
Executable Testing Based on an Agnostic-Platform Modeling Language

Concepción Sanz1, Alejandro Salas1, Miguel de Miguel1,2, Alejandro Alonso1,2, Juan Antonio de la Puente1,2
1Center for Open Middleware, Universidad Politécnica de Madrid (UPM)

Campus de Montegancedo, Pozuelo de Alarcón - Madrid, Spain
2DIT, Universidad Politécnica de Madrid (UPM), Madrid, Spain

Email: {concepcion.sanz, alejandro.salas, miguelangel.demiguel, alejandro.alonso}@centeropenmiddleware.com,
jpuente@dit.upm.es

Abstract—Among the different approaches to deal with testing,
model-based techniques come up as promising solutions due to
their independence from testing platforms, their quick adaptation
to changes during the modeling process, and the use of abstract
concepts, which make testers focus only on the business. However,
most of the solutions are proprietary or based on the complexity
of the Unified Modeling Language (UML) models. We propose
a testing framework based on a non-UML test-centred modeling
language which is agnostic about any execution platform. The
framework also allows to increase the expressivity of the test
models by designing execution flows, which connect to elements
existing in test models. Apart from design tests, the proposed
framework deals with execution, including the necessary mecha-
nisms to transform models, on demand and in an automatic way,
into executable tests for a variety of testing platforms. In order
to show the flexibility of the proposed approach, we introduce as
case study two testing platforms which manage tests in different
ways.

Index Terms—Model-based testing; Reuse.

I. INTRODUCTION

Research on testing activities has provided along time a
wide variety of approaches to deal with more and more de-
manding needs in terms of quality assurance, time-to-market,
devices, test automation, productivity and maintenance, among
others. Among the existing approaches, it can be found mech-
anisms which were initially considered for purposes different
from testing, as it happens with the approximations based on
models. Models were only considered for documentation at
first, later were included in software development mechanisms
and now can be found in testing frameworks as promising
alternatives for increasing the automation and the abstraction
level of the testing activities.

Most of the non-model-based testing frameworks offer
solutions which are highly coupled to the specific platform
where tests will be finally executed. This makes necessary
having a deep technical knowledge about the target platform,
preventing non-expert people to take advantage of the testing
frameworks. The absence of models also makes difficult the
migration of tests between different testing frameworks. A
significant effort in time and work is necessary in order to
adapt the entire collection of tests to a new framework. Cur-
rently, as software applications increase their complexity and
extend the list of devices and platforms where being executed,
the variety of frameworks that can be involved during the
testing process also increases. Such diversity leads to more
complex testing environments and requires specialized testers
to manage them. Some examples of testing frameworks are

QuickTest Professional(QTP-HP)[1], JUnit [2] and Selenium
[3].

In contrast, approaches based on models offer an intermedi-
ate layer between the tester and the final testing platform, al-
lowing users to design tests based on abstract concepts, which
are independent from any platform. Once tests are described as
models, they are translated into executable tests for a specific
platform. This is the approach followed by commercial frame-
works, such as Conformiq [4], which translates models into
JUnit, Selenium or HP Functional Testing [5], among others.
The level of abstraction existing in a model-based approach
provides a faster mechanism to design tests, since testers only
need to focus on the business domain instead of technology.
Besides, the conversion from test models to executable tests
is usually made in an automatic way, being less error-prone
than applying non-modelled approaches directly.

Regarding model-based approaches, most of commercial
and open source solutions are usually based on UML, a
general-purpose language whose extension and lack of a
precise semantic has given rise to the development of more
specific languages for testing. Among these, it can be men-
tioned the specific UML Testing Profile (U2TP) [6], or domain
specific languages (DSLs) for easing the use of UML diagrams
for testing purposes [7]. These alternatives are still dependent
on UML and usually need to be combined with action lan-
guages in order to provide behaviour and execution features.
Regarding functionality, commercial model-based frameworks
offer integrated proprietary solutions where users can design
models; execute them in their own platform; or allow the
transformation of the models into tests for specific testing
languages. However, it is difficult to find all these features
in open solutions, so users usually need to integrate and
adapt different tools by themselves in order to get similar
functionalities.

Consequently, two are the goals to achieve in this work.
Firstly, developing an open framework to enable the design
of platform-independent test models using abstract concepts
ease to manage by non-expert testers and non-UML based.
Secondly, enabling the integration of the independent test
models with different testing platforms, so users do not require
deep knowledge of those platforms to get executable tests.

