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Abstract— The Dynamic Adaptive System Infrastructure (DA-

iSI) is a platform which supports dynamic adaptive system. 

DAiSI can change its behavior at runtime. Behavioral changes 

can be caused by user’s needs, or based on context information 

if the system environment changes. It is a run-time infrastruc-

ture that operates on components that comply with a DAiSI-

specific component model. The run-time infrastructure can 

integrate components into the system that were not known at 

design-time. Communication between components in DAiSI is 

supported by services. Services of components are described by 

domain interfaces, which have to be specified by the compo-

nent developer. Components can use services of other compo-

nents, if the respective required and provided domain interfac-

es of components are compatible. However, sometimes services 

that have been developed by different developers can do the 

same thing, e.g., provide the same data or operations, but they 

are represented by different syntactic. Therefore, in a previous 

article, we present an approach which enables the use of syn-

tactically incompatible service by using an ontology-based 

adapter that connects services, which provide the same data in 

different format. In this paper we use an existing ontology to 

semantically describe interfaces of components and present an 

improved algorithm using SPARQL and reasoning to discover 

interfaces in triplestore. In addition, we propose to use the 

historical data to predict the best suitable interface.  

Keywords—component models; self-adaptation; dynamic 

adaptive systems; ontology. 

I. INTRODUCTION 

An increasing interest in dynamic adaptive systems could 
be observed in the last two decades. A platform for such 
systems has been developed in our research group for more 
than ten years. It is called Dynamic Adaptive System Infra-
structure (DAiSI). DAiSI is a component based platform that 
can be used in self-managed systems. Components can be 
integrated into or removed from a dynamic adaptive system 
at run-time without causing a complete application to fail. To 
meet this requirement, each component can react to changes 
in its environment and adapt its behavior accordingly. 

Components are developed with a specific use-case in 
mind. Thus, the domain interfaces describing the provided 
and required services tend to be customized to very specific 
requirements of an application. This effect limits the re-use 
of existing components in new applications. The re-use of 
existing components is one key aspect in software engineer-
ing for minimize re-developing existing components. One 
measure to aspect is to increase reusability. However, re-
using components in other application contexts than they 

have been originally developed for is still a big challenge. 
This challenge gets even bigger, if such components should 
be integrated into dynamic adaptive systems at run-time. 

A valid approach to tackle this challenge is adaptation. 
Because of the nature of DAiSI platform, in DAiSI applica-
tions, DAiSI components are considered as black boxes.  
Capabilities and behavior of DAiSI components are specified 
by interfaces that describe required and provided services. In 
this approach, we suggest a solution to couple provided and 
required services that are syntactically incompatible but 
semantically compatible. To be able to utilize specific pro-
vided services that offer the needed data or operations on a 
semantical level, we suggest constructing an adapter that 
enables interaction between services that are only compatible 
on some semantical level [1].  

The goal of an adapter is to enable communication be-
tween two formerly incompatible components. In order to 
achieve a common understanding between components, a 
common knowledge-base is needed. In this work we use 
ontology as the common knowledge-base to represent ser-
vices and the schema of data. Ontology and run-time infor-
mation represented by an ontology language are stored in 
triplestore. Required interfaces can discover/map the repre-
sentation of provided interfaces in the database by using a 
Query Engine. To illustrate that this approach is suitable for 
adaptive systems, we extend our DAiSI infrastructure by an 
ontology-based adapter engine for service adaptation.  

To strengthen the dynamic adaptive nature of the DAiSI, 
we generate these adapters at run-time. We argue that these 
adapters cannot be generated at compile time, because the 
different components that should interact with each other are 
not known at compile time, but only at integration time, 
which is the same requirement just like dynamic adaptive 
systems.  

In this work, we improve the algorithm for discovery of 
the provided interfaces with using semantic query language 
and reasoning. Programming interfaces with semantic nota-
tion are translated firstly into triplestore readable semantic 
format and then stored into the triplestore. Required interfac-
es can discover the required interfaces with help of their 
semantic description and relation of used ontologies. As 
opposed to by discovery one-to-one relation of entities of 
function, input- and output parameters between provided and 
required interfaces in OWL file, discovery of provide inter-
faces is supported by using SPARQL, which can represent 
the entire required interface based on the graph pattern in-
cluding filter function. Especially, in this work, we use the 
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historical data of output parameters of interface to predicate 
and filter for discovered provided interfaces.  

To illustrate this approach, we use a parking space exam-
ple to show how to create an adapter to enable interaction 
between semantical identical components that have been 
developed by different developers or for different applica-
tions.  

 The rest of this paper is structured as follows: In Section 
II, we describe the already sketched problem in more detail. 
Section III gives an overview of relevant related work. In 
Section IV, we give a short overview of the DAiSI compo-
nent model and a few hints for further reading. Section V 
explains structure of the adapter engine and adaptation pro-
cesses. In Section VI, we show Interface description with 
using ontology layer. Section VII explains the discovery 
process of provided services based on query engine and 
triplestore, before the paper is wrapped up by a short conclu-
sion in Section VIII. 

