifier>
is translated into

 <data type>.<method identifier> or
 <class identifier>.<method identifier>.
The parser extracts control statements with various levels

of nesting. A block is represented by the "{" and "}" symbols.
Thus, the number of "{" symbols indicates the number of
nesting levels. The following Java keywords for 15 control
statements are processed by the proposed parser.

if, else if, else, switch, while, do, for, break, continue,
return, throw, synchronized, try, catch, finally

We selected the Java SDK 1.8.0_101 awt package as our
target of the study. The number of total lines is 166,016,
which means the awt package is a kind of large scale
software in industry.

Fig. 2 shows an example of the extracted structure of the
getFlavorsForNatives(String[] natives) method in the
SystemFlavorMap.java file of the java.awt.datatransfer
package. The three numbers preceded by the # symbol are
the number of comments, and blank and code lines,
respectively.

In this study, we deal only with Java. However, a clever
modification of the parser allows us to apply the proposed
approach to other languages such as C/C++ and Visual Basic.

Figure 2. Example of the extracted structure.

B. Encoding statements in three 32-decimal digits

The conventional longest-common-subsequence (LCS)
algorithm takes two given strings as input and returns values
depending on the number of matching characters of the
strings. Due to fact that the length of statements in program
code differs, the conventional LCS algorithm does not work
effectively. In other words, for short statements, such as if
and try statements, the LCS algorithm returns small LCS
values for matching. For long statements, such as

synchronized statements or a long method identifier, the LCS
algorithm returns large LCS values.

 We have developed an encoder that converts a statement
to three 32-decimal digits (to cope with 32,768 identifiers),
which results in a fair base for a similarity metric in clone
detection. Fig. 3 shows the encoded statements that
correspond to the code shown in Fig. 2. Fig. 4 shows a part
of the mapping table between three 32-decimal digits and a
code matching statement extracted from the original source
files.

Figure 3. Encoded statements corresponding to Fig. 2.

Figure 4. Mapping table between three 32-decimal digits and a code
 matching statement used to encode statements in Fig. 3.

C. Apriori-based mining algorithm for finding frequent
sequences with gaps

We have developed a mining algorithm to find frequent
sequences based on the apriori principle [3][8], i.e, if an
itemset is frequent, then all of its subsets must be frequent.

Frequent sequence mining is essentially different from
itemset mining because a subsequence can repeat not only in
different sequences but also within each sequence. For
example, given two sequences C→C→A and B→C→A→B
→A→C→A, there are three occurrences of the subsequence
C→A. The repetitions within a sequence [4]-[6] are critical
when dealing with long sequences such as protein sequences,
stock exchange rates, customer purchase histories.

Note that the proposed algorithm is implemented to run in
two modes, i.e., multi occurrence mode to find all
subsequences included in a given sequence, and single
occurrence mode to find a subsequence in a given sequence
even if there exists several subsequences.

As described in Section V, the multi occurrence mode
detects so many code matching that it has an adverse effect
on performance especially when a minSup is two and a
maxGap is one to three.

The LCS algorithm is also tailored to match three 32-
decimal digits as a unit. That algorithm can match two given
sequences even if there is a “gap.” Given two sequences of
matching strings S1 and S2, let |lcs| be the length of their
longest common subsequence, and let |common (S1, S2)| be
the common length of S1 and S2 from a back trace
algorithm. The “gap size” gs is defined as gs = |common (S1,
S2)| – |lcs|.

SystemFlavorMap::getFlavorsForNatives (String[] natives)
→001→004→0VH→0VQ→003→044→04E→0VI→0VR
→003→009→003

68Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

D. Mining maximal frequent sequences

Frequent sequence mining tends to result in a very large
number of sequential patterns, making it difficult for users
to analyze the results. A closed and maximal frequent
sequences are two representations for alleviating this
drawback. The closed frequent sequence needs to be used in
case a system under consideration is designed to deal with
an association rule [3][8] that plays an important role for
knowledge discovery. The maximal frequent sequence is
such a sequence that are frequent in a sequence database and
that is not contained in any other longer frequent sequence.
It is a subset of the closed frequent sequence. It is
representative in the sense that all sequential patterns can be
derived from it [7]. Because we are just interested in finding
a set of frequent sequences that are representative of code
clone, we developed an algorithm to discover the maximal
frequent sequences.