There has been developed an Eclipse-based open-source
testing framework which allows the design of platform-
independent test models and their integration with different
execution platforms by means of customized transformations.

110Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Thus, one test model can be used in different testing en-
vironments just applying, in an automatic way, the right
transformation. These transformations enable users to make
use of different testing environments simultaneously without
being experts on all of them, and ease the migration among
platforms. The only expert needed is the one that builds the
transformation rules. Among the testing environments involved
in the proposed framework, JUnit and Selenium are the ones
selected as open-source tools.

The proposed framework is based on a non-UML based
modeling language which manages high-level concepts related
to testing. These concepts isolate test models from specific
testing frameworks and allow the reuse of test elements among
models, easing the design of tests to non-experts testers. The
framework not only allows to design tests but also establishes
platform-independent execution flows using the elements ex-
isting in the test models.

The rest of the paper is structured as follows. Sections I
and II motivates this work and provides an overview of the
state-of-the-art respectively. Section III gives an overview of
the testing framework and introduces the way execution flows
are set. Section IV explains how the proposed framework
connects models to different testing platforms giving rise to
test executions. Finally, Section V summarizes the main results
of this work and sketches the lines for future work. From the
development point of view, a fully functional prototype of the
entire proposed framework has been implemented, providing
details about it along the different sections of the paper.

II. RELATED WORK

The need for producing reliable applications and ensuring
the functionality in a scenario of short time-to-market, tight
budgets and complex applications, puts pressure on the testing
process that the companies carry out. Research on this topic is
increasing, giving rise to a large variety of testing approaches,
and thus, to a large variety of platforms for testing. This variety
requires testers with a large experience and a deep knowledge
in each platform in order to take advantage of all the existing
features. This expertise prevents other potential users, such as
developers, from making or at least sketching their own tests.

Among the most promising approaches applied to testing,
we can find solutions based on models. According to this
paradigm, test cases can be designed using concepts with
low or none technical knowledge. Through these concepts, the
functional behaviour of the system under test can be described,
giving rise to test models, which can be later transformed into
tests which are executable in a specific testing platform. The
functional behaviour can be described using concepts based on
formal specifications (e.g., B, Z) [8][9], diagrams of any kind -
state charts, use case, sequence diagrams [10], (extended) finite
state machines [11][12] -, or graphs, among others. Among
all, one of the most popular ways to describe tests is based
on diagrams, being the UML modeling language [13] the
most extended language to design them. UML is a general-
purpose modeling language and owns a wide and ambiguous
semantic. For this reason, and due to its extended use in

testing activities, it was developed a specific UML profile,
UML 2.0 Testing Profile (U2TP) [6], which has been used in
different research [14][15][16]. However, the ambiguity and
complexity still continue in U2TP, motivating the development
of alternative DSLs, although still linked to UML [7]. Once
models are described, independently of the applied modeling
language, its execution is not straightaway due to the absence
of an execution engine in the framework used for the design
process. Even when an engine is included, models need to be
manually adapted or customized in order to be executed.

The proposal described in this work differs from the existing
approaches based on models in the fact that the design of test
models is completely independent of UML or any other of its
associated DSLs. The models proposed are based on a different
modeling language, which involves abstract test concepts in
order to increase the number of potential test designers. This
is possible since models are independent from any testing
platform, so no technical knowledge is required from users.
The resulting models can be also automatically derived to
executable tests for specific testing platforms, once again
without requiring technical knowledge from the final user. In
summary, the management of abstract concepts, the absence
of technical knowledge, and the simplicity and reduced size
of the modeling language, compared to UML, can help to
reduce the learning curve and increase the potential users of
the framework.

Considering model-based testing tools which include the
design and execution of tests, these tools are mostly propri-
etary, being difficult to adapt or extend, and being limited to
manage specific testing platforms for execution. On the other
hand, open source testing solutions are usually incomplete
in terms of functionality. In this proposal, the entire testing
process, based on the design, derivation and execution of tests,
is integrated in an open source platform. This platform can be
easily extended to manage a large variety of testing platforms
according to user’s needs.

