
Using the Event-B Formal Method
for Disciplined Agile Delivery

of Safety-critical Systems

Andrew Edmunds∗, Marta Olszewska† and Marina Waldén‡
Distributed Systems Lab.
Abo Akademi University,

Turku, Finland
Email: ∗aedmunds@abo.fi, †mplaska@abo.fi, ‡mwalden@abo.fi

Abstract—In order to improve the development process of high-
integrity systems, using formal methods, we consider how agile
techniques may influence the Event-B formal method, and how
Event-B may be used in a development that uses an agile
approach. To examine the crossover between Event-B and agile
methods we review the Disciplined Agile Delivery approach
(DAD). The DAD approach is inspired by many state-of-the-art
agile techniques, and we use it as a meta-analysis of current best-
practice. In this paper, we propose an agile process for using
Event-B and examine how agile techniques might influence the
use of Event-B. We identify a number of areas in which Event-
B could be improved and suggest that a different view of agile
practices may be needed for an agile project involving formal
development.

Keywords–Agile; Formal Methods; Event-B; Critical Systems

I. INTRODUCTION

As part of the ADVICeS project [1], we have been inves-
tigating the crossover between agile and formal methods [2],
[3]. In particular, we are focussing on the Event-B method [4]
and DAD [5]. Event-B is a formal approach for the rigorous
specification of safety-critical systems, based on set-theory
and predicate logic. In contrast, DAD is a pragmatic, flexible
approach to agile development, which seeks to guide teams
towards a solution, rather than prescribe a list of tasks that
should be adhered to. DAD’s creators are experienced agile
practitioners, taking inspiration from the many agile methods
they have encountered during their careers, including XP [6],
Scrum [7] and Lean approaches [8]. Since the DAD approach
is so wide ranging, we use it for a meta-analysis, to assess
how DAD and Event-B could be used together. The result
provides an insight into the most relevant issues. We believe
that this may be of interest to others in the formal methods
community, since the questions we raise, and seek to answer,
may apply to other methods. In Section II, we introduce Event-
B. In Section III, we look at DAD and how it relates to Event-
B. In Section IV, we examine how Event-B features may be
used in a DAD project. In Section V, we discuss process goals.
In Section VI, we discuss related work, and in Section VII, we
summarize and reflect, asking the question “What’s stopping
Event-B from being used in an agile development?”

II. EVENT-B
Event-B is a specification language and methodology with

tool support called Rodin [4], [9], [10]. Event-B has received

context C0
sets S . . .
constants

c . . .
axioms

c ∈ S

Figure 1. Example Event-B Context

interest from industry, for the development of railway, automo-
tive, and other safety-critical systems [11]. In Event-B, system
properties are specified using set-theory and predicate logic;
proof and refinement are used to show that the properties hold
as the development proceeds. It is recommended that develop-
ers add detail to the specification in a series of refinement
steps. Proof obligations are automatically generated by the
Rodin tool; the automatic prover is able to discharge many
of them. Event-B is designed to reduce the amount of inter-
active proof needed, during the specification and refinement
steps [12]. Complex systems can be handled using methods of
composition and decomposition [13].

A. Event-B’s Core Technology
The core Event-B modelling artefacts are Machines and

Contexts. Contexts describe the static elements of a system,
using sets, constants and axioms. Machines describe the dy-
namic elements of a system; a machine can see contexts, and
is made of variables, invariants, and guarded events. A simple
context is shown in Figure 1. The context C0 declares a carrier
set S, and a constant c, which is typed in the axioms as a
member of S. Axioms can be used to type constants and specify
assumptions. There are a number of built-in types such as Z
and BOOL, and new types and operators can be added [14].

In Figure 2, we have a machine M0, which sees the context
C0. In this way, M0 gains access to the sets and constants
declared within C0. The machine’s variables are typed in the
invariants clause, which may also contain the description of
other system properties.

Events describe atomic state updates; they are non-
deterministically scheduled, occurring only when the guards
(in the where clause) are true. The example shows a parameter
p1, which is typed as an integer. It has a guard, which states
that the updates can only occur when x < p1. In the action (the

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

machine M0
sees C0
variables x y b w. . .
invariants

x ∈ Z
y ∈ 0 .. 5
b ∈ BOOL
w ∈ S

. . .

event e1
any p1
where

p1 ∈ Z
x < p1

then
y :∈ 0 .. 5
b := TRUE
w := c

end

Figure 2. Example Event-B Machine

then clause) y is non-deterministically assigned a value in the
range 0 . . . 5. Variables b and w are assigned (deterministic
assignment) TRUE and c, respectively. All three assignment
actions take place simultaneously, in parallel.

Refinement is used to add detail to a model. A refining
machine is added to the development, then new variables and
events can be added; or abstract events can be refined by
strengthening the guards, and adding new actions. The new
actions can modify the newly introduced variables.

B. Extensions to the Core Functionality
The Rodin tool is based on Eclipse [15], an open, extensible

tool platform that allows plug-in developers to contribute
new tools. There are many Rodin plug-ins available [16], we
describe a few of them in this section.

One of the first steps in a project is to analyse the
requirements. In Event-B, requirements can be recorded using
ProR [17]. Elements in the Event-B model can be linked to
references in the requirements for traceability throughout the
development. Use case analysis can be done using a use-case
modelling plug-in [18].

The Theory extension provides a way to add new data
types, operators, inference and rewrite rules, and code gen-
eration translation rules [14], and theories can be reused in
different projects. There are several extensions that provide
diagrammatic representations with Event-B semantics, such
as state-machines [19], class-diagrams [20], and progress dia-
grams [21].

When modelling, it is recommended that the behaviour
of the model be explored using ProB [22], an animator and
model-checker for Event-B. ProB allows developers to make
sure that the expected behaviour, of a model, is observed. It can
also be used to interrogate a model’s state when proofs fail.
ProB’s model-checking facilities include a Linear Temporal
Logic feature. An SMT solver is available in a separate plug-
in [23]. Typically, ProB is used by technically-aware team
members. There are additional animation tools for the non-
technical stakeholders, to help them understand the system.
Two such tools are AnimB [24] and B-Motion Studio [25].
Both perform similar roles, where the underlying elements of
an Event-B model are linked to some graphical representations.
As events occur, the state changes, together with the visual
representation. This can be especially useful when validating
requirements, and when showing the development to non-
technical team members and stakeholders.

