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Abstract— Code clones are introduced to source code by 
changing, adding, and/or deleting statements in copied code 
fragments. Thus, the problem of finding code clones is 
essentially the detection of strings that partially match. The 
proposed algorithm is based on the well-known apriori 
principle in data mining and is tailored to detect code clones 
represented as sequences of strings. However, the apriori 
principle may generate too many sequential patterns. The 
proposed algorithm finds a compact representation of 
sequential patterns, known as maximal frequent sequential 
patterns, which is often two orders of magnitude smaller than 
frequent sequential patterns. Early experiments using the Java 
SDK 1.7.0.45 lang package demonstrate the number of 
extracted patterns and elapsed time in several contexts. 
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I.  INTRODUCTION  

Copying and pasting similar code (or code clones) is very 
common in large software since it can significantly reduce 
programming effort and time. However, code clones 
complicate software maintenance. For example, when an 
error is identified in one copy, the same error can occur in 
the code clones. Thus, a maintenance programmer must 
check all code clones to ensure parallel changes.  

Generally, the detection process for code clones 
comprises two phases, i.e., transformation and matching [1]. 
(1) Transformation phase: parts of interest of the source code 

are transformed to another intermediate representation for 
ease of matching. 

(2) Matching phase: the intermediate representation units are 
compared to find a match. 
Because copying and modifying statements are common 

programming practices, finding code clones that partially 
match is a challenging task from both practical and technical 
perspectives. Partially-matching code clones are referred to 
as type-3 clones, gapped clones, and near-miss clones in 
code clone detection literature [1]. The term “gap” refers to 
nothing-match or non-match elements that comprise two 
code clone candidates.  

A number of approaches have been developed for 
detecting code clones. State-of-the-art research is divided 
into two categories. The first category is dedicated to code 
clone detection. Ducasse et al. [2] defined and assessed six 
degrees of transformation with regard to varying gap sizes of 
zero, one, and two. Because of limitations of scalability, they 
restricted themselves to a gap size of zero in some case 
studies. Roy et al. [3] proposed a near-miss clone detection 

method called Accurate Detection of Near-miss Intentional 
Clones (NICAD). NICAD combines language-sensitive 
parsing with language-independent similarity analysis using 
an optimized longest common subsequence (LCS) algorithm 
[4] to detect code clones. Murakami et al. [5] proposed a new 
token-based method that detects gapped code clones using a 
local sequence alignment algorithm, i.e., the Smith–
Waterman algorithm. They discussed a sophisticated trace 
back algorithm tailored for code clone detection. 

The other category focuses on frequent sequence mining 
techniques to detect code clones and code change patterns. 
CP-Miner [6] employs an extended version of CloSpan [7] to 
support gap constraints in frequent subsequences. It tolerates 
one to two statement insertions, deletions, or modifications 
in copy-pasted code. Negara et al. [8] developed a 
sophisticated data mining algorithm that effectively detects 
frequent code change patterns. They also identified 10 types 
of popular high-level code change patterns from mined code 
change patterns. 

The main idea of the proposed approach is a combination 
of frequent sequence mining and the LCS algorithm to detect 
type-3 clones. 

A sequence is called a frequent sequence if it appears in a 
given sequence database with a frequency no less than a 
user-specified threshold (i.e., minSup). Although several 
algorithms have been proposed for frequent sequence mining, 
such as CloSpan, ClaSP, and CM-ClaSP [9], one of the 
drawbacks of these algorithms is that they can present a very 
large number of sequential patterns. A sequential pattern is 
maximal if immediate super-sequences are frequent [10]. 
The maximal sequential patterns are generally a small subset 
of frequent sequential patterns. The proposed approached 
employs maximal sequential pattern mining to discover a 
compact set of clone candidates. 

The main contributions of this paper are as follows: (1) 
development of a code transformation parser that extracts 
code matching statements; (2) development of a matching 
algorithm that efficiently detects type-3 clones using a 
tailored sequential pattern mining algorithm; (3) evaluation 
of the proposed algorithm using the Java SDK 1.7.0.45 lang 
package with several parameters; and (4) performance 
comparison of the proposed algorithm to previous methods. 