III. TESTING FRAMEWORK: INTRODUCING EXECUTION
FLOWS

The testing framework proposed in this work is outlined in
this section, focusing on the way test models can be enhanced
by adding execution flows which allow testers to select, from
test models, the elements which will be executed on a platform
and the flow that these elements will follow during execution.

The aim of the proposed testing framework is to isolate
testers from specific platforms as much as possible, allowing
them to focus on the design of the tests by means of mod-
eling techniques. The framework will provide the appropriate
mechanisms to create test models, and transform them into
executable tests with the minimum interaction of the user.
Figure 1 summarizes the testing framework developed.

A. Framework overview

The core of the framework relies on the testing modeling
language described in [17], which covers abstract concepts re-
lated mainly to structural and basic behavioural aspects neces-

111Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Fig. 1. The proposed framework allows users to focus the effort on the
design of the test, being agnostic about any testing platform.

sary to design tests in a platform-independent way. An impor-
tant part of the language is related to the reuse of test elements,
structural and behavioural, in order to reduce design time
avoiding repetitions and minimizing mistakes or omissions
due to those repetitions. This reuse is carried out by pointing
directly to the wanted elements (structural or behavioural).
A specific GMF (Graphical Modeling Framework)[18] editor,
Test Model Editor, encapsulates the language and allows to
build the test models graphically. The way the test elements
are graphically represented is related to their definition in
the defined modeling language. Thus, structural elements are
components of different complexity that can be nested in order
to provide the test plan with a hierarchy of test elements. An
example of structural elements being graphically represented
in the editor can be seen in Figure 2. Behavioural elements
are inside structural elements and represent basic execution
units which will have a direct translation in each target testing
platform. Sequences of these elements provide the behaviour
of the tests.

Once models are created and the user wants to get exe-
cutable tests, it is time for transforming the model. The user
selects the target platform for executing the tests and the
assistant for that platform starts working. This assistant ap-
plies a collection of transformation rules, which automatically
translate the initial agnostic model into tests which can be
executed in the chosen platform. The independent nature of
the test models and the existence of specific transformation
assistants let the same model be executed in several testing
platform, saving time at test design.

Finally, the test models designed can be stored in a regular
repository in order to be accessible from the testing framework
and from outside. Inside the framework, the models can be
accessed from the editor and the transformation assistants for
modifications or transformations respectively. From outside,
the repository could be accessed by Application Lifecycle
Management (ALM) tools for supervision activities. These
ALM tools, such as HP-ALM[19] or IBM Rational Team
Concert[20], using suitable automatic interpreters, could get

Fig. 2. Example of the developed Test Model Editor building a test model.

the required information directly from test models to fill
in their own structures. In this way, migrations from one
management tool to another would require less effort since test
models are independent from those tools, remaining unaltered
during the entire migration process.

This initial framework has been extended with execution
models in order to provide more expressivity to the test
models. These models are also platform-independent and allow
to select which elements from a specific test model will
be executed and establish their execution flow. The built of
such models is enabled by an Execution Model Editor, while
the transformation of these models into executable flows is
performed by specific assistants, similarly to the way tests
models are managed.

In both cases, the assistants bridge the gap between the
agnostic models and the chosen target testing platform, and
hide the complexity of the platform. They are also responsible
for retrieving relevant information during the execution of the
test elements and provide appropriate reports to users.

B. Execution modeling language

The test modeling language used in this framework allows
to design hierarchies of structural test elements as a way to
organize the test model. However, the language does not pro-
vide a way to select which of the test elements will be finally
executed in the target platform and the order of that execution.
Thus, the user will have to rely on the features included
in the target testing platform related to the specification of
execution order, if any. This is an important feature since all
the executable tests do not need to be executed at once and it
is usually interesting to have different execution flows during
the testing process. Besides, all the testing platforms do not
provide the option to create these flows.

The functionality of the proposed framework has been
extended to include the design of execution flows. The aim is
to provide more expressivity of test models without increasing
the complexity of the test modeling language. For this reason,
a new language has been introduced in the framework, the
Business Process Model and Notation (BPMN) [21], giving
rise to execution models which are still independent from any
target testing platform.

112Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

BPMN is a standard defined by Object Management Group
(OMG) and originally developed to provide a modeling nota-
tion comprehensible for all business users, from purely busi-
ness people to analysts and technical developers. Nowadays,
BPMN is widely used in academia and industry due to the
large set of concepts managed, independent from any specific
domain, and its flexibility to be adapted to other scenarios
different from business. This flexibility is due to the fact that
BPMN enables the extension of its specification in order to
include custom concepts, which represent characteristics of
particular domains. The standard is also interesting in terms
of execution, since there is a variety of runtime execution
engines, which allow the execution of BPMN models almost
effortless.

Although the number of concepts managed in the standard
is huge (activity, flow, event, gateway, etc.), in this work, we
only make use of a subset of them. The chosen elements are
available through the developed GMF Execution Model Editor,
represented in Figure 1. This editor acts as a filter for the
allowed elements, since the standard has not been cut back.
The number of BPMN elements managed in the initial subset
can be easily increased by simply updating the editor.

Making use of the extensibility feature existing in BPMN
to adapt the standard to particular domains, it has been
possible to link specific elements in BPMN models to elements
defined in agnostic test models. The BPMN element chosen
to establish this connection has been the ServiceTask element.
It represents atomic activities in a process flow, in particular,
activities which can be seen as an individual service and can
be automated. This description fits well with the purpose of
the proposed methodology.

An example of the way these ServiceTasks are linked to
agnostic test models can be seen in Figure 3, where each of
the ServiceTasks included in the execution model is pointing
to structural elements of different complexity (TestSuite, Test-
Project, TestCase, etc.) in the test model. Thus, in the figure,
the execution model establishes that among all the structural
elements existing in the test model for PiggyBank (a simplified
online banking application used as case study in this research),
only the TestProject Login and the TestSuite Balance will be
executed, showing also the execution order of those elements.
The rest of the elements existing in the test model are not
required for execution and then, they are not included in the
execution model.

An actual example of the Execution Model Editor related
to PiggyBank is shown in Figure 4, pointing out the way test
elements are linked to BPMN elements.

The execution model shown in Figures 3 and 4 represents
a very simplified flow using BPMN. However, the number
of concepts and features defined in BPMN, combined with
the different concepts defined in the test language allow
to introduce different levels of expressivity to the proposed
framework.

A first type of expressivity included in the framework,
shown in the figures, allows to link ServiceTasks only to
structural test elements - TestProjects, TestSuites, etc. -. In

Fig. 3. Extended BPMN specification in order to link to test elements.

Fig. 4. Example of the developed Execution Model Editor building an
execution model related to Piggybank.

these BPMN models, the test elements linked are independent
among them in the flow, i.e., the failure of a ServiceTask
does not imply the suspension of the remaining elements in
the model, unless there is a branch in the flow considering
that case. In these models, conditional flows can depend
on the result of the execution of ServiceTasks, seeing this
execution as a black box which generates a single result for
each ServiceTask, independently of the structural test elements
involved.

IV. FROM MODELING LANGUAGES TO TESTING
PLATFORMS: A PRACTICAL CASE

This section shows the way all the elements existing in
the proposed framework work together in order to evolve
from agnostic test and execution models to executable tests
in different platforms.

As shown in Figure 1, users start designing test models for
specific applications, ignoring the final platform where tests
will be finally executed. These platform-agnostic test models
can be enriched with BPMN models, which help users to

113Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

define the execution flow of test elements defined in test mod-
els. Given the agnostic approach considered in the modeling
languages and editors involved in the proposed framework,
users can completely ignore any execution platform during
the design of test models and execution flows. Only when
users want to turn a model into executable tests, test execution
platforms are required. Even then, users do not need any
technical knowledge about the target platform or the way
final tests are built. When a target platform is selected from
the proposed framework, the transformation and execution
assistants are the only elements responsible for automatically
generating tests which are executable in the chosen platform.
Both, test models and execution flows, can be transformed to
be executed in any available platform.

The mechanisms used to perform the transformation into
executable tests are explained next. Before that, the testing
platforms managed in the proposed framework are explained.

A. Selenium and GP: testing platforms as case study

Two testing platforms with different characteristics have
been considered for test execution. Both suitable for testing
web applications, since this is the kind of applications man-
aged in this work. The considered platforms are: Selenium[3],
as open source solution; and GP, a proprietary tool suite
developed by Santander Group[22].

• Selenium is the selected platform for testing web appli-
cations using an open source solution. It lacks of a way
to organize tests, being the tester entirely responsible for
providing a structural organization. Tests for execution
can be written entirely in Java using Selenium WebDriver
[23] or as a combination of JUnit tests and Selenium
Server [3]. In this proposal, we use the second option in
order to simplify the generation of the tests files.

