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Abstract—Quality assurance takes a huge effort during a software
development project. Especially the generation of test cases and
test data but also the execution, analysing the results and the
maintenance consumes a lot of resources. Model-based testing
tries to reduce the effort by automating several testing activities.
In this paper, an approach for test case decomposition by means
of system decomposition is introduced. The system’s structure
is described by composition structure diagrams, the systems
behaviour by state charts. By transferring structural decompo-
sition steps and use of the additional behavioural descriptions,
existing test cases can be adapted to the refined system description
automatically.

Keywords–Model-Based-Testing, Test-Case-Decomposition, Se-
quence Diagram

I. INTRODUCTION

Testing is one of the most widely used practices to ensure
high quality of software systems. At random the real behaviour
of a system or a component is compared with the desired one
by in advanced defined test cases. It takes up a very big share of
the effort of a software development project [1]. Model-Based
Testing (MBT) uses models to support testing activities, for
example, by generating test cases automatically. By means of
a test case specification a finite set of test cases (a test suite) is
selected, that will be executed on the system [2]. According to
the test case specification, the resulting test suite can contain
a very large number of test cases. Since the number of test
cases in a test suite is one of the factors that have a significant
influence on total testing costs [3], one would like this number
to be as small as possible. However, an afterward reduction of
the test suites size can be both a hard problem [4] [5], as well
as have an adverse effect on the quality of the test suite [6].
Several studies suggest that manually derived test cases provide
an alternative to automatically generated ones. For example,
Pretschner et al. [7] have found that not the size of a test suite
but rather the basis of the test case generation reveals about the
fault-finding ability. They observed that test suites containing
a much higher number of automatically generated test cases
detect only a few more errors than fewer, hand-crafted test
cases. Marques et al. [8] compared manual ad hoc tests with
automatically generated ones. They confirmed the observation,
that manually derived test suites are usually smaller but not less
effective in finding bugs. The study even gave evidence that
manually derived test suites could find more major bugs. This
suggests that a small test suite containing manually derived test
cases provides an alternative solution to automatic test case
generation. Although, the manual test case derivation has the
main disadvantage of higher effort, it is nevertheless feasible
in limited range of the software development process like user

acceptance testing. If the strong fault-finding ability with the
small test suite size could be transferred to other testing levels,
the total costs of testing could be reduced.

The contribution of this paper is to introduce an approach
that allows reusing manually derived test cases at different
testing levels by automatically decompose these test cases
analogously to the decomposition of the system under test
(SUT). In this way, test suites for component or unit testing
can be created that also have a strong fault-detection capability
but contain only a small number of test cases.

In this paper, we present an approach for decomposing test
cases by means of system decomposition to create new test
cases for testing the SUT at different levels of decomposition.
The next section introduces the overall approach, a running
example and specifies the requirements to test case decompo-
sition at the example. In Section 3, the test case decomposition
is described in detail. Section 4 gives an overview over related
work. In the last section, the results and plans for future work
are presented.

II. OVERALL APPROACH

In this section, we introduce our approach for decomposing
test cases. Figure 1 shows schematically how the test case
decomposition can be applied during a software development
project. Based on the requirements of the customer a first
specification of the system is created manually. At the same
time, test cases for user acceptance testing are derived. These
test cases are black box tests that do not consider the internal
structure but only the systems behaviour. During the develop-
ment, the specification is getting more and more detailed by
decomposing the system into components and describing the
behaviour of these new components. Now, instead of creating
new test cases for testing these components the already existing
test cases can be used by enriching them with the new informa-
tion about the internal structure and behaviour of the system.
For every decomposition step at the systems specification these
decompositions are transferred automatically to the test cases
and so they are adapted and able to test the new defined
system components. After starting implementing the specified
components of the system the decomposed test cases can be
used to test the components against the specification.

For applying our approach, a structural description of the
SUT and its internal structure consisting of components and
their ability to interact with each other is needed. We use an
adapted version of UML Composition Diagrams to describe
the internal structure of the systems and its components.
For the behavioural description of the SUT and its internal
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Figure 1. Schematic illustration of the test case decomposition approach applied during a software development process

components UML State Machines are used as graphical repre-
sentation. At last we use an adapted version of UML Sequence
Diagrams to describe the test cases.

In the next subsections, we introduce a running example
and explain the diagrams used for describing the system’s
structure, behaviour and test cases in detail.

A. Running Example
To illustrate our approach, we use a small example of a

central locking system (CLS) for cars which is inspired by
the example used by Krüger et al. [9] and is shown in Figure
2. The upper image of Figure 2 shows that the CLS defines
an interface with the four signals lock, unlock, locked and
unlocked which are used for the communication of the CLS
with its environment. The lower image of Figure 2 shows
the state-based behaviour of the CLS. There are the initial
state unlocked and the state locked. The CLS can switch
from unlocked to locked state when receiving the signal lock.
Additionally the signal locked is sent and vice versa when
receiving the signal unlock and sending the signal unlocked.