As models become more complex, decomposition tech-
niques can be used to make the model of the system more

tractable [13]. This also facilitates parallel development, since
the sub-models can be refined independently. It can be used to
introduce structure in the model, and ultimately, it provides a
means to refine into implementation structures. The composed
machine component provides the glue for linking the sub-
models. This can also be used to compose independently
produced components. Another approach is to use the modu-
larisation plug-in [26], which takes a different view. It uses
interfaces, and it introduces the concepts of operations, pre-
conditions, and post-conditions into Event-B.

As the development progresses, it may be useful to perform
simulations with a continuous representation of the environ-
ment, or with a continuous model of parts of the system.
This may be achieved with multi-simulation tools, such
as that based on the Functional Mock-up Interface (FMI),
for simulation of cyber-physical systems [27]. This approach
facilitates modelling, using a mix of continuous and dis-
crete models, which can provide more confidence that non-
functional requirements will be satisfied. A further step is to
generate code from the Event-B models, which can then be
included in an FMI simulation [28]. This simulation uses code
that is very close to the actual software that will run in the
system, and can easily be tailored for use in deployment. This
approach is an extension of the work introduced in [29], where
code generation tools use a scheduling language to describe
implementations for multi-tasking, embedded systems. The
target languages include Ada, Java and C. Another approach to
automatic code generation includes that of Rivera et al. [30],
who produce Java code, and Java Modelling Language (JML)
annotations for downstream verification. Whether or not the
code generator is certified, it can be desirable to perform
testing. There is a model-based testing tool available for
Event-B [31], which generates test-cases from the Event-B
models based on ProB.

III. DAD
The Agile Manifesto [32] was presented in 2001, bringing

together many new ideas that facilitate efficient, and timely,
software development, in an ever changing environment. A
number of concepts figured prominently. These include early
delivery of “useful” resources; iterative development; collab-
oration between customers, and the development team; and
collaboration within the development team itself. A number
of approaches were advocated, such as XP [6], Scrum [7]
and Lean [8]. These approaches consist of “guidelines for
delivering high-quality software in an agile manner” [33].
Hence, it is apparent that agile has no single definition, and
the approaches do not always cover all the necessary aspects
of a development.

In [34], Ambler and Lines comment on the fact that agile
practices were often adapted to the needs of the businesses in
which they were applied. These authors advocate DAD [5],
which provides a framework for this process. It includes a set
of guidelines, drawn up as a result of analysing where agile
approaches fall short. In the remainder of the paper, we make
use of DAD, to understand how Event-B may be used in an
agile project.

DAD is described by its authors as an adaptable process
framework; they identify and discuss the many techniques and
tools that may be used during agile development. Instead of
building on radical, new technologies, the framework adopts

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Working increment
of the software

Sprint Backlog
Sprint

Product Backlog

Daily
Work

Sprint
Duration

Review and Plan Next Sprint

Figure 3. The Traditional Scrum Life-cycle

a pick-and-mix approach from existing technologies, based on
the authors’ practical experience in industry. Rather than being
a step-by-step guide, there are a set of points to consider, and
a set of guidelines that may be followed if appropriate. Many
of the techniques that are part of DAD can also be used with
Event-B. Much of the advice relates to project planning issues.
One of the decisions includes the choice of which technologies
to use, such as, whether to use Event-B. If the decision is yes,
then a choice of modelling features is available; options include
state-diagram [19] and class-diagram representations [20]. The
scope of the formal model should also be defined.

1) Project management: Some of DAD’s core concepts
concern project management; others relate to individuals and
team-working; and, others relate to tools and techniques. From
the project management perspective, DAD does not impose
a single life-cycle model. We understand it as a process
goal-driven approach; as a side-note, the process goals in
DAD should not be confused with goal-based requirements.
In a process goal-driven approach, a semi-formal decision-
making process is advocated, taking place at certain stages
in the development, with the aid of process goal diagrams.
The diagrams are tree-structured, and identify (at its root) a
process decision point - with sub-branches showing the aspects
(called process factors) to be considered. The leaves identify
the choices that are available. We have identified this as one
area which could be useful for Event-B, see Section V.

Scrum is considered to be a construction-centric approach
focussed on producing working code at the end of each
iteration, see Figure 3. With Scrum, code delivery is seen as
the measure of progress. DAD can be viewed as an extension
of Scrum, adding an inception phase, and a transition phase. It
delivers consumable solutions, which can be seen as the more
general notion of artefacts that are useful for stakeholders.
In addition, DAD advocates the use of technology neutral
terms; scrum’s sprints are known as iterations, see Figure 4.
We also note that there are goals for each development
phase, and on-going goals that are considered throughout the
project. Inception is the upfront consideration of design and
architectural issues, and transition relates to the process of
releasing a project.

In a safety-critical setting, there is likely to be more
emphasis on gathering requirements early on, when compared
to non-critical agile developments. Using DAD as a guide, it
recommends that this stage is short relative to the construction
phase of the project. For safety-critical parts of a system, this
could involve a structured approach to requirements specifica-

Minor
Iteration

Major
Iteration

Review and Plan Next Iteration

Inception Transition

Consumable
Solution

IterationIteration
Backlog

Project
Work-item ListRequirements and

Project Planning

Construction
Goals

Transition
Goals

Inception
Goals

Ongoing
Goals

Construction

Figure 4. A Disciplined Agile Delivery Life-cycle

tion. We discuss how this might be done in Section V. But,
the brevity is mitigated by the fact that the process will be
iterative, so details evolve as the project progresses. In the
DAD process, an important task of the inception phase is to
scope the project and plan for the subsequent phases.

The activities performed during a DAD iteration are driven
by a prioritised work-item list, which may contain require-
ments, change requests, feature requests, and so on. This
expands on the scrum notion of a product backlog which
may just contain requirements. The sprint backlog of scrum
is known as an iteration backlog in DAD. The work-item list
also takes into account the risks associated with the item. It is
suggested that high-risk items are dealt with first, in order to
minimise the risk to the project as a whole. It is recommended
that Event-B is introduced to the process at an early stage of
development, to begin modelling the critical parts of a system.
Both approaches are compatible in this respect. Planning
issues, such as which tasks should be undertaken during the
next iteration, are discussed in the iteration planning phase. In
safety-critical systems, we can choose to take a different view
of iterations. When certification of the system is required, it is
unlikely that this will take place more than three or four times
a year, since it is a lengthy process. This means that there
may be a different interpretation of iterations: minor iterations
can be used for achieving and measuring project progress, with
fully certified releases completed at the end of major iterations.
The transition to a released, and supported product is of less
interest in this paper. The life-cycle may be repeated from
the inception phase, for each release of a product, including
maintenance releases.