• GP is a proprietary testing tool, which integrates different
open source technologies in a common working environ-
ment in order to homogenize their usability. It allows
the design and automatic execution of tests for web and
Eclipse-based applications. Selenium and SWTBot are
some of the technologies included.
From the structural point of view, GP manages elements
which provide hierarchical information to organize the
tests, allowing individual tests and collections of tests.
According to the functionalities included in the platform,
it provides a repository of basic behaviours, which can
be grouped appropriately to design the each individual
test. The technology involved in these behaviours is
completely transparent to testers.
The internal structure of GP tool suite is based on a
database technology as storage mechanism for all the ele-
ments managed in the platform. This approach can be also
found in other testing platforms, such as HP QuickTest
Professional (QTP) [1] or IBM Rational Functional Tester
(RFT) [24].

Since both platforms build and organize tests in a different
ways, the approach to build the transformation engines needed
in each case will be also distinct.

Fig. 5. Transformation and execution assistants link models to testing
platforms.

B. Getting executable tests

Following the proposed workflow, and assuming that test
models are ready to be transformed into executable tests,
users have two ways to continue working. Both are based
on transformation and execution assistants, whose role in the
testing framework is summarized in Figure 5. This figure also
sums up the different technologies and languages used in the
implementation of the developed prototype.

1) Transform an entire test model: The user can opt for
transforming an entire agnostic test model into a collection of
equivalent tests to be executed in a specific testing platform.
In this use case, generically represented in the lower part of
Figure 5, the user selects the agnostic test model that needs
to be transformed and decides the specific testing platform
among the options where tests will be executed. Having this
information, the assistant delegates the task to the specific
transformer for the chosen platform. This assistant provides
flexibility to the proposed framework, isolating the editors and
users from any testing platform.

Each transformer knows the internal structures of its target
platform and the agnostic testing language, establishing the
correspondence between the elements in the target platform
and the agnostic elements. The existence of this correspon-
dence makes possible that, in an automatic way, the trans-
former applies to the test model the appropriate rules to
generate an equivalent collection of tests in the target testing
platform. In this process, the elements existing in the test
model (structures, behaviours, data, etc.) are mapped into their
corresponding elements, creating all the necessary structures
to reproduce the test model in the executable target platform.
The transformer not only translates test models, but also
interprets them. This is specially relevant referring to data,
which potential complexity (unique/multiple values, complex
structures, etc.) can generate a single test or a collection of
tests as a result of all the possible combinations.

The implementation of each transformer will depend on how
the target platform can be represented. If it can be represented
as an Eclipse Modeling Framework (EMF) model, model-to-

114Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

model transformations can be performed. Otherwise, model-
to-text transformations or other alternatives will be necessary.
Considering GP tool, based on a database, the tool can be
represented by its own modeling language inferred through the
database schema. According to this, the content of the database
in a particular moment is the state of the system, a state that
can be represented as a model. This model enables the use of
model-to-model transformations to implement the transformer
to GP, using the operational Query/View/Transform (QVT)
language. Instead, transforming to Selenium requires model-
to-text transformations, using Acceleo, due to the lack of a
modeling language to represent Selenium and JUnit.

2) Execute a BPMN flow: Users that want to focus just on
the execution of a portion of an agnostic test model can design
execution flows (upper part of Figure 5). Before executing the
flow, the testing platform where tests will be executed has
to be selected. Similarly to test models, BPMN models are
not executable straightaway, being also necessary an assistant.
When the assistant knows the target platform, it delegates the
task to the appropriate interpreter, which will check whether
the agnostic model associated with the BPMN model has
already been transformed and exists in the chosen platform.
Otherwise, the corresponding transformation assistant will
be performed first. After that, the interpreter will face two
tasks before triggering the execution of the BPMN model
automatically. First, connecting the BPMN model to a BPMN
engine, which reads, interprets and executes the model. This
connection requires a suitable infrastructure (called BPMN
project in Figure 5), which varies depending on the chosen
BPMN engine. Second, since ServiceTasks in the proposed
extended BPMN models point to agnostic test elements, it is
mandatory their translation to references to executable tests
which exist in the target testing platform. For this second
task, it is worth to mention that during the transformation
process of a test model, some extra data can also be generated
if needed. The need for this auxiliary information depends
on how costly is to associate in a BPMN model an agnostic
test element to its executable tests once the test model has
been transformed. This association can be based on one-
to-one relationships, but it is mostly based on one-to-many
relationships because of two reasons. First, since the structural
element referenced in a ServiceTask can be a container of
other tests elements, the BPMN engine will need to call for
execution to each of the individual tests that the transformation
process generates from the container element. For instance,
ServiceTask in Figure 3 is referencing the complex element
TestProject Login, represented in Figure 6.a. All the tests
contained need to be known. Second, the agnostic models
manage collections of data for specific inputs of the tests.
These collections give rise to a set of individual tests where
each input only has one value associated with it. This is the
case represented in Figure 6.b, where one single test element,
TestCase Button Accept, is transformed into a variable number
of executable tests depending on the data defined in it.