II. PROBLEM DESCRIPTION  

Specifications of interfaces between the components in a 
dynamic adaptive application are mostly the early stage of 
developing process. Specified interfaces could not be 
changed, whenever a dynamic adaptive application is devel-
oped. They are very domain specific and their definition is 
driven by the use cases of the future application in mind. To 
ensure many applications run in a shared context with other 
applications from different domains, all specified interfaces 
are centrally managed in a library that is so called interface 
pool.   

It is a tedious task to harmonize one large interface pool 
among different developers from different vendors that oper-
ate in different domains. It often causes results in a slow 
standardization process. This slows the development process 
down and, especially in dynamic adaptive systems, dimin-
ishes the chances for the development of new applications. 
Developers will in those cases often start their own interface 
pool. This, on the other hand, reduces the chances to re-use 
existing components from other domains.  

Additionally, the management of one central interface 
pool in a distributed system does not scale well. One way to 
mitigate this issue would be a de-centralization of manage-
ment of interfaces. To tackle these challenges, we propose to 
keep the domain interfaces in de-centralization and allow the 
domain interfaces between different domains un-
harmonized.  

To be able to harmonize services across domains, every 
interface pool is required to use ontology. By either merging 
these ontologies later, or by using distributed ontologies we 
ensure that interfaces from different interface pools base on a 
common knowledge. Based on common knowledge, on-the-
fly generated adapters enable to interaction syntactically 
incompatible services across domains.  

Services of components can be provided by implement-
ing domain interfaces, so called provided services. Desired 
services of components can be specified by other domain 
interfaces, so called required services. In this case, required 
and provided interfaces could not be the same domain inter-
face.  In order to build communication between provided and 

required services, they must stand in relation to each other, 
mapping between provided and required services are neces-
sary. In the graphical notation of DAiSI components, provid-
ed services are marked as filled circles, required services are 
noted as semi-circles (similar to the UML lollipop notation 
[2]) and the relation between those two services are depicted 
by interfaces notations in domain area and across the DAiSI 
components linking interface for provided and required ser-
vices (cf. Figure 1). 

 

Domain

<<interface>>
RequiredService

<<interface>>
ProvidedService

Component development

config 1

config 2

config 1

 

Figure 1. DAiSI components and domain specific interface definitions. 

 
We propose that services that are semantically compati-

ble, but lack compatibility on a syntactical level, should be 
usable. For example, an application wants to use parking 
spaces information, which is supported by different system 
providers. Each provider has its own service, they are mostly 
not compatible. The lack of compatibility can be covered by 
the following three types of incompatibility: Different Nam-
ing, Different Data Structure, and Different Control Struc-
ture. Adapters between the different services can be generat-
ed. We believe that we can connect all semantically compat-
ible but syntactically incompatible services using adaptation 
based on these three types. We illustrate the three types of 
incompatibility below with parking use case. 

A. Different Naming 

By “Different Naming” we denote cases in which the 
names of interfaces describing services or names of functions 
do not match. While they are syntactically different, their 
names share the same semantics and could be used synony-
mous.  

 

 
 

 

Figure 2. Example of two interfaces with Different Naming. 

<<Interface>> 
ParkingSpaceInterface 

 

getParkingSpaces (): ParkingSpace [] 

<<Interface>> 
ParkingSlotInterface 

 

getParkingSlots (): ParkingSpace [] 
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The first example, depicted in Figure 2, shows two inter-

faces: ParkingSlotInterface and Parking-

SpaceInterface. Each of them defines one of the fol-

lowing methods: getParkingSlots, and get-

ParkingSpaces respectively. The names of their input- 
and output parameter of the methods are identical. They are 
named differently, but offer the same service. 
 

B. Different Data Structure 

In this type of incompatibility, the names of the interfac-
es and their functions are the same. However, the parameters 
differ in their data types. Moreover, the encapsulated data is 
similar and the data structures can be mapped to each other. 
In Figure 3, in the Different Data Structure example an inter-

face ParkingSpaceInterfacePV is depicted. It con-

tains a function getParkingSlots which returns a 

parameter of the type ParkingSpace. In the interface 

ParkingSpaceInterfaceCS, there is a function get-

ParkinSlots, with the same name but different output 

parameter ParkingSlot.  

 

 
 

        
 

 

 
 
 

Figure 3. Example of two interfaces with a Different Data Structure. 

 

C. Different Control Structure  

In this case, the functions between provided interface and 
required interface have not one to one relation. One function 
could be mapped to many functions. To obtain valid results, 
the control structure has to be modified. In the example in 

Figure 4, two interfaces ParkingSpaceInterface and 

ParkingSpaceInterfaceTUC are given. By defini-
tion, an opening hour should be composed of the start– and 

the end time name of a parking space. As such, the two func-

tions getParkingSpaceOpenHour and get-

ParkingSpaceClosedHour from the Parking-

SpaceInterfaceTUC interface in comparison provide 

the same information as getParkingSpaceOpening-

Hour from the ParkingSpaceInterface interface. 
Therefore, workflow of functions as a composite process is 
needed. A composite process specifies control structure of 
functions involved in the composition, in this example, a 

sequence control workflow is need for getParking-

SpaceOpenHour and getParkingSpace-

ClosedHour to provide an integrated result to get-
ParkingSpaceOpeningHour. 