2) Team-working: DAD emphasises teamwork and the fac-
tors involving the individuals that make up the team. Motivated
individuals are encouraged to learn, and make improvements,
on an individual level, and at the team level. The lessons
learned should be shared, too. New guidelines and patterns
should be created where necessary. However, this needs to
be done in a structured way, so that the patterns can be
retrieved at an appropriate time in the future: there should be
sufficient information available, to allow decision makers, and
potential users, to make their choices. This can form part of
the information that is available at the time of making process
decisions, which we discuss in Section V.

3) Development Techniques: In the available literature, as
in DAD, practitioners advocate the use of test-driven de-
velopment. Test-driven development begins with the creation
of tests that relate to some required feature. This creates a
link between requirements, and tests, and provides traceability

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

between requirements and code. The test is first written so
that it fails, then an implementation is coded so that the test
no longer fails. The main advantage is that it ensures that the
implementation passes the test, from a very early stage, and
also, as features are introduced. However, there is no assurance
that the test, itself, is correct. The test can be further used
as part of a continuous integration process. “Test early and
test often”, is advice that is commonly given, and developers
can generate several builds in a day. Also, since tests are
only introduced when necessary, it is seen as a Just-In-Time
(JIT) technique. When responding to changes, tests have to
be changed, and the is code refactored, which helps to reduce
technical debt [35].

We now consider how these advantages can be maintained,
in a development that uses Event-B. We have highlighted that
ProR can be used to link requirements to models, so that aids
traceability. There are also tools available for automatic code
generation [36], [29], and model-based testing [37], [38], that
can be used to generate tests. This would make it amenable
to continuous integration. Event-B can also be considered as a
JIT approach since abstraction and underspecification are ideal
ways of deferring the addition of specific details. Refactoring
is also possible with Event-B, and improving the tool support
for this is ongoing. Increased confidence in the correctness of
code could be gained by generation of verification conditions,
such as JML [39] for Java.

IV. USING EVENT-B IN A DAD PROJECT

We consider that DAD and Event-B may be of interest to
organizations developing safety-critical systems. We discuss
how Event-B might be used in an agile way, as part of a DAD-
driven project. In DAD, emphasis is placed on the delivery of
consumable solutions, which are a fully working revision of
the system. However, we view models, diagrams, simulations,
and animations, as consumable solutions; these are delivered at
the end of each iteration. Therefore, we consider that working
code is not the only measure of progress. This is different
from the standard DAD approach where only a fully working
revision of the system is considered to be a deliverable. It is
often the case, that artefacts such as proven models, test results,
and simulation results, are necessary to build the safety case
that is required for certification of a critical system [40]. We
believe that Event-B and DAD complement each other well,
and we now present our view of why agile methods, and DAD,
in particular, do so.

We expect it to be beneficial to start using Event-B early
in the inception phase of development. Since the DAD life-
cycle is flexible, it should be straightforward to incorporate
Event-B into the process. However, a development iteration
for a formal development may be longer than that of an
informal development. This may then require the management
of a two-speed development. If this is to be integrated into a
process with a non-formal part, care will need to be taken to
synchronise the iterations.

There are a number of ways to view, and animate Event-
B models, and perform simulations. These should be useful
in the inception phase onwards. Using these, teams can be
kept informed of the latest developments, which is very
important in a team-centric approach. In Figure 5 (which is
inspired by the DAD life-cycle diagram (Figure 2) of [41])
we interpret Event-B artefacts as being consumable solutions

Model Sim

Sim Code

Design Models

Diagrams

Animations

Model Sim

Analysis Models

Diagrams

Animations

Deployable Code

Tests

Inception Construction Transition

Envisioning,
resource allocation,
initial requirements

Change Requests

Release
Requirements engineering, modelling,
simulation, code gen, build, progress monitoring,
review and feedback

Requirements Product

Support

Metrics

Figure 5. Artefacts Available During an Agile-Event-B Project

of the DAD process. We take the view that stakeholders
will be consumers of the artefacts, and the consumables may
vary as the project proceeds. When not contributing directly
towards product deliverables, they should contribute to making
progress throughout the development life-cycle. This includes
supporting the process-decision making activity or building a
safety-case for certification.

A. Event-B in the Inception and Construction Phases
During the inception stage, we could begin recording

requirements using ProR [17]. Requirements can be linked to
corresponding Event-B elements, which facilitates traceability.
DAD guidelines recommend separating functional and non-
functional requirements into different artefacts, in order to
focus on the individual needs of each set of requirements. This
would be possible in ProR, by generating two requirements
specifications. Event-B is most useful for models involving
functional, and safety, requirements; whereas non-functional
requirements are more suited to simulation and testing. In the
latter case, Event-B can assist with multi-simulation [42], [43].

The DAD approach advocates minimal requirements spec-
ification but recognises that a fuller treatment is needed for a
critical system development, which is likely for projects using
Event-B. In Figure 5, we show when various artefacts become
available during the various phases. In the inception phase, the
system’s most important, high-level properties can be stated,
in abstract models. These ideas can be communicated to non-
technical stakeholders, using animation and other graphical
techniques. B-Motion Studio [25] can be used to link images
representing domain elements, to the Event-B model. An
image’s appearance and location can be linked to the state
of a model. So, as the model’s underlying state changes, then
so does the graphical representation. For those requiring more
technical details, the ProB animator and model-checker can be
used [22]. It provides a simulation feature, where more precise
details of the model can be examined. A choice of enabled
events is presented to the user, allowing step-by-step analysis
of the evolving system. The current state, state history, and
event history, are presented. Details of the guard predicates
are available, to help resolve event enablement issues. The
frequent use of ProB is recommended during modelling and
proving.