IV. PROPOSED FREQUENT SEQUENCE MINING

We have developed two algorithms for detecting software
clones with gaps. The first is for mining frequent sequences,
and the second is for extracting the maximal frequent
sequences from a set of frequent sequences.

A. Proposed Frequent Sequence Mining Algorithm

The proposed approach is based on frequent sequence
mining. A subsequence is considered frequent when it occurs
no less than a user-specified minimum support threshold (i.e.,
minSup) in a sequence database. Note that a subsequence is
not necessarily contiguous in an original sequence.

We assume that a sequence is “a list of items,” whereas
several algorithms for sequential pattern mining [4]-[7] deal
with a sequence that consists of “a list of sets of items.” Our
assumption is rational because we focus on detecting code
clones that consist of “a list of statements.” In addition, the
assumption simplifies the implementation of the proposed
algorithm, which makes it possible to achieve high
performance as described in Section V.

The proposed frequent sequence mining algorithm
comprises two methods, i.e., GProbe (Fig. 5) and

Figure 5. Frequent sequence detection of the proposed algorithm.

Retrieve_Cand (Fig. 6). It follows the key idea behind
apriori principle; if a sequence S in a sequence database
appears N times, so does every subsequence R of S at least.
The algorithm takes two arguments, minSup and maxGap
(the allowable maximal number of gaps).

Figure 6. Candidate sequences retrieval for the next repetition.

The variable k indicates the count of the repetition (line 2,
Fig. 5). LinkedList < String > Sk is initialized to hold 15
control statements. The Retrieve_Cand method (line 5, Fig.
5) discovers a set of sequences of length k+1 from a
sequence database that matches statement sequences in Sk.
The while loop (lines 9–17) finds frequent sequences and
sequence IDs in a sequence database. Lines 12–14 maintain
the frequent sequences. Note that the proposed algorithm
handles gapped sequences. Thus, both a frequent sequence
and its “gap synonyms” are prepared for the next repetition.
Here, “gap synonyms” means a set of sequences that match a
given subsequence under a given gap constraint.

Briefly, the Retrieve_Cand() method in Fig. 6 works as
follows. HashMap <String, Integer> Ck holds a sequence
(String) and its frequency (Integer). First, Ck is cleared (line
2, Fig. 6). The three for loops examine all possible matches
between an element in Sk and sequences in a sequence
database. The longest common subsequence algorithm is
tailored to compute the match count and gap count (line 6,
Fig. 6). The if statement (line 7, Fig. 6) screens a sequence
based on the match count and gap count. Lines 8–10
maintain the frequency of sequences and its “gap
synonyms.”

B. Extracting Frequent Sequences

In our approach, we assume a program structure is
represented as a sequence of statements preceded by a class-
method ID. Each statement is encoded to three 32-decimal
digits so that the LCS algorithm works correctly, regardless
of the length of the original program statement.

The proposed algorithm is illustrated for the given sample
sequence database in Fig. 7. MTHD# is an abbreviated
notation for a class-method ID.

Figure 7. Example sequence database.

MTHD1→005→003
MTHD2→005→00A→003→003
MTHD3→005→003→00F→006→005→003
MTHD4→005→006→003→005→00C

69Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Fig. 8 shows the result of the frequent sequences in the
multi occurrence mode for a gap of 0 and minSup of 50%,
which is equivalent to a minSup count of 2. “005” is a
frequent sequence with a minSup count of 6 because “005”
occurs once in the first and second sequences and twice in
the third and fourth sequences. The proposed algorithm
maintains an ID-List, which indicates the positions where a
frequent sequence appears in a sequence database. The ID-
List for “005” is 1|2|3+3|4+4.

Similarly, 005→003→ is a frequent sequence with a
minSup count of 3, i.e., the ID-List for 005→003→ is 1|3+3.

Figure 8. Result of the frequent sequences (gap, 0; minSup, 50%).

Fig. 9 shows the result of the frequent sequences for a gap
of 1 and minSup of 50%. “005” is a frequent sequence with a
minSup count of 6, which is the same in the case of a gap of
0.