According to this, executing BPMN models in the GP plat-
form, requires an intermediate model as extra information in

Fig. 6. Model-to-model transformations usually turn into one-to-many
relationships that are managed through the intermediate model.

order to associate the structural tests elements in the agnostic
model to the identifiers of their corresponding executable tests
generated in the target platform. However, using Selenium as
target platform does not require extra information, since the
association between test elements and executable tests is easier
to obtain.

Once the BPMN model points to executable tests, it is time
to establish the infrastructure to make the flow executable.
This infrastructure depends exclusively on the BPMN engine
chosen for execution. In this work, it has been used the
BPMN engine provided by Activiti [25], which requires an
Eclipse project to execute the BPMN models. Apart from the
designed BPMN model, the project must contain information
to deploy it for execution and set up the BPMN engine.
It also includes the way to implement the execution of the
ServiceTasks existing in the BPMN model. This implementa-
tion codifies the way all the executable tasks associated to
a particular ServiceTask are identified and called for their
automatic execution one by one. In this process, it is used
any extra information that might have been generated during
the transformation of its corresponding test model. As can be
seen in Figure 5, the execution of the tests is provided by
platform-dependent libraries (GP runnable, selenium-server),
which allow an automatic interaction with each platform. The
Activiti-based project is the output of the interpreter when
a user wants to execute a BPMN model, and the rules to
generate the involved Java classes are based on model-to-
text transformations, using as model the test model itself
(for Selenium platform) or the intermediate model (for GP
platform). Once the building of the Eclipse project is complete,
the interpreter initiates its execution, triggering the BPMN
engine which reads the BPMN model, interprets each one of
the existing elements, and performs the actions associated with
each one. When the BPMN engine finds a ServiceTask, all its
associated tests are launched for execution before continuing
with the flow.

V. CONCLUSION AND FUTURE WORK

The proposed model-based testing framework, the proto-
type of which has been entirely implemented, provides a
infrastructure to design graphically test and execution models

115Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

independent from any testing platform. The execution models
represented as BPMN flows, increase the expressivity of the
test models by extending BPMN elements to include custom
concepts related to the testing language.

The proposed framework allows a quick starting of the
testing phase, being able to work in parallel to the development
process, and a quick adaptation to changes in the requirements.
It also enables the reuse of test elements among models.
The models are only attached to an application, but can be
applied to very different platforms for test execution due to
the assistants provided in the framework, which automatically
transform models to executable tests in each particular plat-
form. The use of graphical editors and assistants allow to hide
the complexity of testing execution platforms, increasing the
number of potential users of the framework.

As future work, the expressivity of the tests will be in-
creased by including more BPMN concepts to the ones already
managed by the editor, and the implementation of complex
behavioural elements based on BPMN flows. The platforms
managed currently in this framework are Selenium as open
source solution, and GP as proprietary tool. Other platforms
can also be integrated building their corresponding assistants.
Thus, the integration of tools, such as HP Quality Center (HP
QC), also database-based as GP platform, could be affordable
in the near future.

ACKNOWLEDGEMENT

The work for this paper was partially supported by funding
from ISBAN and PRODUBAN, under the Center for Open
Middleware initiative [26].

REFERENCES

[1] A. Rao, HP QuickTest Professional WorkShop Series: Level 1 HP
Quicktest. Outskirts Press, 2011.