The remainder of this paper is organized as follows. 
Section 2 presents an overview of the proposed approach. 
Section 3 describes the proposed algorithm, which discovers 
clone candidates using maximal frequent sequence mining. 
Section 4 presents the results of an experimental study using 
the Java SDK lang package. Finally, Section 5 concludes the 
paper and provides suggestions for future work. 
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II. OVERVIEW OF OUR APPROACH 

Our goal is to detect method pairs or sets that share 
common code fragments. In the proposed approach, Java 
source code is initially partitioned into methods. Then, code 
matching statements are extracted for each method. The 
extracted statements comprise class method signatures, 
control statements, and method calls [11]. Our approach 
consists of the following four steps (Figure 1).  

 
 

Figure 1. Overview of the proposed approach. 
 

A. Extraction of code matching statements 

Under the assumption that a method call characterizes a 
program, the proposed parser extracts a method identifier 
called in a Java program. Generally, the instance method is 
preceded by a variable whose type refers to a class object to 
which the method belongs. The proposed parser traces a type 
declaration of a variable and translates a variable identifier to 
its data type or class identifier as follows.  

<variable>.<method identifier>  
is translated into  
   <data type>.<method identifier>  
or  
  <class identifier>.<method identifier>. 
We have developed a parser that extracts control 

statements with various levels of nesting. A block is 
represented by the "{" and "}" symbols. Thus, the number of 
"{" symbols indicates the number of nesting levels. The 
following Java keywords for 15 control statements are 
processed by the proposed parser. 

if, else if, else, switch, while, do, for, break, continue, 
return, throw, synchronized, try, catch, finally 

We selected the Java SDK 1.7.0.45 lang package as our 
target. The number of total lines is 67,677. Figure 2 shows an 
example of the extracted structure of the encode(char[] ca, 
int off, int len) method in the StringCoding.java file of the 
java.lang package. The three numbers preceded by the # 
symbol are the number of comments, and blank and code 
lines, respectively. The extracted structures include control 
statement nesting depth; thus, they provide sufficient 

information for retrieving methods using the structure of the 
source code.  

 
Figure 2. Example of the extracted structure. 

 
In this study, we only deal with Java. However, 

extraction of code matching statements can allow our 
approach to be independent of programming languages, such 
as C/C++ and Visual Basic. 

B. Encoding statements in three 32-decimal digits 

The conventional LCS algorithm takes two given strings as 
input and compares each character of the strings. However, 
the length of statements in program code differs; thus, the 
conventional LCS algorithm does not work effectively. In 
other words, for short statements, such as if and try 
statements, the LCS algorithm returns small LCS values for 
matching. For long statements, such as synchronized 
statements or a long method identifier, the LCS algorithm 
returns large LCS values. 

 We have developed an encoder that converts a statement 
to three 32-decimal digits, which results in a fair base for a 
similarity metric in clone detection. Figure 3 shows the 
encoded statements that correspond to the code shown in 
Figure 2. Figure 4 shows the mapping table between three 
32-decimal digits and a code matching statement extracted 
from the original source files. 

 
 
 

 
 
 
Figure 3. Encoded statements corresponding to Figure 2. 

StringEncoder::encode(char[] ca, int off, int len)→001→
13V→005→004→003→005→004→003→00C→14F→
141→142→00V→14G→005→144→003→14H→005→
144→003→003→011→07F→003→004→003→003 
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Figure 4. Mapping table between three 32-decimal digits and a code 
          matching statement. 

 

C. Detecting frequent sequences with gaps 

We have developed a mining algorithm to find frequent 
sequences based on the apriori principle [12]. The proposed 
algorithm is designed to find a set of frequently occurring 
sequences. Note that several matches can be detected in a 
sequence for a subsequence given as a matching condition. 
For example, the proposed algorithm detects the two matches 
of subsequence A→B in sequence A→B→A→C→A→B→
D.  

The LCS algorithm is tailored to match three 32-decimal 
digits as a unit. The LCS algorithm can match two given 
sequences even if "gaps" (nothing-match or non-match 
elements) exist. Given two sequences of matching strings S1 
and S2, let |lcs| be the length of their longest common 
subsequence, and let |S1| and |S2| be the length of S1 and S2, 
respectively. The “gap size” gs is defined as gs= |lcs| - 
min(|S1|, |S2|). 

D. Mining maximal frequent sequences 

Frequent sequences mining can result in a very large 
number of sequential patterns, which makes it difficult for 
users to analyze the results. Mining maximal frequent 
sequences addresses a drawback of frequent sequences 
mining [10]. We have developed an algorithm to discover 
maximal frequent sequences. Note that our approach deals 
with gapped sequences; thus, it requires a tailored technique 
to filter non-maximal frequent sequences. 