 

 
 

 

Figure 4. Example of two interface requiring Different Control Structures. 

 
To enable the mapping between interfaces, a common 

knowledge-base is needed. Because of the issues stated earli-
er, it should not be mandatory that both sets of interface 
definitions are of the same domain. A common knowledge 
base defined by ontologies can be generated using merging 
or other integration mechanisms on classical ontology lan-
guages or by using a distributed ontology language. Both 
interfaces do not need to contain information on how to 
interpret the data of each other. That means that interfaces 
can be developed independently, without knowing anything 
about a possible re-use in another system. 

 

III. RELATED WORK 

A dynamic adaptive system is a system that adjusts its 
structure and behavior according to the user’s needs or to a 
change in its system context at run-time. The DAiSI is one 
example of an infrastructure for dynamic adaptive systems 
[3][4][5][6]. It has been developed over more than a decade 
by a number of researchers. This work is based on DAiSI 
and extends the current run-time infrastructure.  

According to a publication of M. Yellin and R. Storm, 
challenges regarding behavioral differences of components 
have been tackled by many researchers [7]. The behavior of 
the interface of a component can be described by a protocol 
with the help of state-machines. The states of two involved 
components are stored and managed by an adapter. In further 
steps of this method, ontology is used as a language library 
to describe a component’s behavior. To automate the adapta-
tion of services, a semi-automated method has been devel-

<<Interface>> 
ParkingSpaceInterfacePV 

 

getParkingSlots(ParkCity:String): ParkingSpace[] 

<<class>> 
ParkingLocation 

 

+ city : String 

<<class>> 
ParkingSpace 

 

+ parkingLocation : ParkingLocation 
+ actualOccupancyStatus: boolean 

<<Interface>> 
ParkingSpaceInterfaceCS 

 

getParkingSlots(ParkCity:String): ParkingSlot[] 

<<Interface>> 
ParkingSpaceInterface 

 

getParkingSpaceOpeningHour (): OpeningHour 

<<Interface>> 
ParkingSpaceInterfaceTUC 

 

getParkingSpaceOpenHour (): dateTime 
getParkingSpaceClosedHour(): dateTime 

 

<<class>> 
ParkingSlot 

 
 

+ city : String 
+ actualOccupancyStatus: boolean 

 



275

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

oped to generate adapters with the analysis of a possible 
behavioral mismatch [8][9].  

Another solution for the connection of semantically in-
compatible services is presented in [8]. They use buffers for 
the asynchronous communication between services and 
translate the contents of those buffers to match the syntacti-
cal representations of the involved services. The behavioral 
protocols of services can automatically be generated with a 
tool that is based on synthesis– and testing techniques [10]. 
Ontologies are used in their method to describe the behavior 
of components and to create a tool for automated adaptation 
[11]. Mapping-driven synthesis focuses on mapping of ac-
tions of the interfaces of services. Interfaces are identified by 
correspondence between actions of the interface of compo-
nent based on the ontology and reasoning [12]. The data 
mapping is still not considered in this approach. All Ap-
proaches mentioned above are based on state-machine. 
However, some components require a very complex state-
machine; the development of which can easily become very 
expensive. Thus, in this work, we present another way that 
does not rely on the consideration of dependencies within the 
behavior or the involved interfaces. 

The method of transformation of an ontology into inter-
faces is already integrated into Corba Ontolingua [13]. With 
this tool an ontology can be transformed into the interface 
definition language (IDL). A. Kalyanpur [14] has developed 
a method which allows automatic mapping from Web Ontol-
ogy Language (OWL) to Java. The Object Management 
Group (OMG) [15] has defined how to transform the Unified 
Markup Language (UML) into ontology. With their method, 
UML classes are first converted into a helper class and then 
transformed into ontology [16]. G. Söldner [17] has shown 
how to transform the UML itself into ontology. A downside 
of the above methods: The interface and the ontology have a 
strong relation. If a developer changes the ontology, all inter-
faces which are linked to this ontology have to be modified. 
In this work, we decouple this strong relation. Alternating a 
part of the ontology now only affects the interfaces directly 
linked to the specific part. 

Another approach for semantically described Web ser-
vice is pressed in [18][19]. Web Service Modeling Ontology 
(WSMO) is ontology that can be used to describe various 
aspect related to semantic Web Services. Web Ontology 
Language for Services (OWL-S) is an ontology for describ-
ing Web services. It consists of three elements, ServicePro-
file, ServiceModel, and ServiceGrounding. Because of the 
similar structure of Web service and program interface, we 
consider OWL-S useful for semantic representation of pro-
gramming interface of DAiSI components. 