[2] P. Tahchiev, F. Leme, V. Massol, and G. Gregory, JUnit in Action.
Greenwich, CT, USA: Manning Publications Co., 2010.

[3] A. J. Richardson, Selenium Simplified: A Tutorial Guide to Selenium
RC with Java and JUnit. Compendium Developments, 2012.

[4] A. Huima, “Implementing Conformiq Qtronic,” in TestCom/FATES,
ser. Lecture Notes in Computer Science, A. Petrenko, M. Veanes,
J. Tretmans, and W. Grieskamp, Eds., vol. 4581. Springer, 2007, pp.
1–12.

[5] Hewlet-Packard Company, “HP Functional Testing,” 2012.
[6] P. Baker et al., “The UML 2.0 Testing Profile,” Sep. 2004.
[7] J. Iber, N. Kajtazovic, A. Holler, T. Rauter, and C. Kreiner, “Ubtl - UML

Testing Profile based Testing Language,” in Model-Driven Engineering
and Software Development (MODELSWARD), 2015 3nd International
Conference on. SciTePress, February 2015, pp. 99–110.

[8] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

[9] M. Cristiá and P. R. Monetti, “Implementing and Applying the Stocks-
Carrington Framework for Model-Based Testing,” in ICFEM, 2009, pp.
167–185.

[10] L. C. Briand and Y. Labiche, “A UML-Based Approach to System
Testing,” in Proc. of the 4th Int. Conference on The Unified Modeling
Language, Modeling Languages, Concepts, and Tools. London,
UK, UK: Springer-Verlag, 2001, pp. 194–208. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647245.719446

[11] C. Pedrosa, L. Lelis, and A. Vieira Moura, “Incremental testing of
finite state machines,” Software Testing, Verification and Reliability,
vol. 23, no. 8, 2013, pp. 585–612. [Online]. Available: http:
//dx.doi.org/10.1002/stvr.1474

[12] K. Karl, “GraphWalker,” URL: www.graphwalker.org [accessed: 2015-
12-18].

[13] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[14] B. P. Lamancha, P. R. Mateo, I. R. de Guzmán, M. P. Usaola, and
M. P. Velthius, “Automated Model-based Testing Using the UML
Testing Profile and QVT,” in Proc. of the 6th Int. Workshop on
Model-Driven Engineering, Verification and Validation, ser. MoDeVVa
’09. New York, NY, USA: ACM, 2009, pp. 1–10. [Online]. Available:
http://doi.acm.org/10.1145/1656485.1656491

[15] M.-F. Wendland, A. Hoffmann, and I. Schieferdecker, “Fokus!MBT:
A Multi-paradigmatic Test Modeling Environment,” in Proc. of the
Workshop on ACadeMics Tooling with Eclipse, ser. ACME ’13.
New York, NY, USA: ACM, 2013, pp. 1–10. [Online]. Available:
http://0-doi.acm.org.cisne.sim.ucm.es/10.1145/2491279.2491282

[16] P. Baker et al., Model-Driven Testing: Using the UML Testing Profile.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[17] C. Sanz et al., “Automated model-based testing based on an agnostic-
platform modeling language,” in Proceedings of the 3rd International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD), 2015, pp. 239–246.

[18] Eclipse(b), “Eclipse Graphical Modeling Framework (GMF) Tooling,”
URL: http://www.eclipse.org/gmf-tooling/ [accessed: 2015-12-18].

[19] Hewlet-Packard Company, “HP Application Lifecycle Management,”
2011.

[20] International Business Machines Corp., “IBM Rational Team Concert,”
2008.

[21] OMG, Business Process Model and Notation (BPMN), Version 2.0,
Object Management Group Std., Rev. 2.0, January 2011, URL: http:
//www.omg.org/spec/BPMN/2.0 [accessed: 2015-12-18].

[22] URL: www.santander.com/ [accessed: 2015-12-18].
[23] S. Avasarala, Selenium WebDriver Practical Guide. Packt Publishing,

2014.
[24] C. Davis et al., Software Test Engineering with IBM Rational Functional

Tester: The Definitive Resource, 1st ed. IBM Press, 2009.
[25] T. Rademakers, Activiti in Action: Executable business processes in

BPMN 2.0, 1st ed. Shelter Island, NY: Manning Publications, 2012.
[26] URL: http://www.centeropenmiddleware.com/ [accessed: 2015-12-18].

116Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