As the development progresses through the construction
phase, state-diagrams [19] and class-diagrams [20] can be used

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

for specification, and can be used to communicate aspects of
the design to other stakeholders. Throughout the development,
we can assess more of the non-functional requirements, as
the design matures, by simulating Event-B models with more
accurate representations of continuous state. Such an approach
was developed in the Advance project [42], which focussed
on cyber-physical systems, using the Functional Mock-up
Interface (FMI) approach [43]. In later stages, code can be
generated from the Event-B models, and simulation models
can be replaced with Functional Mock-up Units (FMUs) con-
taining code. Then the simulation more closely represents what
happens in the actual target platform. Deployable code [36],
[29] can be generated automatically from the Event-B models,
if desired.

Configuration for specific target platforms can be done dur-
ing the transition phase, in this case, pre-configured templates,
and code injection may help [44]. During the support phase,
change requests can be generated. These will be fed back into
a new development cycle, as seen in Figure 5.

B. Some Observations on Construction Patterns
During the DAD construction phase, there are a number

of patterns (strategies) that could be used. We investigate how
they relate to the use of Event-B, exploring a number of them
individually.

“The team reliably demonstrates increments of software
at the end of each iteration” :- This is the demonstration
that an iteration has been successful, but how do we measure
success when using Event-B? If code is being generated from
the Event-B models, and this code passes all the unit and
integration tests, then we could use the same measure of
success (by demonstrating the increment). However, if we are
not generating code, how is success to be measured?

In order to understand how this strategy would relate to a
project using Event-B, it is important to understand why it is
considered to be so important in DAD. On closer inspection we
find that the important issues are: highlighting problems at an
early stage, avoiding scope creep, and resisting perfectionism.
The use of Event-B is considered to be a major advantage
in helping with the first issue: identifying problems early.
The second, limiting scope creep, seems to be independent
of the use of Event-B. The last point may be more of an issue
with formal development, due to the emphasis on discharging
proof obligations. Guidelines could be drawn up about when
it is practical to proceed without completing a proof, how to
measure the confidence in its correctness, and recording and
reporting a proof’s status.

We consider the relationship between an incomplete proof
and a failing test. Both relate to the failure to satisfy a
requirement. On page 297 of [5] it is stated that “All tests
should be implemented before the end of the iteration, for
the work to be considered to be potentially consumable”.
However, on page 262, a concession is made in the case-
study. At a point in the project, at the end of an iteration,
there are still some failing tests. Now, the end-of-iteration
date is immutable, so it is accepted that some tests fail. So
it would appear that passing all tests should be the goal, but
it may not be achievable in the time allowed. A pragmatic
approach is to have a two-speed process involving minor-, and
major-iterations. All proofs should be completed for major-
iterations (which may only happen a few times a year). Due

to the weaker requirement associated with minor-iterations, the
model, together with adequate documentation, and a measure
of model integrity should be sufficient.

“Iteration dates are fixed” :- This point initially seems to
be technology-neutral. However, in order to meet this goal, the
authors state that it might be necessary to withdraw items from
the work-item list. It is suggested that this may work best for
larger projects. In small projects, or the small part of a large
project that uses Event-B, removal of a work-item from the list
may be a more significant part of the iteration deliverable, this
could be more of a problem. However, it could be mitigated
by flexible working patterns, as recommended in the pattern
below.

“Team members who finish their tasks begin another
task from the iteration work-list, or help others with their
tasks” :- This encourages developers to make the best use
of the time available. It would seem to be common sense,
but for it to be useful in Event-B, it requires some notion
of collaborative working (in Event-B). It would certainly be
possible to perform some kind of pair modelling. However,
for modellers to be working on independent, parallel tracks,
existing composition techniques need to be improved, and this
work is being undertaken as part of the ADVICeS project [1].
It includes construction of a useful notion of components,
libraries, and interfaces. If such techniques, for parallel de-
velopment, are not available for Event-B or are ineffective,
then Event-B could not really be considered agile with respect
to team-working.

“Stakeholders may request a demo (of working soft-
ware) at any time” :- In a properly versioned Event-B
project, using automatic code-generation tools and continuous-
integration, this is theoretically possible. It should always be
possible to demonstrate a build, but it might not be the most
recent work. In a project using minor-, and major-iterations, it
may be some time between stable builds since minor iterations
may be incomplete. From a practical standpoint, formal mod-
elling is not always seen as a process where certified, automatic
code-generation is important. If there is no certified, automatic
code-generation, then we can still satisfy this goal. But there
is less assurance that the high integrity of a formal model
has been transferred to the implementation. In addition, if we
are using ProB animation, or executable models, as a form of
validation, then there is, again, less assurance that what has
been validated is transferred to the implementation.

C. Construction Anti-patterns
A number of anti-patterns are described by the authors of

DAD. We consider those of interest to us, and describe them
as patterns. “Mitigate risk”: We assume that the use of Event-
B was a step towards achieving this. The authors’ advice is,
to make sure any concerns are flagged and are prominent in
the working environment. “Prove the architecture, with code,
early”: Would this be too complex a task for Event-B to model
and generate code, so early in construction? Event-B may be
useful for modelling the architecture early in the project, but
this aspect requires investigation. “Handle missing require-
ments”: The discovery of a missing requirement can have
repercussions due to dependencies on other requirements. The
strategy, in a software-based project, is to provide a stub for
the missing functionality or swap out the blocked requirement.
In Event-B, requirements are related to model invariants, so,

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

the missing requirement and its related invariant could simply
be added. However, some analysis of the requirement should
be done before adding it to the model, to assess validity. We
envisage that a process, using Event-B in an agile way, would
be able to accommodate this.

V. PROCESS GOALS AND EVENT-B
Once the decision to use Event-B has been made, one may

wish to examine what development strategies are available,
or one may need more detailed guidance on some technical
aspects. We have been inspired by DAD’s goal-oriented deci-
sion approach, to propose a goal-driven process for Event-B
development. This could be useful when modelling as part of
an agile process, and may be useful to the Event-B community
in general.

We consider two categories of potential users: experienced
teams and individuals who need a check-list of things to
consider, and novices. However, to accommodate continuous
improvement in the process, even experienced teams need to
be able to record what they have learned, in the form of
guidelines, patterns, and components. They then need a way of
retrieving that information, so that they may be used to make
process decisions, or design decisions, or for use in modelling.
Inability to find useful knowledge at an early stage of a project
is a barrier to the successful introduction of Event-B. In the
case of reusable components, the deployment of components is
being investigated [1]. The second category of users is novice
teams or individuals. In either case, introducing Event-B into a
company’s existing development process can be difficult since
Event-B advocates can struggle to get accepted into existing
company culture.