B. Structural Description
The graphical representation of the structural description

of the SUT and its internal components and subcomponents is
based on UML Composition Structure Diagrams [10] (CSD).
The structural decomposition of the CLS is shown in the left
image of Figure 3. The CLS consists of the parts control
and motors. The control part contains exactly one instance
of the control component and the motor part contains two
to five instances of the motor component. The parts can
communicate with each other via the MotorControl interface,
which is provided by the motor component and defines the

Components

Central Locking System

+lock
+unlock
+locked
+unlocked

Locking

Central Locking System

locked

unlocked

?unlock/
!unlocked

?lock/
!locked

Figure 2. Structural (upper) and behavioural (lower) description of the
central locking system

three signals up, down and ready. Furthermore, the control
part can communicate with the environment of the CLS via
the Locking interface, which is provided by the CLS itself
and defines the signals lock, unlock, locked and unlocked. The
motor and control components could be decomposed in the
same way.

C. Behavioural Description
The behavioural description of the SUT and the compo-

nents defined in the CSD is based on UML Statecharts [10]
(SC). In addition to the components, the signals to be used in
the SC are defined by the interfaces in the CSD.

The upper part of the right image of Figure 3 shows
the behaviour of the CLS, which was already explained in
Subsection II-A. In the lower part SCs, for control component
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Figure 3. Structural (left) and behavioural (right) descriptions of the CLS
and its components

and motor component are shown. For control component the
four states unlocked, locking, locked and unlocking are defined.
The double framed states unlocked and locked are so-called
stable states. That means, the component may stay in this
state for an unlimited period of time. Unlocked state is the
initial state of this component. After receiving the signal
lock being in this initial state it sends the down signal and
switches to locking state. This state can only be left if every
receiver of the down signal responses with a ready signal.
Then this component switches to locked state after sending the
locked signal. Switching the states to unlocking and unlocked
states are performed analogous with the unlock, up, ready and
unlocked signals. For motor component there are three states
defined: The initial stable state off and up and down states.
After receiving up respectively down signal, motor component
switches to up respectively down state. Since, they are both
no stable state motor component has to leave them and switch
back to off state and consequently sends a ready signal.

The statecharts shown in Figure 3 describe the behaviour of
components at two different decomposition levels of the SUT:
The CLS at the top-most level and one level below control
and motor component. For tracing the refinement between two
levels a relation that assigns a set of states of the lower level
to every stable state of the upper level has to be defined. If
a SC of a lower level has both stable and not stable states
the assigned set of states must contain at least one state from
this SC. Else the relation to this lower level SC is optional.
This relation will be used later to ensure that the components
of a decomposed test case are in states that corresponds to a
state of the component which was tested by the former test
case. If there is no such relation for one or more SCs, the
final states of the components in the decomposed test case do
not have to be considered. In the CLS example locked state
from control component and off state from motor component
are assigned to locked state from CLS and unlocked state from
control component and off from motor component are assigned
to unlocked state from CLS.

D. Test Case Description

For describing the test cases, diagrams are used that are
based on UML Sequence Diagrams [10] (SD). Every test case
is described by one SD and consists of exactly one lifeline,
which represents an instance of the component to be tested by
this test case, and signals (messages) that are sent between the

:CLS

lock

unlocked

locked

Testcase CLS

unlocked

Figure 4. Graphical representation of a test case for CLS component

lifeline and its environment during this test case. This lifeline
also contains the states that the corresponding component is
in. The sent messages correspond to the signals that are sent
or received during the transitions in the SCs and can cause a
state change of the lifeline.

Figure 4 shows one test case for the CLS. Starting with the
CLS lifeline in unlocked state receiving the lock message from
its environment which causes sending the locked message and
a switch to locked state. Then receiving the unlock message
causes the CLS to send the unlocked message and a state
change back to unlocked state. This behaviour corresponds to
the SC for the CLS shown in Figure 2.

III. TEST CASE DECOMPOSITION

In this section, the test case decomposition is described
in detail and its application is shown at the running ex-
ample. The test case decomposition contains of two stages:
Test case extension and test case partition. During the first
stage, the test case is extended using the information of the
systems decomposition from the CSD and the SCs of the
new subcomponents. Hence, the test case is enriched with
information about the internal communication between the
subcomponents. Within the second stage the extended test case
is partitioned into several test cases that respectively test one
of the subcomponents of the component to test. These two
stages of the test case decomposition are described in detail
during the next subsections.