Similarly, 005→003→ is a frequent sequence with a
minSup count of 5. In addition to the consecutive sequence
005 → 003 → , the proposed algorithm detects gapped
sequences. In the case of 005→003→, the algorithm detects
005→00A→003→ in the second sequence and 005→006→
003→ in the fourth sequence. Thus, the ID-List for 005→
003→ is 1|2|3+3|4.

Figure 9. Result of the frequent sequences (gap, 1; minSup, 50%).

Fig. 10 shows the result of the frequent sequences for a
gap of 2 and minSup of 50%. In addition to 005→ and 005
→003→, 005→006→ is detected as a frequent sequence
because 005→003→00F→006→ in the third sequence
matches 005→006→ with a gap of 2, and 005→006→ in the
fourth sequence with a gap of 0. Thus, the ID-List for 005→
006→ is 3|4.

Figure 10. Result of the frequent sequences (gap, 2; minSup, 50%).

C. Extracting Maximal Frequent Sequences

A frequent sequence is a maximal frequent sequence and
no super sequence of it is a frequent sequence. In addition, it
is representative because it can be used to recover all
frequent sequences. Several algorithms for finding maximal
frequent sequences and/or itemsets employ sophisticated
search and pruning techniques to reduce the number of
sequence and/or itemset candidates during the mining
process.

However, we wish to measure the effects of a maximal
frequent sequence; therefore, the proposed algorithm first
extracts a set of frequent sequences and then detects a set of
maximal frequent sequences.

Screening maximal frequent sequences from frequent
sequences with a gap of zero is fairly simple. Given a set of
frequent sequences Fs, the set of maximal frequent
sequences MaxFs is defined by the following formula:

MaxFs = {x∈Fs ｜ ∀y∈Fs (x ⊄ y) ∧ (|x| + 1 = |y|)}.

x ⊄ y says that a sequence x is not included in a sequence y.
Since a gap equals zero, the length of the immediate super
sequence is |x| + 1.

The proposed algorithm is described using the sample
sequence database in Fig. 11.

Figure 11. Example frequent sequences.

Fig. 12 shows a set of maximal frequent sequences. The
frequent sequence 001→ is not a maximal frequent
sequence because there is a frequent sequence 001→005→
that includes a sequence 001 and whose length is two. For
the same reason, 003→, 004→, 005→ are not maximal
frequent sequences. In this manner, we see that the sequence
004→003→ is not a maximal frequent sequence. However,
001→005→ is a maximal frequent sequence because there
are no super-sequences that exactly include 001→005→.
004→003→005→ and 004→001→004→003→ are
maximal frequent sequences.

Figure 12. Result of maximal frequent sequences (gap, 0).

The definition of the maximal frequent sequence is simply
extended to those dealing with gaps, as described in [12].

V. EXPERIMENTAL RESULTS

This section shows statistical evaluation of experimental
results using Java SDK 1.8.0_101 awt package. The number
of total source code lines is 166,016. The extracted
statement sequences comprise 5,108 lines which are roughly
corresponding to the number of methods in the package.
The number of extracted unique IDs is 3,175. We performed
the experiments using the following environment:

005→ N=6（1|2|3+3|4+4）
005→003→ N=3（1|3+3）

005→ N=6（1|2|3+3|4+4）
005→003→ N=5（1|2|3+3|4）

005→ N=6（1|2|3+3|4+4）
005→003→ N=5（1|2|3+3|4）
005→006→ N=2（3|4）

001→
003→
004→
005→
001→005→
004→003→
004→003→005→
004→001→004→003→

001→005→
004→003→005→
004→001→004→003→

70Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

CPU: Intel Core i7-6700 (3.40 GHz)
Main memory: 8 GB
OS: Windows 10 HOME 64 Bit
Programming Language: Java 1.8.0_101.

A. Numbers of Retrieved Frequent Sequences

Fig. 13 compares the number of retrieved frequent
sequences with respect to maxGap (0 to 3) and minSup (2 to
10) with the number of retrieved frequent itemsets for the
apriori algorithm [14]. The proposed algorithm for a
maxGap of zero is comparable to the apriori algorithm for a
minSups of six to ten. The apriori algorithm fails to generate
frequent itemsets for a minSup of two, due to it never
completes the process in three hours.