Matching and merging existing ontologies is still a big 
challenge regarding speed and accuracy. To simplify this, 
many application interfaces (APIs) have been developed, 
e.g., Agreement Maker [20] and Blooms [21]. Most of them 
follow a survey approach [22], or use data available on the 
Internet [23]. Many methods are used to match entities to 
determine an alignment, like testing, heuristics, etc. To im-
prove accuracy, many of them use third-party vocabularies 
such as WordNet or Wikipedia. However, we simply use 

ontology merging in our approach and we did not conduct 
further research on the challenges mentioned. 
 

IV. THE DAISI COMPONENT MODEL  

The DAiSI component model can best be explained with 
a sketch of a DAiSI component. Figure 5 shows a DAiSI 
component. The blue rectangle in the background represents 
the component itself. The provided and required services are 
depicted with full– and semi circles, as stated earlier. The 
dependencies between these two kinds of services are de-
picted by the yellow bars. They are called component con-
figurations. At run-time, only one component configuration 
can be active. Being active means that all connected, re-
quired services are present and consumed (the dependencies 
could be resolved), and the provided services are being pro-
duced. To avoid conflicts, the component configurations are 
sorted by quality with the best component configuration 
noted at the top (Conf1 in Figure 5) and the least favorable 
one noted at the bottom (Conf2 in our example). The follow-
ing paragraphs explain the DAiSI component model, depict-
ed in Figure 5. 

 

Conf2

comp1

Conf1

 

Figure 5. A DAiSI component. 

 
The component model is the core of DAiSI and has been 

covered in much more detail in [24]. The component config-
urations (yellow bars) are represented by class with the same 

name. It is associated to a RequiredServiceRefer-

enceSet, which is called a set to account for cardinalities 
in required services. The provided services are represented 

by the ProvidedService class. Interface roles, repre-

sented by InterfaceRole, allow the specification of 
additional constraints for the compatibility of interfaces that 
use run-time information, bound services and the internal 
state of a component, and are covered.  

To be able to narrow the structure of a dynamic adaptive 
system down, blueprints of possible system configurations 

can be specified. The classes Application, Template, 

RequiredTemplateInterface, and ProvidedTem-

plateInterface are the building blocks in the compo-
nent model that are used to realize application architecture 

conformance. One Application contains a number of 

Templates, each specifying a part of the possible applica-

tion. A Template defines (needs and offers) Re-

quiredTemplateInterfaces and ProvidedTem-

plateInterfaces which refer to DomainInterfac-

es and thus form a structure which can be filled with actual 
services and components by the infrastructure. More details 
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about templates and application architecture conformance in 
the DAiSI can be found in [24]. 

 

 

Figure 6. The DAiSI component model. 

 
The DAiSI infrastructure is composed of the DAiSI 

component model, a registration service, which works like a 
directory for running DAiSI components, and a configura-
tion service which manages how provided– and required 
services are connected to each other and what component 
configurations are marked as active. The configuration ser-
vice constantly checks (either periodically, or event-driven), 
if the current system configuration (active component con-
figurations, component bindings, etc.)) can be improved. 

For the adaptation of syntactical incompatible services, 
we added a new infrastructure service: The adapter engine. 
The adapter engine keeps track of all provided and required 
services in the system. Whenever a new DAiSI component 
enters the system, the adapter engine analyzes its provided 

services and generates adapter components (which are DAiSI 
components themselves) to all syntactically incompatible, 
but semantically compatible services. We will describe this 
process in the following in more detail.  

V. DAISI KOMPONENT FOR ADAPTATION 

In this section, we show the basic concept of adapter 
generation based on Java programming language and struc-
ture of the adapter engine. In the end we present process for 
adaptation in DAiSI platform.  

A. Basic principle of the adapter 

 

 

Figure 7 Interfaces of service and their implement. 

 

 

Figure 8. Basic principle of the adapter between two interfaces. 

 

 

Figure 9. Provided interface and connection of adapter. 

 

//Interface of provided service 
public interface ParkingSpaceInterfacePV { 
 ArrayList<ParkingSpace> getParkingSpaces(String 
parkCity); 
} 

//Implement of provider interface 
public class ParkingSpacePV  

implements ParkingSpaceInterfacePV{ 
  public ArrayList<ParkingSpace>  
             getParkingSlots(String parkCity) { 
 } 
 

//Interface of Required Service 

public interface ParkingSpaceInterfaceCS { 
  ArrayList<ParkingSlot> getParkingSlots(String park-
City); 
} 

 

// generated adapter 
public class generatedAdapter  

implements ParkingSpaceInterfaceCS { 
public ArrayList<ParkingSlot>  

getParkingSlots(String parkCity)  
  { 

        ParkingSpaceInterfacePV ps; 
        ArrayList<ParkingSpace> arrParkingSpace;  
        ArrayList<ParkingSlot> arrParkingSlots;  

        arrParkingSpace =   
ps.getParkingSlots(parkCity); 

        arrParkingSlots =  
adapterEngine.mapping(arrParkingSpace); 

        return arrParkingSlots; 
      } 
} 

//Usage of generated adapter of required component 
public class requiredComp { 
 generatedAdapter adapter; 
 ParkingSpaceInterfaceCS cs = adapter; 