A. Test Cases Extension
In the first stage, a given initial test case is getting

extended. That means that the structural decomposition and
the new information about the behaviour of the decomposed
components are transferred to the initial test case. The initial
test case contains exactly one lifeline, which represents an
instance of the component to be tested, the messages that
are sent between the lifeline and its environment and the
lifelines states during the test case. At first the new structural
information is added to the initial test case by replacing the
initial lifeline by lifelines for all instances that compose the
initial component as describes in the CSD. After that the new
behavioural information are added. This is done by retaining
the initial messages from and to the environment and add the
new messages which are sent between the new lifelines. Figure
5 shows the test case extension as pseudocode.

Using the example test case illustrated in Figure 4 we
perform the test case extension. Figure 6 shows the test case
at several intermediate steps during and after its extension.
The algorithm gets as input the test case tc to be extended
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Data: test case tc to be extended, lifeline ltc of component to
be tested by tc, list of messages M sent in tc

Result: extended test case tc
1 Replace ltc by lifelines Lext for subcomponents

List of free messages Mf := ∅
foreach m ∈ M do

2 if ltc receives m then
3 Mark m as free incoming Message
4 else
5 Mark m as free outgoing Message
6 M = M \m

Mf = Mf +m
7 while transition with ANY-Trigger available or Mf 6= ∅ do
8 while transition t with ANY-Trigger available do
9 fire transition t

Mn:= list of messages received due to fire t
Mf = Mn +Mf

update state of corresponding lifeline

10 if Mf 6= ∅ then
11 mi ∈ Mf first free incoming message

L:=set of lifelines, that can receive m
if L 6= ∅ then

12 foreach lifeline l ∈ L do
13 Create copy m′ of mi

Bind m′ to l and mark m′ as bound
Mn:= list of messages received due to m′

Update state of l
Mf = Mn +Mf

14 else
15 foreach free outgoing message mo ∈ M do
16 if mi == mo then
17 Bind mo to sending lifeline l of mi

Update state of l
Mf = Mf \mo

18 Delete mi from tc and Mf

Figure 5. Pseudocode for test case extension

containing the lifeline ltc and a list of messages M that are
sent between ltc and its environment. After its execution, the
algorithm returns the extended test case tc.
At the first step the algorithm replaces the lifeline ltc by a set
Lext with lifelines in their initial state for every instance of
a subcomponent as defined in the CSD of the component to
test. For variable multiplicities of a part in the CSD, the lowest
valid value greater zero is selected as number of instances.
After this step the test case is adapted to the new structural
information. Now, the empty list Mf is defined to collect
all free messages. Free messages are messages, that do not
have a sending (free outgoing message) or receiving (free
incoming message) lifeline. In the following loop (lines 3 - 9)
all messages in M are marked either as free incoming or free
outgoing message depending on whether they were received
or sent by lifeline ltc and added to the end of Mf . The former
order of the messages is retained. The current state of the
test case is shown in the upper left image of Figure 6. The
former lifeline :CLS was replaced by a control lifeline and
two motor lifelines as two is the lower bound of part motors
(see Figure 3). The lock and unlock messages were marked

as free incoming message so one of the available lifelines can
receive them. The locked and unlocked messages were marked
as free outgoing messages and a lifeline has to be found that
sends these messages.

The next loop (lines 10 - 31) is executed while there are
transitions left that can be fired, more precisely transitions
without a trigger (ANY-trigger) are available from the current
states of the lifelines in Lext or there are free messages
left. First, all transitions with ANY-Trigger are fired (lines
11 - 15). Thereafter, new messages that are received due to
firing these transitions are added at the top of Mf and the
states of the corresponding lifelines are updated. If there is no
transition with ANY-trigger left the first free incoming message
mi ∈ Mf is bound to suitable lifelines in Lext. Thereto, the
corresponding statecharts of the lifelines in Lext are searched
for transitions that have the current state of the lifeline as
source and mi as trigger. For every possible receiver lifeline
l ∈ Lext a copy m′ of mi is created and bound to l, i.e.,
l now receives the copy m′ and m′ is marked as bound (no
longer a free message). Due to firing a transition, new free
incoming messages Mn can be sent and are added at top
of the list Mf after updating the state of lifeline l. If there
are no possible receiving lifelines all remaining free outgoing
messages mo are compared to mi and if there is a mo with
the same signal as mi, mo is bound to the lifeline sending mi

and mo is removed from Mf . At the end the message mi is
deleted from the test case tc and the list Mf . In our example,
there are no possible transitions with ANY-trigger, but there
are free incoming messages. The first one that is chosen is
the lock message. A copy of this message can be bound to
the control lifeline because it is in unlocked state and there
is a transition from unlocked state with trigger lock in the
corresponding statechart. As a result of firing this transition,
the new free incoming message down is added at top of Mf

and control lifeline switches to locking state. Since, there are
no more possible receiver lifelines the lock message can be
deleted from the testcase. The upper central image of Figure
6 illustrates the current state of the test case.