There has been a great deal of knowledge recorded already,
about how to proceed at various stages of the development
process. However, this knowledge is widely dispersed on the
web, much of it in an unstructured manner. We would like
to reduce the number of entry points for obtaining guidance,
for the use of Event-B, backed by a goal-driven process and
a structured repository of data. However, we are aware that
many companies may wish to keep their own private repository
too since the information contained within it would be their
intellectual property. We should, therefore, attempt to accom-
modate this in our approach. Another barrier that exists is that
much of the knowledge resides behind an academic pay-wall
which prevents industry from gaining free access to much of
the available information. Our main motivation is to facilitate
the creation of a goal-oriented decision-making process. The
aim is to guide users, both experienced and inexperienced,
providing them with the correct information to make informed
decisions. Users need information upon which to base the
decisions, and they may also need guidance/reminders about
what issues they need to consider.

A. Monitoring mechanisms and metrics
Feedback to developers about the progress of a project

is given through monitoring mechanisms, e.g., with the use
of metrics and measurements (see Figure 4). They should be
easily accessible throughout the duration of the project so that
they can provide up to date information, and enable prompt
action on any issues that are observed. Collecting product
and process measurements early in the development stages is
beneficial since it enables the analysis of the quality of the

model, as well as improvement of modelling and development
process. Furthermore, it contributes to empirically validate
the developers perception about the model, and allow better
estimation of a project. In [3] we proposed the placement of
monitoring mechanisms in short and long iterations of Scrum
process. Since the DAD framework extends Scrum, we can
use the same metrics and measures, and collect them at the
suggested times.

Collecting useful and meaningful measurements, for for-
mal developments used within an agile development process,
requires much more than just reusing the metrics commonly
used in the programming setting. Not only does one need
to consider metrics in terms of requirements and models,
but also keep in mind the specifics of formal modelling and
agile processes. There are several ground rules regarding the
monitoring process: keep it simple and continuous; collect and
combine several metrics and look for trends; and, use metrics
as indicators rather than facts [5].

Some metrics for agile, and in particular, DAD develop-
ments are mentioned in [5]. Below we present the ones that
are advocated for DAD and can be easily adapted for Event-B
development:

• Burn rate depicts how resources are invested in a
particular effort, measured by counting, e.g., money
or time involved in such an effort. In the case of
Event-B modelling, one can use work points assigned
to an item (being an estimate of the man-hours nec-
essary to model a requirement or prove a property) or
according to complexity estimation (points assigned
on the experience-basis). It can be displayed by, e.g.,
using a burnup chart, where the burnup chart would
be comprised of modelled and proven items, and the
total amount of work to do on these.

• Delivered functionality is the only true measure of
progress of a software development project, it is
measured by tracking items in a project. In Event-
B development observing the modelled and proven
items with respect to the ones left in the project
backlog would give the full picture on the state of the
project. Progress of modelling in Event-B can also be
measured with statemachine-based metrics [45].

• Velocity describes how much functionality the team
can deliver per iteration. It is team-specific and mea-
sured in the form of counting ”use case points” or
”story points”. For our purpose, counting requirements
modelled and proved, or work points per iteration
would show the velocity of Event-B development.

Note that the term item stands for a requirement, and/or a
property.

As for quality aspect of a development, it is proposed to
measure the number and severity of defects. However, in the
case of Event-B developments, this metric is not meaningful,
as the measurement should be kept on the model level. We pro-
pose to use several product measurements, e.g., for the size and
complexity of a model, based on Event-B syntax [46] for each
refinement step. Moreover, the number of proof obligations,
both automatic and interactive, will indicate the complexity of
modelling (and proving). Furthermore, adherence to modelling
conventions and styles can be collected via model inspections
and displayed in a form of a histogram or line chart.

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Very much advocated for agile developments, lifecycle
traceability (to requirements, design, etc.) is enabled by fol-
lowing the refinement of the artefacts of interest. This mea-
surement also shows that product quality is heavily impacted
by the quality of the process.

There are several process-related, time-based, metrics that
can be useful for Event-B developments. These are, for in-
stance, activity time – the time it takes to model and prove
an item (requirement or property); time invested – the amount
of time spent on a project, where work can be categorised by
activities like modelling, proving, re-modelling; and change
cycle time – the period of time from when a requirement,
a property or enhancement request is identified, until it is
resolved (cancelled, or modelled and proved). All of these
metrics can be displayed as a trend on a histogram or line
chart.

B. Other Guidance for Modellers/Developers
There are several other approaches that could contribute

towards the decision-making process, e.g., in preparation for
the iteration planning activity of Figure 4. Kobayashi et al.
propose the use of a method to guide refinement strate-
gies [47]. The dependencies between domain elements (called
phenomena) and artefacts of the model (which are Event-B
invariants) are analysed. Domain elements are modelled, as
usual in Event-B, using sets, variables constants, and events.
The analysis involves computing the relationships between the
domain elements in the invariants, and comparing the order
in which domain elements can be added to the model, with
the aim of simplifying the refinement. From the analysis, a
weighted list of refinement plans is derived, which can help
guide development. In further work [48], the authors propose
a systematic approach to discount invalid refinement plan
proposals.

Another approach is to use existing refinement patterns to
propose alternative refinement plans when proof fails [49]. In
this approach, a reasoned modelling critic is used to analyse
the model, and failing proofs. Under the covers, a search is
performed to find the closest match(es) of the current model
to existing patterns. Alternative modelling strategies, in the
form of high-level refinement plans, are suggested to solve the
problem. This approach provides feedback to the user on a
day-to-day basis; and can also provide feedback in the high-
level, strategic, decision process.

VI. RELATED WORK

Agile methods have established themselves in industry as
a diverse range of practices, aimed at improving the software
development process. The use of agile methods in critical-
systems developments, in particular, with formal methods, has
been investigated. For instance, the work of Eleftherakis and
Cowling describes XFun [50], an agile approach to formal
development using the X-machine formal method. Paige and
Brooke [51] show how an integrated formal method (Eiffel [52]
and Communicating Sequential Processes (CSP) [53]) can be
developed in an agile manner. However, here the emphasis
is on methods engineering. More generally, Gary et al. [54]
discuss their experience of using agile methods in a critical-
system development. They conclude that there is scope for
more research in this area. The Safety Critical Systems Club
discuss the practicalities of using agile development in the

real world [55], with contributions from various developers
from the safety-critical systems business. They conclude that
some agile practices are already in use in a number of the
companies involved, but they are used with a great deal of
caution. Wolff describes how the Vienna Development Method
(VDM) could be used in a project that uses Scrum [56]. Here,
the formal approach is used in parallel with traditional software
engineering methods. The formal approach can be used to
communicate details about the critical parts of the system to
the implementers. In other work, Black et al. posit a positive,
but cautious, outlook for an agile/formal mix, in [57], as do
Larson et al. in [58].