As expected, the number of retrieved frequent sequences
increases as maxGap increases and minSup decreases. The
proposed algorithm can find frequent sequences that occur at
least twice in the sequence database, which is necessary for
finding all possible code clones. One of the important
findings of the experiment is that the effect of repetitions
within a sequence becomes conspicuous when a minSup
equals two. A detailed analysis of the retrieved frequent
sequences is discussed in Subsection “C. Sequence Length
Analysis.”

Figure 13. Numbers of retrieved frequent sequences (gap size, 0 and 1-3;

minSup, 2-10) and frequent itemsets for apriori algorithm.

Fig. 14 shows the ratio of the number of maximal
frequent sequences to the number of frequent sequences. In
most of the cases, the ratio decreases as minSup values
decrease. This can be explained by the fact that decreasing
minSup values probably has a negative effect on the
relevance of frequent sequences. Thus, redundant frequent
sequences are likely mined as minSup values decrease,
resulting in the low ratio of the number of maximal frequent
sequences to the number of frequent sequences.

The ratios are generally smaller in the multi occurrence
mode than in the single occurrence mode. It can be a fair
explanation that the single occurrence mode suppresses
extraction of frequent subsequences caused by repetitions
within a sequence. The results show that the gap size affects
the ratio up to approximately 5.55% for a maxGap of two.

Figure 14. Ratio of the number of maximal frequent sequences to the

number of frequent sequences (gap size, 0 and 1-3; minSup, 2-10).

B. Time Analysis

Fig. 15 shows the elapsed time in milliseconds for
retrieving frequent sequences for a minSup of two to ten.
The proposed algorithm for a maxGap of zero is comparable
to the apriori algorithm for a minSup of five to ten as for
performance.

The proposed algorithm can retrieve frequent sequences
fairly efficiently. For example, it takes 816,534 milliseconds
to identify 27,435 frequent sequences for a maxGap of one
and a minSup of two in the single occurrence mode. Note
that elapsed time increases as maxGap increases. This
tendency is obvious for a minSup ranging from two through
ten. As for a minSup of two in the multi occurrence mode,
the elapsed time jumps up from 2.36 (for a maxGap of
three) to 4.65 (for a maxGap of one) times of those for a
minSup of three in the multi occurrence mode. A reason for
performance degradation is analyzed in the next subsection.

Figure 15. Elapsed time (milliseconds) for retrieving frequent sequences
(gap size, 0-3; minSup, 2-10) and frequent itemsets for apriori algorithm.

C. Sequence Length Analysis

Fig. 16 shows the number of retrieved sequences for each
length of sequences in the multi occurrence mode and a
maxGap of three with a minSup ranging from two to five.
The maximum length of the retrieved sequence is 244. Note

71Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

that Fig. 16 omits the results on 31 to 244 of the length of
sequence. The number of retrieved sequences reaches peaks
around a sequence length of eight to ten for each minSup of
two to five. This suggests that code clones of length eight to
ten occur most frequently.

The sequence length of 244 is extracted from the
GetLayoutInfo() method in GridBagLayout.java file of
java.awt package, consisting of 569 source lines including
comments and blank lines. The sequence is detected as a
frequent sequence, because the sequence includes “if{ * }”
statements 244 times caused by repetitions within the
sequence of GetLayoutInfo() method. It is clear that the
detection is not preferable for finding code clone detection.

Figure 16. Number of retrieved sequences for each length in multi

occurrence mode and maxGap of three.

Fig. 17 shows the number of retrieved sequences for each
length of sequence in the single occurrence mode and a
maxGap of three with a minSup ranging from two to five.

Figure 17. Number of retrieved sequences for each length in single

occurrence mode and maxGap of three.

The maximum length of the retrieved sequence is 53 in the
single occurrence mode. The sequence of length 53 is
extracted from the getDataElements() method in Banded
SampleModel.java file of java.awt.image package and the
getDataElements() method in ComponentSample Model.java
file. The two methods are the same except for minor
syntactic structure, e.g., if <single statement> and if {<single
statement>}, which suggests that they are code clone. Fig. 18
shows the encoded sequence of getDataElements() method
in BandedSampleModel.java file.

Figure 18. Encoded sequence of getDataElements() method
in BandedSampleModel.java file.