III. PROPOSED FREQUENT SEQUENCE MINING 

This section outlines the proposed frequent sequence 
mining algorithm and shows some examples that 
demonstrate how the algorithm works. 

A. Proposed Frequent Sequence Mining Algorithm 

The proposed approach is based on frequent sequence 
mining. A subsequence is considered frequent when it occurs 
no less than a user-specified minimum support threshold (i.e., 
minSup) in the sequence database. Note that a subsequence 
is not necessarily contiguous in an original sequence. 

We assume that a sequence is a list of items, whereas 
several algorithms for sequential pattern mining [9] deal with 
a sequence that consists of an ordered list of "itemsets." Our 
assumption is rational because we focus on detecting code 
clones. In addition, the assumption simplifies the 

implementation of the proposed algorithm, which makes it 
possible to achieve high performance (Section 4). 

The proposed frequent sequence mining algorithm 
comprises two methods, i.e., GProve (Figure 5) and 
Retrieve_Cand (Figure 6). It follows the key idea behind 
apriori; if a sequence S in a sequence database appears at 
least N times, so does every subsequence R of S. 

 

 
Figure 5. Frequent sequence detection of the proposed  

algorithm. 
 

Figure 6. Candidate sequences retrieval for the next 
            repetition. 

 
The variable k indicates the count of the repetition (line 2, 

Figure 5). LinkedList < String > Sk is initialized to hold 15 
control statements. The Retrieve_Cand method (line 5, 
Figure 5) discovers a set of sequences of length k+1 from a 
sequence database that matches statement sequences in Sk. 
The while loop (lines 9–17) finds frequent sequences and 
sequence IDs in a sequence database.  

Lines 12–14 maintain the frequent sequences. Note that 
the proposed algorithm handles gapped sequences, and both 
a frequent sequence and its "gap synonyms" are prepared for 
the next repetition. Here, "gap synonyms" means a set of 
sequences that match a given subsequence under a given gap 
constraint. 

Generally, the Retrieve_Cand() method in Figure 6 
works as follows. HashMap <String, Integer> Ck holds a 
sequence (String) and its frequency (Integer). First, Ck is 
cleared (line 2, Figure 6). The three for loops examine all 
possible matches between an element in Sk and sequences in 
a sequence database. The longest common subsequence 
algorithm is tailored to compute the match count and gap 
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count (line 6, Figure 6). The if statement, (line 7, Figure 6) 
screens a sequence based on the match count and gap count. 
Lines 8–10 maintain the frequency of sequences and its “gap 
synonyms.” 

B. Extracting Frequent Sequences 

In our approach, we assume a program structure is 
represented as a sequence of statements preceded by a class-
method ID. Each statement is encoded to three 32-decimal 
digits so that the LCS algorithm correctly works regardless 
of the length of the original program statement. The 
proposed algorithm is illustrated for the given sample 
sequence database in Figure 7. MTHD# is an abbreviated 
notation for a class-method ID. 

 
 
 
 
 

Figure 7.  Example sequence database. 
 
Figure 8 shows the result of the frequent sequences for a 

gap of 0 and minSup of 50%, which is equivalent to a 
minSup count that equals 2. “005” is a frequent sequence 
with a minSup count of 6 because “005” occurs once in the 
first and second sequences and twice in the third and fourth 
sequences. The proposed algorithm maintains an ID-List, 
which indicates the positions a frequent sequence appears in 
a sequence database. The ID-List for “005” is 1|2|3+3|4+4. 

Similarly, 005→003→  is a frequent sequence with a 
minSup count of 3, i.e., the ID-List for 005→003→ is 1|3+3. 

 
 
 
 
Figure 8. Result of the frequent sequences (gap, 0; minSup, 50%). 
 
Figure 9 shows the result of the frequent sequences for a 

gap of 1 and minSup of 50%. “005” is a frequent sequence 
with a minSup count of 6, which is the same in the case of a 
gap of 0.  

Similarly, 005→003→  is a frequent sequence with a 
minSup count of 5. In addition to the consecutive sequence 
005 → 003 → , the proposed algorithm detects gapped 
sequences. In the case of 005→003→, the algorithm detects 
005→00A→003→ in the second sequence and 005→006→
003→ in the fourth sequence. Thus, the ID-List for 005→
003→ is 1|2|3+3|4. 