} 
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Adapter is a DAiSI component, which uses provided in-
terface of provided component and implements required 
interface for required component to manage communications 
between provided interface and required interface. Required 
interface of required component uses provided interface of 
adapter to access provided interface of provided component. 
Figure 8 shows an example adapter component. The provid-

ed service of the adapter component class generate-

dAdapter implements the required interface Parking-

SpaceInterfaceCS that is shown in Figure 7. The im-

plementation of function getParkingSlots of provied 

interface in the adapter calls the function get-

ParkingSlots, which provided by provided interface of 

provided component. The return of function get-

ParkingSlots of required interface are mapped to func-
tion of required interface the through the function adapter 
Engine mapping. Fehler! Verweisquelle konnte nicht ge-
funden werden. shows connection of the adapter and the 
component with required interface. 

 

B. Structure of the adapter engine 

Figure 10 shows the structure of the adapter engine. The 
task of adapter engine is generating adapter based on seman-
tic description of provided and required interfaces at run-
time.  

The information collector aggregates the information 
from provided– and required services (e.g., interface, meth-
ods, parameters, and return types) and then translates into 
knowledge representation language such as Resource De-
scription Framework (RDF) and Web Ontology Language 
(OWL). In this approach, semantic descriptions of interfaces 
and related ontology are managed by a central triplestore 
which is a database for storage RDF triples.  

The component Service Discovery discovers provided in-
terfaces for a required interface in triplestore through 
SPARQL queries and screen out best candidates.   

The component Mapper compares the discovered re-
quired and provided interface based on sematic descriptions 
of both interfaces and exports an assignment list, which 
maps the information from provided services to required 
services. Mapping of many-to-many relationship of functions 
is not supported by this work.  

 

 

Figure 10. Structure of the adapter engine. 

The Service Generator receives the assignment lists from 
the Mapper and generates a new DAiSI component, which 

can use the provided interface and implements the required 
interface. The Adapter Manager is a DAiSI component. It 
keeps track of the lifecycle of every DAiSI component 
adapter. Whenever a DAiSI component (provided or re-
quired) leaves the system, the adapter Manager destroys all 
generated adapters related to the DAiSI component and 
thereby removes them from the system. 

 

C. Adaptation of DAiSi component    

Figure 11 shows the process for involved DAiSI compo-

nent. The component comp.b contains a configuration 
config1, which requires an interface A. The configuration 

config1 of component comp.b runs at state 
NOT_RESOLVED as long as it cannot find an interface with 
same syntax or semantically compatible interface in the 

system. When the component comp.a enters the system, 
semantic descriptions of provided services are registered into 
the knowledge-base, this means, the description of service B 
can be found in the knowledge-base. After this, the service B 
is provided in the system. Adapter engine can now discover 
description of service B in triplestore. If service B and ser-
vice A is syntactically and/or semantically compatible, the 
adapter engine could check another candidate, which wants 

to use service B, if number of components which service B 
can only serve are limit. As long as a free place is provided 
by service B, thus, it generates an adapter – a DAiSI compo-

nent called adapter, which requires the service B and pro-

vides service A. The DAiSI configuration service connects 

comp.b to adapter and adapter to comp.a. The dependen-

cy of comp.b could be resolved. 
  

 

Figure 11. Adaptation process with adapter engine. 

 

VI. SEMANTIC DESCRIPTION OF DAISI COMPONENTS 

INTERFACE 

Description of a machine-readable interface with all 
relevant semantical information is a key aspect of our 
concept. In this section we show how to describe a interface 
semantically.  

There are two abstract semantic levels in our system, 
software level, which contains programming code and in-
stance of parameter (data), semantic level, which provides 
semantic representation of programming code and data. 
Required Interface can discover provided interface in triple-
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store based on his semantic representations. Figure 12 shows 
interface GetParkingSlot noted with Parking Ontology is 
represented by ParkingSpace Interface in T-Box. Instances 
of parameters of interface GetParkingSlot is descripted in A-
Box with TUCParkSSE, which link to ParkingSpaceInterface 
in T-Box.  

For our system, we use a four-layer ontolgy structure for 
the construction of the knowledge-base. The four layers are 
part of two groups A-Box and T-Box. T-Box describes the 
concepts of domain in terms of controlled vocabularies, e.g., 
classes, properties and relationship of classes. A-Box con-
tains the knowledge of instance of domain concepts, e.g., 
instance of classes. The basic knowledge is defined in the T-
Box group. Such knowledge can be divided in different up-
per ontologies. Corresponding of ontologies can be merged, 
if different dynamic adaptive systems are being associated. 
Merging ontologies is a different research area on which we 
do not focus, however, the available results are sufficient for 
our work. 
 