VI. RELATED WORK

Zhu and Wu [4] propose an apriori-like algorithm to mine
a set of gap constrained sequential patterns which can be
found in a long sequences such as stock exchange rates,
DNA and protein sequences. Ding et al. [5] discuss an
algorithm to mine repetitive gapped subsequence and apply
the proposed algorithm to program execution traces. Kiran et
al. [6] propose a model to mine periodic-frequent patterns
that occurs at regular intervals or gaps. Fournier-Viger et al.
[7] discuss the importance of the maximal sequential pattern
mining and propose an efficient algorithm to find the
maximal patterns.

Wahler et al. [9] propose a method to detect clones of the
Types 1 and 2 which are represented as an abstract syntax
tree (AST) in the Extensible Markup Language (XML) by
applying a frequent itemset mining technique. Their tool uses
the apriori algorithm to identify features as frequent itemsets
in large amounts of software program statements. They
devise an efficient link structure and a hash table for
achieving efficiency for practical applications.

Li et al. propose a tool named CP-Miner [10] that uses the
closed frequent patterns mining technique to detect frequent
subsequences including statements with gaps. CP-Miner
shows that a frequent subsequence mining technique can
avert redundant comparisons, which leads to improved time
performance.

El-Matarawy et al. [11] propose a clone detection
technique based on sequential pattern mining. Their method
treats source code lines as transactions and statements as
items. Their algorithm is applied to discover frequent
itemsets in the source code that exceed a given frequency
threshold, i.e., minSup. Finally, their method finds the
maximum frequent sequential patterns [7][8] of code clone
sequences. Their method is fairly similar to ours except for a
code transformation parser and systematic handling of gaps
of similar sequences based on an LCS algorithm.

Accurate detection of near-miss intentional clones
(NICAD) [15] is a text-based code clone detection technique.
NICAD uses a parser that extracts functions and performs
pretty-printing to standardize code format and the longest-
common-subsequence (LCS) algorithm [16] to compare
potential clones with gaps. Unlike an apriori-based approach,
NICAD compares each potential clone with all of the others.
Regarding LCS, Iliopoulos and Rahman [17] introduce the
idea of gap constraint in LCS to address the problem of
extracting multiple sequence alignment in DNA sequences.

BandedSampleModel::getDataElements(int x:int y:Object
obj:DataBuffer data) →
001→004→003→24A→24B→007→008→004→003→006→
003→04E→24C→003→00M→008→008→004→003→006→
003→04E→24D→003→00M→008→004→003→006→003→
04E→24E→003→00M→008→004→003→006→003→04E→
24F→003→00M→008→004→003→006→003→04E→24G→

003→00M→003→009→003

72Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Murakami et al. [18] propose a token-based method. The
method detects gapped software clones using a well-known
local sequence-alignment algorithm, i.e., the Smith-
Waterman algorithm [19]. They discuss a sophisticated
backtracking algorithm tailored for code clone detection.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an attempt to identify
Type 3 code clones. Our approach consists of four steps, i.e.,
extraction of code matching statements, encoding statements
in 32-decimal digits, detecting frequent sequences with gaps,
and mining the maximal frequent sequences. The paper
mainly deals with the last two steps.

Through the experiments using Java SDK 1.8.0_101 awt
package source code, the proposed algorithm works out
successfully for finding clones with respect to a maxGap of
zero through three and a minSup of two through ten.

Because a minSup of two poses heavy process loads for
the proposed algorithm, we analyze the effect of the repeated
subsequences in a method and conclude that the repeated
subsequences have adverse effects on both performance and
the quality of retrieved code clone especially lower minSup,
i.e., minSup of two or three.

So long as code clone is syntactically defined as similar
code segments that occur at least twice, the proposed
algorithm achieves 100% recall and 100% precision due to
the nature of the aprior-based data mining with a minSup of
two [11]. However, we do not believe that the situation is so
simple that syntactically defined recall and precision
evaluate the quality of mined code clones. Actually, we find
a large number of mined code sequences that mainly consist
of control statements. Many of these sequences are not clone
from programmer's point of view. We are still only halfway
to detecting code clones for industry use especially regarding
the quality of mined code clones.

Future work will include the development of functions for
clustering and ranking mined code clones for the
programmer's sake, and the improvement of the
transformation for extracting code matching statements.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous
reviewers for their invaluable feedback. This research is
supported by the JSPS KAKENHI under grant number
16K00161.

