
Feature Mining for Product Line Construction

Yutian Tang
and Hareton Leung

Department of Computing
The Hong Kong Polytechnic University

Hong Kong SAR, China
Email: {csytang,cshleng}@comp.polyu.edu.hk

Abstract—Software product line engineering is a promising ap-
proach to generate software assets with systematic reuse property
resulting in a significant decrease in development cost. Numerous
studies and practical work have proved the reliability, reusability,
productivity and the reduced R&D cost attributes of product
line engineering. Whereas, the adoption rate of the product
line is still relatively low considering the complexity and risk
of the task given. It is crucial to have effective approaches to
migrate legacy software into product line by mining features in
the legacy. Nevertheless, common approaches in feature mining
are mainly designed for general systems instead of product line.
Therefore, in this paper, we firstly highlight characteristics that
a well-designed feature-mining algorithm should contain and
pinpoint the shortcomings of existing methods. To enhance the
performance of existing approaches for product line, we proposed
two feasible directions of research in terms of feature mining for
product line.

Keywords–Software product line; Feature mining; Feature lo-
cation; Reference checking.

I. INTRODUCTION

Software Product Lines (SPL) [1] provides tailored soft-
ware artifacts with reusable property to stakeholders with
minimal R&D effort, considering their general process allows
common assets to be shared rather than developing individ-
ual systems separately. Among all approaches in generating
software product lines, a promising low cost approach should
be migrating and refactoring legacy software into a product
line, since many fundamentals of legacy could be reused. For
the migration, the legacy software has to be reorganized by
feature base and then adjusted to a certain pattern to fit the
product line. In software product line, variant is a proprietary
term for feature and it is designed and specified by domain
experts or developers to be either mandatory or otherwise.
It assists normalizing the product lines feature model. For
instance, in a database product line, a transaction feature
should be mandatory for all sub-systems in the product line;
however, each sub-system may have its own definition of
ranking approach (ranking feature) to process data items.

As reported that successful adoption of the software prod-
uct line will greatly reduce the cost of generating software
products, provide timely service and products to market with
reusable characteristics, and decrease the effort for quality
assurance. Despite the benefit brought by SPL, the adop-
tion still stays at a low level when compared to other new
techniques, including Service Oriented Architecture, Aspect
Oriented Programming, and so forth. The underlying reason
could be the initial investment, including constructing variants

and common assets, in the product line is relative high, and it
also costs a lot for developers/software suppliers in terms of
risk and complexity [2]. To simplify this process, the variants
and common assets could be built by transferring legacy
software to product line. The main challenge for migrating
is that features in a product line could range from coarse
to fine granularity with common and unique purposes like
generating various products for different users. For example,
in the MobileMedia product line, the feature play video is
embedded in 24 classes in the system [3]. Therefore, the first
and essential step in migrating legacy software into a product
line should be locating features and extracting the source code
related to the feature concerned given the condition that the
code fragments implementing a feature could be scattered in
the system instead of concentrating in a single component or
file.

In this paper, we will review several existing approaches
in feature mining and pinpoint the potential research gaps and
the main challenges. Later, we will discuss the lessons learned
from our work and other researchers. To focus the research
work in feature mining, we will propose two potential direc-
tions to consider and investigate with underlying motivations.
The contribution of this paper includes following aspects: (1)
presenting prospective research gaps in feature mining and
shortcomings of current approaches; and (2) proposing some
feasible directions for further research.

The rest of this paper is organized as follows: in Section
II, we present the essential parts that should be considered
in providing feature mining work in product line. Several
potential research directions will be presented in Section III.
The conclusion will be covered in the last section.

II. FEATURE MINING

Generally, a feature could be represented/defined by a set
of code segments, which implement functions of the feature,
and assist interaction with other modules (conjunction part).
For example, the feature transaction in a bank product line
cope with a business transaction, which could be a billing or a
transfer. Functions belonging to this feature could be pay bill,
and generate receipt. In addition, the conjunction part could
be functions in charge of acquiring customers bank account
information.