 

 
Figure 12. Overview of relation of semantic level and software level. 

 
Figure 13 shows the four-layer ontology structure. The 

Basic Thing and Domain independent Ontologie, called 
Upperontolgoy layer, define the basic knowledge, which can 
be widely used in different domains and has already got 
agreement by many committees, such as OWL-S, 
schema.org, Dbpedia, etc. Domain ontology describes the 
domain related vocabularies. Every application or domain 
can define its own domain ontology. In the Domain 
Ontology, which is the second, or middle layer, all necessary 
definitions can be found that are relevant for an application. 
In our approach, we develop a parking ontolgoy for our 
application to extentent the vocabularies for the parking 
relevant services. The layer of the Application dependent 
ontology is the lowest level in T-Box. It represents the code 
of domain interfaces, more precisely their names, methods, 
parameters and return types. The domain dependent and 
independant ontology could be used in the application 
ontology in order to enriche the represention of services. 
This three-layer ontology in T-Box has the main advantage 
that every part can be developed separately. Every fragment 
of a layer can be merged with other fragments using ontolgy-
merging and ontolgy-mapping. In addition, data, e.g., 
instance of java class or vaule of parameter, can be 
semantically represented in the A-Box.  

 

 

Figure 13. Layers ontology structure. 

 

 

Figure 14. Data structure of the example. 

 
Figure 14 shows the layout of the ontologies for the 

parking use case. We used upmost ontologies, OWL-S, 
Dbpedia and Schema.org. The Parking ontolgoy is delevoped 
based on the Dbpedia and schema.org. To describe interfaces, 
OWL-S is needed to define relations for representation of the 
interfaces, like methods, relation between parameters and 
methods. Paramter and return tpyes are created as new 
ontolgoy and directly mapped to the existing ontolgoy like 
Parking Ontolgoy, Dbpedia, etc. Represention of interface 
has no limit to usage of ontologies. Every information in any 
of the ontologies can be used in any interface. Semantic 
description of interface and java Interface can be bi-
directional translated. Each description of interface could 
have an ontology item, in order to facilitate management of 
the ontology data in datastore such as updata, remove, 
modification. Run-time information such as instance of input 
and output parameters, so called datatyp object, could be 
descripted with owl instance of owl class, which can be 
found in T-Box. In our approach, we use historical datatyp 
objects to increase accuracy of services discovery. The fol-
lowing examples show how the Ontology is defined. 

A. Domain independent ontology 

Domain independent ontologies could be used for differ-
ent domains. They are independent on domains and com-
monly are upper ontology to define basic vocabularies and 
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data schema, e.g., schema.org, which is schemas for struc-
tured data on the Internet, Semantic Sensor Network Ontolo-
gy (SSN), which can be used to describe sensor, observations 
and related concepts. In our approach, Domain independent 
ontology can be used to directly describe interface and to 
link to the domain dependent ontology. Especially, OWL-S 
is an important part for description of interfaces.   

OWL-S is one ontology for describing Web services. The 
essence of semantic Web Servic description is to realize 
automatic web Service discovery, which shares the same 
goals of automatic adaptation of DAiSI components in our 
approach. Three elements of OWL-S, ServiceProfile, 
ProcessModel and ServiceGrounding, can be well mapped to 
DAiSI services. ServiceProfile uses for publishing and 
discovering services. ProcessModel describes in detail for 
the operation of a service. ServiceGrounding provides details 
of how the message service interoperability. In particular, 
because of similarity of ServiceProfile and interface, 
ServiceProfile can be used to describe programming 
interface.   

Figure 15 shows relation of OWL-S and programming 
interface. Interface name can be descripted with Ontology 
Serviceprofile, which are depicted by anelliptical shape. 
Function name corresponds to process and input and output 
parameter corresponds to process:input and process:ouput. 
 

<<Interface>>
interfacename

functionname(InputParameter): OutParameter

Process

&process:#Input

&process;#Output

Service Profile

hasInput

hasOutput

hasProcess

 

Figure 15. Relationship of programming interface and process in OWL-S. 

 

B. Application Ontology Parking Ontolgoy  

Unfortunately, domain independent ontology cannot cov-
er requirements of vocabularies in every individual domain. 
We need to develop domain ontologies to meet the demand. 
Domain ontology can use the independent domain ontology 
to increase its reusability. 