VII. CONCLUSION: WHAT IS STOPPING EVENT-B FROM
BEING USED IN AN AGILE DEVELOPMENT?

We believe that, in theory, Event-B is suitable for use
in an agile project. We know that agile methods are being
used (at least to some extent) in safety-critical systems de-
velopment [55], so we would expect that Event-B might be
useful here, too. In the technical report [2], a preliminary
assessment was performed, to determine which aspects of
Event-B could be considered to contribute to an agile approach.
A preliminary case-study demonstrating the use of Event-B
with agile methods is described in [59]. There are a number of
improvements that could be made to make Event-B more agile.
Some are tooling issues, like improving refactoring, a major
feature of the agile approach. Other improvements require
theoretical advancement, as well as tool support, such as the
development of reusable components or new diagrammatic
representations. In addition to improvements to theory and
tools, we may also seek to improve the modelling process.
When considering how Event-B could be used as part of an
agile engineering process, we believe that a process-decision
framework, similar to the one advocated by DAD, would
be useful. The aim would be to provide developers (both
beginners and experts) with structured assistance throughout
the development life-cycle.

When considering how DAD and Event-B complement
each other or conflict, we ask many questions. For instance,
how do we interpret consumable solutions when developing
critical-systems with a formal method? Do they have to involve
working code, as required in a mainstream software develop-
ment with DAD? This is particularly relevant for embedded
systems, where the ultimate deliverable involves hardware.
In this case, simulation is used to postpone commitment to
hardware, until the latest possible stage. So we take the view
that consumables are artefacts that contribute (in a timely
manner) to the ultimate success of a project. They may be
of use to different stakeholder audiences; for instance, ProB
animation for technically-minded developers, B-Motion Studio
for the non-technical, metrics for project planners, and so
on. In critical-system development, it may be acceptable to
defer code generation, and use animation to perform on-
going validation, since it is so important that everybody fully
understands the issues involved. Code can be generated auto-
matically from Event-B, but the refinement process, down to
the implementation-level, may take longer; and the generated
code might provide a less clear result, than model animation.
It should be easier to make changes to an abstract model too,
since unnecessary detail is omitted from the model, making
this more agile.

7Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

We also need to understand how formal modelling culture
would work in an agile world. An example of this difference
might be that between failed tests, and failed proofs. At the end
of an iteration, in an agile development, it can be acceptable
to have some tests that fail (with agreement from the client).
It is understood that as the development proceeds more is
learned, which will help resolve the issue, downstream. It
would seem, therefore, that it should be acceptable too, to
have failed proofs at the end of an iteration; but this sits much
less comfortably in the formal world, where so much effort is
invested in discharging proof obligations. It may be considered
that it is enough to be reasonably confident that a proof will
succeed, even though the proof remains to be completed. If
this is the case, how do we estimate and record our confidence,
and how do we measure progress in light of this? In safety-
critical systems development, one would almost certainly need
the minor- and major-iteration approach if it is decided that
all proofs must succeed for the safety-case to be acceptable;
without feedback from the minor-iterations, the development
process would not be very agile.

Team-working is a fundamental aspect of an agile project.
In an Event-B project, this means that models must be worked
on concurrently. We hope to do this with component-based de-
velopment, which also promotes reuse. Composite components
are components made with machines and other components. It
should be possible to independently refine at the component-
level. However, independent refinement, at a finer granularity
(i.e, the sub-models of a component) may be problematic, due
to the dependencies introduced by properties specified over the
state of the whole component. We are currently exploring the
issues, and we are developing a new notion of interfaces for
Event-B in the ADVICeS project [1].

The work to maintain and improve Event-B is ongoing.
We have identified that we may make a contribution by de-
signing a goal-driven process decision framework, backed by a
structured repository for guidelines, and practical advice about
development strategies. This would supplement the existing
support approach, which is in the form of a wiki. This idea
is inspired by the DAD notion of a goal-driven process. The
framework could target beginners and experts separately. It
should provide help and guidance for novices; for expert users,
the approach could provide a checklist of things to consider.
The repository could include information about development
patterns, guidelines for development strategies, and have a
component library. Ideally, for use in industry, there should
be an option to set up a private repository too, which might
be required to protect a company’s IP.

VIII. ACKNOWLEDGEMENTS

This work was carried out within the project ADVICeS,
funded by Academy of Finland, grant No. 266373.

REFERENCES

[1] The ADVICeS Team, “The ADVICeS Project,” available at
https://research.it.abo.fi/ADVICeS/.

[2] M. Olszewska and M. Walden, “FormAgi - A Concept for More Flexible
Formal Developments,” Tech. Rep. 1124, 2014.

[3] M. Olszewska and M. Walden., “DevOps Meets Formal Modelling in
High-Criticality Complex Systems.” in In Proceedings of QUDOS2015
workshop within European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE), 2015.

[4] J. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[5] S. Ambler and M. Lines, Disciplined Agile Delivery: A Practitioner’s
Guide to Agile Software Delivery in the Enterprise. IBM Press, 2012.

[6] R. Jeffries, A. Anderson, and C. Hendrickson, Extreme Programming
Installed. Addison-Wesley Professional, 2001.

[7] K. Schwaber and J. Sutherland, “The Scrum Guide, from scrum.org,”
2010.

[8] M. Poppendieck, “Lean Software Development,” in Companion to
the proceedings of the 29th International Conference on Software
Engineering. IEEE Computer Society, 2007, pp. 165–166.

[9] J.R. Abrial et al., “Rodin: An Open Toolset for Modelling and
Reasoning in Event-B,” Software Tools for Technology Transfer,
vol. 12, no. 6, Nov. 2010, pp. 447–466. [Online]. Available:
http://dx.doi.org/10.1007/s10009-010-0145-y

[10] “The Rodin User’s Handbook,” Available at http:// handbook.event-
b.org/.