Feature mining in product line engineering is highly related
to feature location, concern location, and other related fields,
within the specific context and constraints in a product line.
Developing a feature mining approach for product line is

29Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

different from designing one for general software products,
given the particular circumstance and restriction in product
line. Here, we identify several conditions and constraints that
will restrict the algorithmic design:

1) Fine granularity design: one significant distinction is
that, in product line engineering, a follow-up step
is to reconstruct and rewrite legacy code annotated
by features into variants for reuse purpose instead
of investing on an individual feature. With this con-
straint, approaches for traditional software products
may not be suitable for product line use, as they are
designed at the coarse granularity rather than a fine
granularity level. Furthermore, the coarse granularity
cannot guarantee the consistency of code segments
extracted and is not fully adaptable for reconstruction
of a product line;

2) Type checking: as reported in [4], type errors are
more prone to occur in product lines rather than tra-
ditional software. If a product line is ill typed, it may
introduce several potential errors during compilation
and runtime. These errors include [4]:

a) Method invocation: If a function in class A
invokes another function in class B and the
invoked method in B is annotated as a variant,
deletion of class B (removes a variant from a
product line, which is allowed in the product
line context) will incur undeclared invocation
in class A as shown in Figure 1;

class Painter{
void setPainter(Painter pt,Color col,

Background bacg){
canuvs.set(pt,col,bacg.getCurrScope());

}
}
class Canuvs{
#ifdef CANUVS_SET
boolean set(Painter pt,Color col,Scope scope)

{....}
#endif
}

Figure 1. An example of method invocation type error.

b) Referencing types: Similarly, in referencing-
type error, if a class is referenced as a return
type or a customized type, when the class
is annotated and serves as a variant, the ref-
erencing object still remains to be resolved,
since the dangling class object will point to
null. For the case depicted in Figure 2, if
class Background is annotated and removed,
the object bacg will incur a compilation error,
since it refers to null;

c) Parameters: Similar to prior case referencing
types, if an object, which refers to the an-
notated class, is also annotated, this variant
will still fail, since removing this referring
object will leave a missing part in the original
code slot, which will lead to a compilation
error. As shown in Figure 3, in method set,

class Painter{
void setPainter(Painter pt,Color col,

Background bacg){
canuvs.set(pt,col,bacg.getCurrScope());

}
}
#ifdef BACKGROUND
class Background{....}
#endif
}

Figure 2. An example of referencing type error.

the object bacg is also annotated as part
of variant BACKGROUND, and if variant
BACKGROUND is removed from the prod-
uct line, object bacg should be removed as
well, which will lead to insufficient param-
eters for method set (three instead of two).

class Painter{
void setPainter(Painter pt,Color col,#ifdef

BACKGROUND Background bacg #endif){
canuvs.set(pt,col,bacg.getCurrScope());

}
}
class Canuvs{
boolean set(Painter pt,Color col,Scope scope

){...}
}

Figure 3. Parameter type error.

d) Feature interaction:In general, there are mul-
tiple features embedded in a product line. In
addition, the connections between features in
the feature model show how features can in-
teract and conjunct. Further, in product line,
feature dependency will show how features
are used and organized. As explained in[5],
a practical example of feature dependency is
that feature A can be selected if and only
if feature B or C is selected without feature
D, which shows the dependency relation be-
tween feature A, B, C and D in the feature
model.

Next, we will introduce the lessons learned from our study
and other related studies. By investigating previous studies
in feature mining in a product line, our previous research
in feature mining and other approaches in feature location
(non product line use) [6], [7], we find following important
considerations have been overlooked when preparing a well-
defined approach for feature mining:

1) Attention should be given to analyze variability and
feature model: Traditional approaches focusing on
feature location merely extract features and code
segments attached to these features without sufficient
effort on feature interaction detection. As known, fea-
tures do not just interact with each other. Therefore,

30Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

detecting interdependencies and interactions from
legacy software is still a pending challenge requiring
additional work, as most feature location technique
neglects this aspect, which is critical for product line
engineering. Here, by detecting feature interaction,
we mean exploring the interaction from source legacy
automatically rather than just defining it in a feature
model.