In our approach, we define a Parking Ontology. Parking 
Ontology is an ontology, which describes Parking space 
relevant issues, such as location, usage, ticket, opening hours, 
etc.  Figure 16 shows a fragment of Parking Ontology, which 
contains relevant parts for the example in this paper. 
ParkingSpace is the main part, it relates to ParkingLocation 
with OWL objectproperty parkingLocation and Sta-
tusOfParkingSpot with statusOfParkingSport. ParkingLoca-
tion is static information.Static means, the information is not 
modified in run-time, mostly the value is stored in database 
or local in device. StatusOfParkingSpot is run-time infor-
mation, which’s value can be changed at run-time. 
 

ps:EVChargingStation xsd:boolean
ps:ADASpaces xsd:boolean
ps:usageForVehicleType ps:VehicleTypeOfUsage
ps:suitedVehicleType gs:VehicleType

ps: ParkingSpace

ps:ParkingLocation

Ps:centralPositon schema:GeoCoordinates
Ps:city dbpedia:City
Ps:street rdfs:LIteral

Ps:parkingLocationps:statusOfParkingSpot

ps:StatusOfParkingSpot

ps:actualState gs:ActualStateOfParkingSpot
ps:LastOccupancyStateChange xsd:dateTime

ps:LastChangeTime xsd:dateTime
 

Figure 16. Relationship of programming interface and process in OWL-S. 

 

C. Descrption of Interface  

To semantically understand programming interfaces, they 
should be translated into semantic technology supported data 
format. In fact, the chosen sematic language has big influ-
ence for interface discovery. On the one hand, translation 
between semantic data formats is supported mostly only in 
one direction, e.g., JSON-LD can be translated into 
RDF/XML, but it is difficult to translate it back to its original 
format. On the other hand, format of results of the transla-
tions from different language of same programming interface 
are usually not identical. Therefore, in our approach, we use 
only semantic Language RDF/XML, so that the system is 
kept more harmonious. 

In this work, we use OWL-S (implemented in RDF/XML) 
to descript an interface. The descriptions are separated into 3 
parts, description interface, description function, description 
parameters.   

1) Interface description 
Figure 17 shows an interface description. An interface 

contains many methods, which are described by processes.  
In this example, an interface is described by the process 
GetParkingProcess with Service:describedBy. 

 

 

Figure 17. interface description. 

 

2) Function description 
Figure 18 shows the structure of a method description. A 

method is described by AtomicProcess and constants of 
input and output parameters. The parameter can use existing 

ontology, e.g., for input ParkingCity use Ontology from 

Ddpeida db;#City, or use self-defining parameter 
THIS;#ParkingSlot, which we will show below.  
 

<service:Service rdf:ID="ParkingSlotService"> 

<service:presents 

rdf:resource="&Parking_profile;#Profile_Parkin

gSlot_Service"/> 

<service:describedBy 

rdf:resource="&Parking_process;#GetParkingProc

ess"/> 
</service:Service> 
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Figure 18. Function description. 

 

3) Input and Output Parameter 
 
Figure 19 shows the self-defining parameter description.  

Self-defining datatype is described by owl-class and relate to 
the developed Parking Ontology. Linking to existing Ontol-
ogies ensures the relations between the elements of different 
parameters can be also discovered. Each relations for this 
class should be described by owl:objectproperty or 
owl:dataproperty and relate to existing ontology on demand.    

 

 

Figure 19. Two example interfaces with annotations. 

 

D. Java-Annotations for the Interface and Class Description 

Programming interface and semantic interface descrip-
tion should be bilateral transformable. In this approach, Java 
is used to implement DAiSI framework. We use an aspect 
oriented method – annotations in Java as a link between the 
ontology and the actual implementation.  

In an interface, every element has at least one label that 

links it to the ontology. Every label has an attribute has-

Name to reference the ontology. Ontology names can be 
found in the application layer. Interface names, for example, 

need only one label: @Interfacename. Functions have 

three types of labels: @Activity, @OutputParam and 

@InputParameter. The label for input or output is used 
only if a function has input– or output parameters. With the 
help of annotations, the definition of elements of an interface 
is decoupled from the actual ontology. This measure was 
taken to ease the changes of either an interface or the ontolo-
gy, without the necessity to alter both. The code-snippets in 
Figure 20 present two Java interfaces as examples.  

 

 

Figure 20. Example interface with annotations. 

 

VII. DISCOVERY AND MAPPING 

Discovery and Mapping play an important role in adapt-
er. In this approach, discovery process bases on database, 
which stores semantic information of services. Mapper uses 
results from discovery process to create the alignment be-
tween required and provided DAiSI services. In this section, 
we present the details below.  

A. Storage of Semantic Information. 

Semantic descriptions of all interfaces should storage in 
dynamic adaptive systems. Management of huge information 
in memory is a big challenge for the device. Therefore, we 
store semantic information in permanent storage to tackle 
this issue. Triplestore is a kind of database for storing RDF 
triples. It can build on relational database or non-relational 
such as Graph-base databases. Querying of semantic infor-
mation in these databases is partly supported by the 
SPARQL. 

The ontology layers, which mentioned above, are not 
forced to be stored in one triplestore. They could be distrib-
uted in different databases and expose their ontology through 
a Web service end-point, typically urls in an ontology, so 
that increase the reusability of the ontology. SPARQL engine 
supports partly discovery in using such external urls. In order 
to reduce management difficulty, we save domain ontology, 
application ontology and corresponding instance of parame-
ters in a database.  