 
 
 
 
 

Figure 9. Result of the frequent sequences (gap, 1; minSup, 50%). 
 
Figure 10 shows the result of the frequent sequences for a 

gap of 2 and minSup of 50%. In addition to 005→ and 005
→003→, 005→006→ is detected as a frequent sequence 

because 005→003→00F→006→  in the third sequence 
matches 005→006→ with a gap of 2, and 005→006→ in the 
fourth sequence with a gap of 0. Thus, the ID-List for 005→
006→ is 3|4. 

 
 
 
 
 
Figure 10. Result of the frequent sequences (gap, 2; minSup, 50%). 

 

C. Extracting Maximal Frequent Sequences 

A frequent sequence is a maximal frequent sequence and 
no supersequence of it is a frequent sequence. The set of 
maximal frequent sequence is often several orders of 
magnitude smaller than the set of all sequential patterns. In 
addition, it is representative because it can be used to recover 
all frequent sequences. Several algorithms for finding 
maximal frequent sequences and/or itemsets employ 
sophisticated search and pruning techniques to reduce the 
number of sequence and/or itemset candidates during the 
mining process. 

However, we wish to measure the effects of a maximal 
frequent sequence; therefore, the proposed algorithm first 
extracts a set of frequent sequences and then detects a set of 
maximal frequent sequences. 

Note that, since we deal with a gapped sequence, 
screening a maximal frequent sequence is required to check 
that none of the immediate super-sequences of gap 
synonyms, which are a set of sequences that match a given 
subsequence under the gap constraint, is a frequent sequence.   

IV. EXPERIMENTAL RESULTS 

We present some measures on frequent sequences or 
candidate clones, time analysis, and findings relating to the 
Java SDK 1.7.0.45 lang package. Some features of the code 
are as follows. 
1. After screening methods without control statements or 

method calls, the normalized code consist of 2,522 
methods, 18,205 identifiers, and 1,286 unique identifiers. 

2. The maximum length method is 
isCallerSensitiveMethod() (127 lines), which is obtained 
from the java.lang.invoke.MethodHandleNatives.java file. 

3. The maximum method nesting level is seven, which is 
obtained from the getEnclosingMethod() method of the 
java.lang.Class.java file. 

A. Maximum Length of Retrieved Sequences 

The proposed algorithm can retrieve sequences that 
satisfy an arbitrary gap size specified by the user. Figure 11 
summarizes the maximum lengths of the retrieved 
sequences for each minSup and gap size. As minSup 
decreases, the filtering condition lessens; thus, the 
maximum lengths increase. As the gap size increases, the 
matching condition lessens; thus, the maximum lengths 
increase. The results in Figure 11 show that the maximum 

MTHD1→005→003 
MTHD2→005→00A→003→003 
MTHD3→005→003→00F→006→005→003 
MTHD4→005→006→003→005→00C 

005→                 N=6（1|2|3+3|4+4） 
005→003→       N=3（1|3+3） 

005→              N=6（1|2|3+3|4+4） 
005→003→        N=5（1|2|3+3|4） 

005→                  N=6（1|2|3+3|4+4） 
005→003→    N=5（1|2|3+3|4） 
005→006→        N=2（3|4） 
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lengths reach 120 when minSup is 2 and gap size is no less 
than 2. 

 

 
Figure 11. Maximum length of retrieved sequences for each minSup  

and gap size. 

B. Numbers of Retrieved Sequences 

Figure 12 shows the number of retrieved frequent 
sequences with respect to gap (0 to 4) and minSup (2 to 10). 
As expected, the number of retrieved frequent sequences 
increases as gap increases and minSup decreases. The 
proposed algorithm can find frequent sequences that occur at 
least twice in the sequence database, which is necessary for 
finding all possible code clones. Note that the numbers of 
retrieved frequent sequences for a gap of 0 are plotted on the 
right secondary axis because they are 1/7 to 1/60 of the 
numbers of retrieved frequent sequences for a gap of 1 to 4. 

 

 
Figure 12. Numbers of retrieved frequent sequences (gap size, 0 and 1-4; 

minSup, 2-10). 
 

Figure 13 shows the number of maximal retrieved 
frequent sequences with respect to a gap of 0 to 4 and 
minSup of 2 to 10. As expected, the number of maximal 
retrieved frequent sequences is a compact representation of 
the set of frequent sequences, which is approximately one to 
two orders of magnitude smaller than that of frequent 
sequences. The ratio of the number of frequent sequences to 
the number of maximal frequent sequences increases as gap 

increases. For example, the ratio is approximately 100, 
which is the largest obtained ratio, when gap is 4 and 
minSup is 2. 