2) Quality assurance: In migrating legacy software into
product line, focuses are often on the procedure of
migrating without considering the change of quality
in this continuous process. Therefore, we believe
providing a set of quality metrics to measure the
change in quality, such as reusability, reliability, and
readability will assist the practitioners in evaluating
the results of feature mining.

III. PROPOSED DIRECTIONS OF FURTHER STUDY

As presented above, several conditions and constraints must
be considered when developing feature-mining approaches in
product line engineering. We identify two possible directions,
reference detection and data mining approach, to cope with
feature mining in the context of product line engineering. The
reason we recommend these directions are twofold: firstly,
both could explore and mine features at a fine granularity; and
secondly, these approaches are currently not well investigated
for this context. The essential idea of these methods is to
construct a standard graph to represent the system. Further-
more, the problem needed to be solved, namely, finding code
segments for feature concerned, could be altered to discovery
a set of nodes in the graph. Reference detection applies a
searching strategy to the graph, whereas data mining groups
programming elements using the concept of similarity.

Prior to providing concrete description of two potential
research directions, we will first present the general procedure
of feature mining, which is the infrastructure of all feature-
mining approaches on legacy code. The general process of
feature mining should consist:

• Defining and describing the features concerned and
relationship among them in a model;

• A domain export or developer should identify seeds
as starting point for each feature. Seed should be a
single or a set of representative programming elements
(methods, variables) that stand for the feature;

• For a single feature, the seed chosen along with the
feature-mining approach will iteratively inspect related
code segments and mark the code segments, which
belonging to the same feature, with the same label;

• In the last step, the developers or tools will reorganize
or rewrite the code fragments to variants.

In this paper, our work only focuses on the third step, which
is providing competitive frameworks to cope with feature-
mining task.

A. Reference detection
Reference detection is originally motivated by a simple

type of relation in a program named define-use, which rep-
resents a link between a definition of an instance variable
and its later reference to the object [8]. For instance, in a
normal object-oriented (OO) language, a single variable could

be defined by a statement ”Timer localtimer = new Timer()”,
which defines a new instance localtimer under class Timer. A
reference statement could be ”this.launch(localtimer)”, which
sets the object localtimer as a parameter of launch method.
For this scenario, a link should be built between the define-
statement and reference-statement in the program. A statement
could be set as an attribute with two possible values:def, and
ref. To simplify this procedure, we treat a program as a set
of values and operations upon them. Next, we will introduce
different types of variables and associated information that
should be detected besides the reference relation.

1) Local variable reference:A local variable could be de-
clared inside a method or as an argument of a method.
For this kind of variable, it could be referenced by
other programming elements inside the method and
also reference other programming elements inside
and outside the method. Specifically, some local
variables even have smaller valid boundaries. For
example, if a local variable is defined inside a for
statement block, its valid scope will be within this
for statement. By checking the location, at which
a variable is defined/declared, and the context, it is
feasible to obtain the valid scope of the variable.

2) Instance variable reference:Instance variables nor-
mally hold all attributes of classes and employed
as local variables or fields for the class. There are
two issues related to the scope concern: the first
is the location that this type of instance variable
is declared, and the second is whether hierarchical
relations exist, which means for a certain class or
interface, its super-class, interface, and sub-classes,
should also be extracted if any.

3) Class variable reference: Class variable is global for
all instances of the class and generally its life cycle
will finish when the class is destroyed. For a class
variable, we should consider the same issues as those
of instance variable.