The new down message can now be bound at the two motor
lifelines. So there are two copies of this message, which are
bound to these lifelines, causing them to switch to down state
and the original message can be deleted. The current state
of the test case is shown in upper right image of Figure 6.
Now, there are two ANY-trigger transitions available which
send the new free incoming ready messages and switch the
motor lifelines back to off states. After binding these two ready
messages to control lifeline it receives a new locked message
and switch the lifelines state to locked state which is shown
in the lower left image of Figure 6. Now, there is no possible
receiver lifeline for this message so the algorithm looks for an
equal free outgoing message. Since there is a free outgoing
locked message this free outgoing message can be bound to
control lifeline and delete the free incoming message locked.
Hence, control lifeline sends the new up message (Figure 6
lower image). The following steps are analogue to them after
adding the down message. After switching the control lifeline
back to unlocked state there are no possible transitions with
ANY-trigger and no free incoming messages left and the test
case extension has finished. To check, whether the extension
is correct it is checked if the final states of the lifelines of the
extended test case are in a state that is in the set related to the
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Figure 6. Extension of the sample test case

final state of the initial test case.

B. Test Case Partition
The test case that was extended by the algorithm presented

in the last section has to be partitioned into several test cases
for the several subcomponents. First the test case is vertically
partitioned, i.e., for every lifeline only this one lifeline and only
these messages, which are sent or received by this lifeline are
considered. After this step there exists one test case for every
lifeline that occurs in the extended test case. Now, these test
cases can be partitioned horizontally at stable states, i.e., if
there is a stable state that is not the initial or final state of a
test case, this test case is split up there. The two new test cases
contain only these messages that are sent before respectively
after reaching the stable state. The stable state additionally
becomes the final state of the first and the initial state of the
last new test case. Since it is possible that several identical
test cases are created, duplicated test cases can be refused. In
our example the extended test case would be partitioned into
six new test cases; two for every lifeline with each horizontal
splitting at the middle stable state locked respectively off. The
left image of Figure 7 shows the partitioning as dotted lines.
Now, there are two times two identical test cases for the motor
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Figure 7. Partition of the extended test case
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component so the duplicates can be removed and the four test
cases are left that are shown in the right image of Figure 7.

C. Tool Support

To apply the techniques for describing the structure and
the behaviour of the SUT as well as the test cases to test it
and apply the test case decomposition a tool support will be
provided. Currently the automatic test case extension based on
structural and behavioural descriptions is supported. Additional
graphical editors for creating the structural and behavioural
descriptions and the test cases will be provided. Furthermore
integration with tools for automatic test case execution and
analysis like JUnit is planned.

IV. RELATED WORK

Dias Neto et al. [11] give a survey of MBT approaches by
comparing more than 400 papers. Approaches that use state
based behaviour descriptions were developed amongst others
from Bernard et al. [12]. They generate abstract test cases from
state machines describing the behaviour of classes. Several
selection criteria can be chosen. The test cases are only suitable
to test classes but not components.

Another approach presented by Tretmans [13] uses labelled
transition systems and the ioco-testing theory. However, the
test case selection is still an open issue. The approach of
Xu et al. [14] generates test cases by two different strategies:
Structure-oriented and property-oriented generation. However,
they also do not cover different levels of decomposition with
their test cases.

The approaches of Elbaum et al [15] and Saff et al. [16]
generate unit tests from system tests. But it is necessary to
execute the system to get unit test. So they are not available
at implementation time.

Briand et al. [17] investigated the impact of changing
models on the generated test cases. They divided the test
cases into three categories: Obsolete, retestable and reusable.
However, they cannot update the test cases after changes, for
example decompositions, of a model.

V. CONCLUSION AND FUTURE WORK

We have presented an approach that enables an automatic
test case decomposition by using the decomposition of the
SUT. The test cases are extended with the systems or compo-
nents internal communication and partitioned into several test
cases that can be used to test the new components defined by
the systems decomposition.

Future work includes consideration of the sequencing of
existing and new messages during the test case extension as
well as variable initial states by allowing a history for the
behavioural description and the handling of indeterministic
state charts. Another important aspect is tracing and impact
analysis of changes of the initial test. Furthermore, the tool
support will be improved by providing customized graphical
editors for describing the systems structure and behaviour
and the test cases and the integration of functional testing
tools. After this, we plan to evaluate our approach at several
existing system to compare it with existing test case generation
approaches.
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