[11] A. Romanovsky and M. Thomas, Industrial Deployment of System
Engineering Methods. Springer, 2013.

[12] S. Hallerstede, “Justifications for the Event-B Modelling Notation,”
in B, ser. Lecture Notes in Computer Science, J. Julliand and
O. Kouchnarenko, Eds., vol. 4355. Springer, 2007, pp. 49–63.

[13] R. Silva and M. Butler, “Shared Event Composition/Decomposition in
Event-B,” in FMCO Formal Methods for Components and Objects,
November 2010. [Online]. Available: http://eprints.soton.ac.uk/272178/

[14] M. Butler and I. Maamria, “Practical Theory Extension in Event-B,” in
Theories of Programming and Formal Methods, ser. Lecture Notes in
Computer Science, Z. Liu, J. Woodcock, and H. Zhu, Eds. Springer
Berlin Heidelberg, 2013, vol. 8051, pp. 67–81. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-39698-4 5

[15] J. des Rivieres and W. Beaton, “Eclipse Platform Technical
Overview,” Available at http://www.eclipse.org/articles/Whitepaper-
Platform-3.1/eclipse-platform-whitepaper.html.

[16] “The Rodin Plug-ins Wiki,” at http://wiki.event-
b.org/index.php/Rodin Plug-ins.

[17] M. Jastram, “ProR, an Open Source Platform for Require-
ments Engineering Based on RIF,” available at http://deploy-
eprints.ecs.soton.ac.uk/245/1/seisconf.pdf, 2010.

[18] R. Murali, A. Ireland, and G. Grov, “A Rigorous Approach
to Combining Use Case Modelling and Accident Scenarios,” in
NASA Formal Methods, ser. Lecture Notes in Computer Science,
K. Havelund, G. Holzmann, and R. Joshi, Eds. Springer International
Publishing, 2015, vol. 9058, pp. 263–278. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-17524-9 19

[19] V. Savicks and C. Snook, “A Framework for Diagrammatic Modelling
Extensions in Rodin,” in Rodin Workshop Proceedings, 2012, pp. 31–
32.

[20] C. Snook and M. Butler, “UML-B and Event-B: An Integration of
Languages and Tools,” in The IASTED International Conference on
Software Engineering - SE2008, February 2008. [Online]. Available:
http://eprints.ecs.soton.ac.uk/14926/

[21] M. Plaska, M. Walden, and C. Snook, “Documenting the Progress of
the System Development,” in Methods, Models and Tools for Fault
Tolerance. Springer, 2009, pp. 251–274.

[22] M. Leuschel and M. Butler, “ProB: An Automated Analysis Toolset
for the B Method.” STTT, vol. 10, no. 2, 2008, pp. 185–203.
[Online]. Available: http://dblp.uni-trier.de/db/journals/sttt/sttt10.html#
LeuschelB08

[23] D. Déharbe, “Integration of SMT-solvers in B and Event-B Develop-
ment Environments,” Science of Computer Programming, vol. 78, no. 3,
2013, pp. 310–326.

[24] C. Métayer, “AnimB Homepage,” http://www.animb.org/index.xml.

[25] L. Ladenberger, J. Bendisposto, and M. Leuschel, “Visualising Event-
B models with B-motion Studio,” in Formal Methods for Industrial
Critical Systems. Springer, 2009, pp. 202–204.

[26] A. Iliasov et al., “Supporting Reuse in Event B Development: Mod-
ularisation Approach,” in Abstract State Machines, Alloy, B and Z.
Springer, 2010, pp. 174–188.

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

https://research.it.abo.fi/ADVICeS/
http://dx.doi.org/10.1007/s10009-010-0145-y
http://handbook.event-b.org/
http://handbook.event-b.org/
http://eprints.soton.ac.uk/272178/
http://dx.doi.org/10.1007/978-3-642-39698-4_5
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
http://wiki.event-b.org/index.php/Rodin_Plug-ins
http://wiki.event-b.org/index.php/Rodin_Plug-ins
http://deploy-eprints.ecs.soton.ac.uk/245/1/seisconf.pdf
http://deploy-eprints.ecs.soton.ac.uk/245/1/seisconf.pdf
http://dx.doi.org/10.1007/978-3-319-17524-9_19
http://eprints.ecs.soton.ac.uk/14926/
http://dblp.uni-trier.de/db/journals/sttt/sttt10.html#LeuschelB08
http://dblp.uni-trier.de/db/journals/sttt/sttt10.html#LeuschelB08
http://www.animb.org/index.xml

[27] V. Savicks, M. Butler, J. Bendisposto, and J. Colley, “Co-simulation
of Event-B and Continuous Models in Rodin,” in 4th Rodin
User and Developer Workshop, June 2013. [Online]. Available:
http://eprints.soton.ac.uk/360400/

[28] J. Bendisposto et al., “ADVANCE Deliverable D4.2 (Issue 2) Methods
and Tools for Simulation and Testing I,” The ADVANCE Project, Tech.
Rep., 2013.

[29] A. Edmunds and M. Butler, “Tasking Event-B: An Extension to
Event-B for Generating Concurrent Code,” in PLACES 2011, February
2011. [Online]. Available: http://eprints.ecs.soton.ac.uk/22006/

[30] V. Rivera and N. Cataño, “Translating Event-B to JML-Specified Java
Programs,” in 29th ACM Symposium on Applied Computing, Software
Verification and Testing track (SAC-SVT), Gyeongju, Korea, March
24-28 2014, pp. 1264–1271.

[31] I. Dinca, F. Ipate, L. Mierla, and A. Stefanescu, “Learn and Test for
Event-B - A Rodin Plugin,” in ABZ, ser. Lecture Notes in Computer
Science, J. Derrick, J. A. Fitzgerald, S. Gnesi, S. Khurshid, M. Leuschel,
S. Reeves, and E. Riccobene, Eds., vol. 7316. Springer, 2012, pp. 361–
364.

[32] M. Fowler and J. Highsmith, “The Agile Manifesto,” Software Devel-
opment, vol. 9, no. 8, 2001, pp. 28–35.

[33] T. Dingsoyr, S. Nerur, V. Balijepally, and N. Moe, “A Decade of Agile
Methodologies: Towards Explaining Agile Software Development ,”
Journal of Systems and Software, vol. 85, no. 6, 2012, pp. 1213–1221.