4) Class/interface field reference:Fields are the inherent
attributes of a class or interface, and are allocated
memory when the class/interface is created. The
following information should be collected to build the
def-use link when inspecting a class/interface field:
(1) detect the scope of current reference, since a field
of a class could be used outside the class/interface in
which the field is declared; (2) explore the location
where the original class/interface and the field are
declared; and (3) build the link between this field
reference and instance variable declaration.

5) Reference variable reference:When a variable is as-
signed directly to another variable, these two vari-
ables share the same memory location. Thereby, we
can use a joint node with two identifiers to represent
these two variables, and all reference links to any of
them will be redirected to this joint node instead.

After all def-use relations are extracted from the source
code, we can re-construct and re-build the original program
into a standard graph, in which programming elements under
reference or defined relations are connected. A simplified
example is shown in Figure 4 with some critical information
hidden, such as, location information, type information and so
forth. After constructing this infrastructure, the original code

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

segments are annotated with the reference/define information.
Then, numerous algorithms could be proposed based on this
framework by checking the fan-in, fan-out, graph topology
structure, ranking connected items by granularity and so forth.
This framework offers the following advantages: both fine and
coarse-granulated programming elements are encapsulated in
the graph and only fine granularity information is required.
The rational for keeping both fine and coarse granularity
information is to ensure completeness of the program and ease
to locate a specific programming element. We propose two
approaches to resolve this. One is separating the graph into
sub graphs by granularity; and another is setting searching
conditions, for instance, statement, expression, variable and so
forth, when searching related programming elements in the
graph. That is, Abstract Syntax Tree (AST) node could be
adapted to work as the node in this framework and the type
of AST node could be used to search nodes under a specific
granularity.

Figure 4. An example of referencing model

Determining the feature boundary under reference
detection. Technically, features could be connected by a
reference link (e.g. call a function), or physically embedded
in the same compiling unit from the code base perspective.
Specifically, the reference link could be any type listed above.
For this case, algorithm referenceTrack can be employed to
assist in finding the boundary of a feature:

Algorithm 1 referenceTrack(threshold)

for single seeds s do
create Ps = {p|p references s}

end for
for p ∈ P do

compute uniqueness value uvp by uvp =(
links p refereces s
all p reference links −

links s references p
all s reference links

)
∗ g(p)

end for
Rank elements in P , according to uvp, and if the max uvt >
threshold, it will be annotated into the feature.
The definition statement dt of t will be annotated.Then set
dt as s.And recall this algorithm with dt.

Specifically, ”# links p references s” represents the number
of links from p to s; ”# p reference links” shows the number
of links p reference others. g(p) shows the granularity of p
and its value is designed for showing the interference from
the granularity aspect. The algorithm referenceTrack will stop
in STEP 3, if uvt is below the threshold assigned.

B. Data mining based approach

Apart from the program analysis techniques, machine
learning techniques, especially data mining approaches are
also recommended for feature mining. Inspiration of using
data mining for feature mining comes from the common trait
that both attempt to group items into distinct clusters. One
basic idea in data mining is to measure the distance between
different items to show their ”closeness”, which is applied to
indicate their similarity. In feature mining, this idea should
be adjusted to grouping programming elements into different
clusters, and each cluster could represent a unique feature.
Here, we provide several potential relations that could be used
to detect the distance among programming elements:

1) textitReference distance(call graph based):In our
model, the reference distance is defined as the number
of jumps from one programming element to another
and all links connecting intermediate elements are
reference relation links.

2) textitControl distance(control graph based):Control
graph could be extracted from a program to indicate
its control structure. Control distance, in our model,
is defined as the jump in a control graph from one
programming element to another with the restriction
that the distance between two programming elements
in the same control branch should be 1.

3) textitText comparsion:Similarity could also be de-
tected from the textual aspect with the assistance of
text comparison algorithms[9]. Using different text
comparison algorithms, the text distance could be
described using the value computed by the token
frequency, common strings and so forth.