REFERENCES
[1] C. K. Roy and J. R. Cordy “A survey on software clone

detection research,” Queen's Technical Report:541 Queen's
Uni-versity at Kingston, Ontario, Canada, Sep. 2007, pp.1-
115.

[2] A. Sheneamer and J. Kalita. “A survey of software clone
detection techniques,” International Journal of Computer
Applications, Vol.137, Issue 10, Mar. 2016, pp.1-21.

[3] R. Agrawal, T. Imielinski, and A. Swami “Mining association
rules between sets of items in large databases,” Proc. ACM

SIGMOD International Conference on Management of Data,
June 1993, pp.207-216.

[4] X. Zhu, and X. Wu “Mining complex patterns across
sequences with gap requirements,” Proc. 20th International
Joint Conference on Artifical Intelligence(IJCAI'07), Jan.
2007, pp.2934-2940.

[5] B. Ding, D. Lo, J. Han,and S-C. Khoo “Efficient Mining of
Closed Repetitive Gapped Subsequences from a Sequence
Database,” Proc. 25th IEEE International Conference on Data
Engineering (ICDE 2009), March 2009, pp.1024-1035.

[6] R. U. Kiran, M. Kitsuregawa, and P. K. Reddy “Efficient
discovery of periodic-frequent patterns in very large
databases,” Journal of Systems and Software, Vol.112, Issue
C, Feb. 2016, pp.110-121.

[7] P. Fournier-Viger, C-W. Wu, A. Gomariz, and V. S-M. Tseng
“VMSP: Efficient Vertical Mining of Maximal Sequential
Patterns,” Proc. 27th Canadian Conference on Artificial
Intelligence (AI 2014), May 2014, pp.83-94.

[8] P-N. Tan, M. Steinbach, and V. Kumar “Introduction to Data
Mining,” Addison-Wesley, March 2006.

[9] V. Wahler, D. Seipel, J. Wolff, and G. Fischer “Clone
detection in source code by frequent itemset techniques,” Proc.
IEEE International Workshop on Source Code Analysis and
Manipulation, Oct. 2004, pp.128-135.

[10] Z. Li, S. Lu, S. Myagmar, and Y. Zhou “CP-Miner: A tool for
finding copy-paste and related bugs in operating system
code,” Proc. 6th Symposium on Operating System Design and
Implementation, Dec, 2004, pp.289-302.

[11] A. El-Matarawy, M. El-Ramly, and R. Bahgat “Code clone
detection using sequential pattern mining,” International
Journal of Computer Applications, Vol.127, Issue 2, Oct.
2015, pp.10-18.

[12] Y. Udagawa, “Maximal Frequent Sequence Mining for
Finding Software Clones,” Proc. 18th International
Conference on Information Integration and Web-based
Applications & Services (iiWAS 2016), Nov. 2016, pp.28-35.

[13] R. Verma, “Compact Representation of Frequent Itemset,”
http://www.hypertextbookshop.com/dataminingbook/public_v
ersion/contents/chapters/chapter002/section004/blue/page001.
html, 2009.

[14] M. Monperrus, N. Magnus, and S. Yibin “Java
implementation of the Apriori algorithm for mining frequent
itemsets,” GitHub, Inc., https://gist.github.com/monperrus/
7157717, 2010.

[15] C. K. Roy and J. R. Cordy “NICAD: Accurate detection of
near-miss intentional clons using flexible pretty-printing and
code normalization,” Proc. 16th IEEE International
Conference on Program Comprehension, June 2008, pp.172-
181.

[16] J. Hunt, W. and Szymanski, T. G. “A fast algorithm for
computing longest common subsequences,” Comm. ACM,
Vol.20, Issue.5, May 1977, pp.350-353.

[17] C. S. Iliopoulos and M. S. Rahman “Algorithms for
computing variants of the longest common subsequence
problem,” Theoretical Computer Science Vol.395, Issues 2–3,
May 2008, pp.255–267.

[18] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S.Kusumoto
“Gapped code detection with lightweight source code
analysis,” Proc. IEEE 21st International Conference on
Program Comprehension (ICPC), May 2013, pp.93-102.

[19] “Smith–Waterman algorithm,” https://en.wikipedia.org/wiki
/Smith%E2%80%93Waterman_algorithm, Aug. 2016.

73Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