Input and output parameters contain two kinds of 
information, static value and dynamic value. Static value is 
value of parameter, which usually save in local database and 
do not change in the run-time. Accordingly, dynamic value 
changes at run-time. However, because of huge amount of 
data, it is difficout even impossible to store all historical 
datat in database. Therefore, in our appraoch, we store last 
few historical data. 

<process:AtomicProcess rdf:ID=getParkingProcess"> 

<process:hasInput> 

<process:Input rdf:ID="ParkingCity"> 

<process:parameterType 

rdf:datatype="&xsd;#string">&db;#City</pro

cess:parameterType> 

    </process:Input> 

</process:hasInput> 

<process:hasOutput>  

<process:Output 

rdf:ID="ExpressParkingSpace"> 

<process:parameterType 

rdf:datatype="&xsd;#anyURI">&THIS;#Parking

Slot</process:parameterType> 

    </process:Output> 

</process:hasOutput> 
</process:AtomicProcess> 

<owl:Class rdf:ID="ParkingSlot"> 

<owl:equivalentClass   

rdf:resource="&ps;#ParkingSpace"/> 

</owl:Class> 

 

<owl:ObjectProperty rdf:about="parkingLocation"> 

<owl:equivalentProperty 

rdf:resource="&ps;#parkingLocation"/> 

<rdfs:range rdf:resource="#ParkingLocation"/> 

<rdfs:domain rdf:resource="#ParkingSlot"/> 

</owl:ObjectProperty> 

 

<owl:ObjectProperty           

rdf:about="actualOccupancyStatus"> 

<owl:equivalentProperty 

rdf:resource="&ps;#ActualState"/> 

<rdfs:range 

rdf:resource="#ActualStatueOfParkingSpot"/> 

<rdfs:domain rdf:resource="#ParkingSlot"/> 

</owl:ObjectProperty> 

@Interfacename(hasName = " ParkingSlotService") 
public interface ParkingSpaceInterfacePV{ 

@Activity(hasName = "GetParkingProcess") 

@OutputParam(hasName= "ParkingSpace") 

public ParkingSpace []getParkingSlots (  

@Inputparam(hasName = "&db;#City")  

ParkCity:String); 

} 
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B. Discovery 

SPARQL is a set of specifications that define a query 
language for RDF data, concerning explicit object and prop-
erty relations, along with protocols for querying, and seriali-
zation formats for the results. Reasoner can infer new triples 
by applying rules on the data, e.g., RDFS reasoner, OWL 
reasoner, transitive reasoner and general purpose rule engine. 
By using reasoner more required information can be found, 
e.g., equivalent classes, classes with parents relation, etc. 
SPARQL engine can use reasoner in forward chaining, 
which proceed to add any inferred triples to data set in data 
store, and backward chaining, which reasoning between a 
SPARQL endpoint and the data store. Backward chaining is 
used when ontologies are constantly updated. DAiSI is an 
adaptive system, components frequently enter and discharge 
a system, this issue causes regularly addition of new ontolo-
gies for service of components in data store. Hereby, change 
backward chaining is most suitable for DAiSI.   

Discovery has two steps, first step is discovery with defi-
nition of interface’s information, that means only with inter-
face name, input and output parameter name; second step is 
using static instance information of class to filter results. 
E.g., application wants to look for services, which could 
provide parking space in Clausthal in Germany. In the first 
step, all semantic compatible interfaces, which could provide 
parking spaces in different locations, are found. Locations of 
parking spaces are static information which saved mostly in 
database. Such location information can be used to filter the 
mount of discovered interfaces to find interfaces which can 
provide parking spaces in Clausthal. Using static information 
avoids accessing each interface, so that it avoids the side 
effect, -component state changed with calling function.   

  

 

Figure 21. Example SPARQL query. 

 
Figure 21 shows the SPARQL query example. To find 

interface we need description required input and output pa-
rameters in query. Query could be created directly from 
semantic noted programming interface.  

C. Mapping 

 Discovery result is the interface name of component. In 
order to create an adapter we need create details relation 
between required and provide interface. Mapping of each 
parameter in input and output parameter can be restructured 
with help of his sematic annotation. According to the results 
of mapping, an adapter (new DAiSI component) will be 
created. 

 

VIII. CONCLUSION 

This paper is an extended version of the work published 
in [1]. In first approach, we presented the enhancement to the 
DAiSI: A new infrastructure service. Syntactically incompat-
ible services can be connected with the help of generated 
adapters, which are created by the adapter engine. The 
adapter engine is prototypically implemented with Java. Re-
use of component across different domains is enabled with 
this approach. In this paper, we extend our previous work by 
detail of the layered structure of ontologies, an improved 
discovery process based on SPARQL and triplestore. The 
new layer structure supports description of instance of pa-
rameters and it increases the re-use of ontology. By using 
triplestore and SPARQL, it facilitates discovery service in a 
huge number of components. Semantic description hat still 
strength influence on discovery results. In further steps, we 
will reduce the closed related relation between semantic 
description and discovery.  
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