 

 
Figure 13. Numbers of retrieved maximal frequent sequences (gap size, 0 

and 1-4; minSup, 2-10). 

C. Time Analysis 

Figure 14 shows the elapsed time in milliseconds for 
retrieving frequent sequences. The x-axis indicates minSup. 
Note that the elapsed time for a gap of 0 is plotted on the 
right secondary axis. We measured elapsed time using the 
following experimental environment. 

CPU: Intel Core i3-540 3.07 GHz 
Main memory: 8 GB 
OS: Windows 7 64 Bit 
Programming Language: Java 1.7.0 

The proposed algorithm can retrieve frequent sequences 
fairly efficiently. For example, it takes 289,481 milliseconds 
to identify 154,789 frequent sequences for a gap of 1 and 
minSup of 2. Note that elapsed time increases as the gap 
increases. The results show that the elapsed time is 
approximately 4.8 × N × t, where N is the number of gaps, 
and t is the elapsed time for a gap of 0. 

 

 
Figure 14. Elapsed time (milliseconds) for retrieving frequent sequences. 
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The maximal sequential pattern (MaxSP) and vertical 
mining of maximal sequential patterns (VMSP) produce a set 
of maximal sequential patterns. However, the runnable code 
of MaxSP downloaded from an open-source data mining 
library [9] fails to process the sequence database due to an 
overly long process time. For VMSP, it processes in less than 
100 ms with a very small set of maximal sequential patterns 
that is approximately three orders of magnitude smaller than 
the expected set of patterns. 

Figure 15 shows a comparison of elapsed time for the 
proposed algorithm with respect to gap 0, as well as ClaSP 
and CM-ClaSP, which produce the best available results. 
Note that ClaSP and CM-ClaSP terminate with a stack 
overflow error when minSup is less than 7. 

 

 

Figure 15. Comparison of elapsed time. 
 

Figure 16 shows elapsed time in milliseconds for 
retrieving maximal frequent sequences. The input is a list of 
retrieved frequent sequences, and the output is a list of 
maximal frequent sequences. The elapsed time is nearly 
proportional to the number of maximal retrieved frequent 
sequences in Figure 13. The elapsed time for extracting a 
list of maximal frequent sequences is 1/160 of that for 
retrieving a set of frequent sequences and is nearly 
independent of gap size. 
 

 
Figure 16. Elapsed time for retrieving maximal frequent sequences. 

 
 
 
 

D. Source Code Findings 

By increasing gap size to greater than 2, we can relax the 
gap constraint; however, this is detrimental to the relevance 
of retrieved sequence occurrences. We limit ourselves to a 
gap size of 1 to simplify analysis. 

Figure 17. Four clone candidate methods. 
 
Figure 17 shows a set of four methods that match a 

sequence 005→ 004→ 003→ 00C→ 141→ 142→ 00V→ 
within a gap of 1. These four methods are defined in the 
StringCoding.java file of the java.lang package. They are 
considered clones because the arguments in the encode and 
decode methods differ only slightly in order to implement 
method overloading. In addition, they share the sequence 
005→004→003→00C→141→142→00V→. Note that only 
the encode(char[] ca, int off, int len) method (Figure 2) 
matches the sequence 005→004→003→00C→141→142→
00V→ with one gap (i.e., "14F" or CharsetEncoder.reset()), 
as shown in the third row of Figure 17. This difference is 
considered to be worthy of checking by the implementer of 
the methods. 

V. CONCLUSINONS AND FUTURE WORK 

We have presented an approach to identify type-3 clones 
using a source code parsing technique to extract matching 
code statements, a maximal frequent sequence mining 
algorithm, and a modified LCS algorithm for computing the 
matching degree and gaps of corresponding code segments.  

Early experiments using the Java SDK 1.7.0.45 lang 
package indicate that the algorithms can identify type-3 
clones in a reasonable elapsed time. The experimental results 
show that the ratio of the number of the frequent sequences 
to the number of maximal frequent sequences reaches 
approximately 100. However, the proposed algorithm still 
generates thousands of maximal frequent sequences. 
Therefore, we plan to improve the proposed algorithm in 
future. 
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