[34] S. Ambler and M. Lines, “Going Beyond Scrum: Disciplined Agile
Delivery,” Disciplined Agile Consortium. White Paper Series, 2013.

[35] V. Krishna and A. Basu, “Software Engineering Practices for Minimiz-
ing Technical Debt,” in Proceedings of the International Conference on
Software Engineering Research and Practice (SERP). The Steering
Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), 2013, p. 1.

[36] F. Degerlund, R. Gronblom, and K. Sere, “Code Generation and
Scheduling of Event-B Models,” Turku Centre for Computer Science,
Tech. Rep. 1027, 2011.

[37] Q. Malik, J. Lilius, and L. Laibinis, “Scenario-based Test Case Gen-
eration using Event-B Models,” in Advances in System Testing and
Validation Lifecycle, 2009. VALID’09. First International Conference
on. IEEE, 2009, pp. 31–37.

[38] A. Stefanescu, F. Ipate, R. Lefticaru, and C. Tudose, “Towards Search-
based Testing for Event-B Models,” in Software Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE Fourth International
Conference on. IEEE, 2011, pp. 194–197.

[39] N. Cataño, T. Wahls, C. Rueda, V. Rivera, and D. Yu, “Translating B
Machines to JML Specifications,” in Proceedings of the 27th Annual
ACM Symposium on Applied Computing. ACM, 2012, pp. 1271–
1277.

[40] P. Bishop and R. Bloomfield, “A Methodology for Safety Case Develop-
ment,” in Industrial Perspectives of Safety-Critical Systems. Springer,
1998, pp. 194–203.

[41] S. Ambler and M. Lines, “Scaling Agile Software
Development: Disciplined Agility at Scale,” available at
http://disciplinedagileconsortium.org/Resources/Documents/ScalingAgile
SoftwareDevelopment.pdf, May 2014.

[42] The Advance Project Team, “Advanced Design and Verification
Environment for Cyber-physical System Engineering,” Available at
http://www.advance-ict.eu.

[43] The Modelica Association Project, “The Functional Mock-up Interface,”
Available at https://www.fmi-standard.org/.

[44] A. Edmunds, “Templates for Event-B Code Generation,” in 4th
International ABZ 2014 Conference, 2014. [Online]. Available:
http://eprints.soton.ac.uk/364265/

[45] M. Olszewska and M. Walden, “Measuring the Progress of a System
Development,” Dependability and Computer Engineering: Concepts for
Software-Intensive Systems: Concepts for Software-Intensive Systems,
2011, p. 417.

[46] M. Olszewska and K. Sere, “Specification Metrics for Event-B De-
velopments,” in Proceedings of the CONQUEST 2010: ”Software
Quality Improvement”, I. Schieferdecker, R. Seidl, and S. Goericke,
Eds. International Software Quality Institute, 2010, p. 112.

[47] T. Kobayashi and S. Honiden, “Towards Refinement Strategy Planning
for Event-B,” arXiv preprint arXiv:1210.7036, 2012.

[48] T. Kobayashi, F. Ishikawa, and S. Honiden, “Understanding and Plan-
ning Event-B Refinement through Primitive Rationales,” in Abstract
State Machines, Alloy, B, TLA, VDM, and Z - 4th International
Conference, ABZ 2014, Toulouse, France, June 2-6, 2014. Proceedings,
2014, pp. 277–283.

[49] G. Grov, A. Ireland, and M. Llano, “Refinement Plans for Informed
Formal Design,” in Abstract State Machines, Alloy, B, VDM, and Z.
Springer, 2012, pp. 208–222.

[50] G. Eleftherakis and A. Cowling, “An Agile Formal Development
Methodology,” in Proc. 1st South-East European Workshop on Formal
Methods, 2003, pp. 36–47.

[51] R. Paige and P. Brooke, “Agile Formal Method Engineering,” in
Integrated Formal Methods. Springer, 2005, pp. 109–128.

[52] B. Meyer, “Design by Contract: The Eiffel Method,” in TOOLS (26).
IEEE Computer Society, 1998, p. 446.

[53] C. Hoare, Communicating Sequential Processes. Prentice Hall, 1985.
[54] K. Gary et al., “Agile Methods for Open Source Safety-critical

Software,” Software: Practice and Experience, vol. 41, no. 9, 2011,
pp. 945–962. [Online]. Available: http://dx.doi.org/10.1002/spe.1075

[55] The Safety Critical Systems Club, “Agile Development for Safety
Systems,” https://scsc.org.uk/e346.

[56] S. Wolff, “Scrum Goes Formal: Agile Methods for Safety-critical
Systems,” in Proceedings of the First International Workshop on Formal
Methods in Software Engineering: Rigorous and Agile Approaches.
IEEE Press, 2012, pp. 23–29.

[57] S. Black, P. Boca, J. Bowen, J. Gorman, and M. Hinchey, “Formal
versus Agile: Survival of the Fittest,” Computer, vol. 42, no. 9, 2009,
pp. 37–45.

[58] P. Larsen, J. Fitzgerald, and S. Wolff, “Are Formal Methods Ready for
Agility? A Reality Check.” in FM+ AM, 2010, pp. 13–25.

[59] M. Olszewska, S. Ostroumov, and M. Walden, “Synergising Event-B
and Scrum - Experimentation on a Formal Development in an Agile
Setting,” Abo Akademi University, Tech. Rep. 1152, 2016.

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

http://eprints.soton.ac.uk/360400/
http://eprints.ecs.soton.ac.uk/22006/
http://disciplinedagileconsortium.org/Resources/Documents/ScalingAgileSoftwareDevelopment.pdf
http://disciplinedagileconsortium.org/Resources/Documents/ScalingAgileSoftwareDevelopment.pdf
http://www.advance-ict.eu
https://www.fmi-standard.org/
http://eprints.soton.ac.uk/364265/
http://dx.doi.org/10.1002/spe.1075
https://scsc.org.uk/e346

	Introduction
	Event-B
	Event-B's Core Technology
	Extensions to the Core Functionality

	DAD
	Project management
	Team-working
	Development Techniques

	Using Event-B in a DAD Project
	Event-B in the Inception and Construction Phases
	Some Observations on Construction Patterns
	Construction Anti-patterns

	Process Goals and Event-B
	Monitoring mechanisms and metrics
	Other Guidance for Modellers/Developers

	Related Work
	Conclusion: what is stopping Event-B from being used in an agile development?
	Acknowledgements
	References