On the contrary to def-use model, the data mining based
approach determines closeness from various aspects by build-
ing different types of graphs, including call graph and control
graph. By utilizing these potential relations, the similarity
among programming elements can be determined. Finally,
programming elements could be classified into different clus-
ters with each cluster representing a unique feature. In this
framework, the seeds selected are used to represent distinct
features and other related programming elements are explored
iteratively. Here the seed merely serves as the trigger of the
algorithm, and is used to detect other potential programming
elements.

Determining feature boundary under data-mining ap-
proach.Different from reference detection, the mining process
for a single feature will stop when one of following stopping
criteria is met:

1) For a single node in the graph, if all neighbors
(data or control) of this node are annotated by other
features, the mining process for this node will stop;

2) A threshold could be set to restrict the selection of
programming elements and could be used to stop the
mining process for the current node. That is, if and
only if the distance computed higher than the set
threshold, it will be considered to be added to this
feature. If scores of all neighbors (data or control)
of the current node are lower than the threshold, the
mining procedure for this node will stop.

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

IV. CONCLUSION

Despite many research works have investigated feature
location and variability detection in product lines, the task
of feature mining still poses great challenges, considering the
particular circumstance of software product line, complexity of
the task, and other special constraints as discussed previously.
Mostly, current approaches are insufficient to cope with the
fine granularity concern in product line and further detection is
required to guarantee feature-mining work flows [8] in legacy
software migration. Based on our previous work and other
studies in feature mining, we identify key traits that a well-
defined product line feature mining approach should contain.
The conditions mentioned are highly recommended prior to
proposing a well-performing algorithm. With the research gap
identified, we proposed two feasible directions to investigate
the feature mining. We strongly believe that with general rules
and constraints specified in the product line engineering, new
approaches can be defined for feature mining in product line
and will lead to reduction of risk and effort in transferring
legacy software into the product line.

REFERENCES
[1] K. Pohl, G. Bockle, and F. v. d. Linden, “Software product line engi-

neering foundations, principles, and techniques,” 2005.
[2] C. Catal, “Barriers to the adoption of software product line engineering,”

ACM SIGSOFT Software Engineering Notes, vol. 34, no. 6, 2009, pp.
1–4.

[3] E. Figueiredo, N. Cacho, Sant, C. Anna, M. Monteiro, U. Kulesza,
A. Garcia, S. Soares, F. Ferrari, S. Khan, F. C. Filho, and F. Dantas,
“Evolving software product lines with aspects,” pp. 261–270, 2008.

[4] amp, C. stner, S. Apel, Th, T. m, and G. Saake, “Type checking
annotation-based product lines,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 21, no. 3, 2012, pp. 1–39.

[5] M. Mendonca, A. Wsowski, and K. Czarnecki, “Sat-based analysis
of feature models is easy,” in Proceedings of the 13th International
Software Product Line Conference. Carnegie Mellon University, 2009,
Conference Proceedings, pp. 231–240.

[6] M. A. Laguna and Y. Crespo, “A systematic mapping study on software
product line evolution: From legacy system reengineering to product line
refactoring,” Sci. Comput. Program., vol. 78, no. 8, 2013, pp. 1010–1034.

[7] C. Kastner, A. Dreiling, and K. Ostermann, “Variability mining: Consis-
tent semi-automatic detection of product-line features,” Software Engi-
neering, IEEE Transactions on, vol. 40, no. 1, 2014, pp. 67–82.

[8] E. Sderberg, T. Ekman, G. Hedin, and E. Magnusson, “Extensible
intraprocedural flow analysis at the abstract syntax tree level,” Science
of Computer Programming, vol. 78, no. 10, 2013, pp. 1809–1827.

[9] B. Cleary, C. Exton, J. Buckley, and M. English, “An empirical analysis
of information retrieval based concept location techniques in software
comprehension,” An International Journal, vol. 14, no. 1, 2009, pp. 93–
130.

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

