
272

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Approach to Automatic Adaptation of DAiSI Component Interfaces

Yong Wang and Andreas Rausch

Department of Informatics

Technical University Clausthal

Clausthal-Zellerfeld, Germany

e-mail: yong.wang, andreas.rausch@tu-clausthal.de

Abstract— The Dynamic Adaptive System Infrastructure (DA-

iSI) is a platform which supports dynamic adaptive system.

DAiSI can change its behavior at runtime. Behavioral changes

can be caused by user’s needs, or based on context information

if the system environment changes. It is a run-time infrastruc-

ture that operates on components that comply with a DAiSI-

specific component model. The run-time infrastructure can

integrate components into the system that were not known at

design-time. Communication between components in DAiSI is

supported by services. Services of components are described by

domain interfaces, which have to be specified by the compo-

nent developer. Components can use services of other compo-

nents, if the respective required and provided domain interfac-

es of components are compatible. However, sometimes services

that have been developed by different developers can do the

same thing, e.g., provide the same data or operations, but they

are represented by different syntactic. Therefore, in a previous

article, we present an approach which enables the use of syn-

tactically incompatible service by using an ontology-based

adapter that connects services, which provide the same data in

different format. In this paper we use an existing ontology to

semantically describe interfaces of components and present an

improved algorithm using SPARQL and reasoning to discover

interfaces in triplestore. In addition, we propose to use the

historical data to predict the best suitable interface.

Keywords—component models; self-adaptation; dynamic

adaptive systems; ontology.

I. INTRODUCTION

An increasing interest in dynamic adaptive systems could
be observed in the last two decades. A platform for such
systems has been developed in our research group for more
than ten years. It is called Dynamic Adaptive System Infra-
structure (DAiSI). DAiSI is a component based platform that
can be used in self-managed systems. Components can be
integrated into or removed from a dynamic adaptive system
at run-time without causing a complete application to fail. To
meet this requirement, each component can react to changes
in its environment and adapt its behavior accordingly.

Components are developed with a specific use-case in
mind. Thus, the domain interfaces describing the provided
and required services tend to be customized to very specific
requirements of an application. This effect limits the re-use
of existing components in new applications. The re-use of
existing components is one key aspect in software engineer-
ing for minimize re-developing existing components. One
measure to aspect is to increase reusability. However, re-
using components in other application contexts than they

have been originally developed for is still a big challenge.
This challenge gets even bigger, if such components should
be integrated into dynamic adaptive systems at run-time.

A valid approach to tackle this challenge is adaptation.
Because of the nature of DAiSI platform, in DAiSI applica-
tions, DAiSI components are considered as black boxes.
Capabilities and behavior of DAiSI components are specified
by interfaces that describe required and provided services. In
this approach, we suggest a solution to couple provided and
required services that are syntactically incompatible but
semantically compatible. To be able to utilize specific pro-
vided services that offer the needed data or operations on a
semantical level, we suggest constructing an adapter that
enables interaction between services that are only compatible
on some semantical level [1].

The goal of an adapter is to enable communication be-
tween two formerly incompatible components. In order to
achieve a common understanding between components, a
common knowledge-base is needed. In this work we use
ontology as the common knowledge-base to represent ser-
vices and the schema of data. Ontology and run-time infor-
mation represented by an ontology language are stored in
triplestore. Required interfaces can discover/map the repre-
sentation of provided interfaces in the database by using a
Query Engine. To illustrate that this approach is suitable for
adaptive systems, we extend our DAiSI infrastructure by an
ontology-based adapter engine for service adaptation.

To strengthen the dynamic adaptive nature of the DAiSI,
we generate these adapters at run-time. We argue that these
adapters cannot be generated at compile time, because the
different components that should interact with each other are
not known at compile time, but only at integration time,
which is the same requirement just like dynamic adaptive
systems.

In this work, we improve the algorithm for discovery of
the provided interfaces with using semantic query language
and reasoning. Programming interfaces with semantic nota-
tion are translated firstly into triplestore readable semantic
format and then stored into the triplestore. Required interfac-
es can discover the required interfaces with help of their
semantic description and relation of used ontologies. As
opposed to by discovery one-to-one relation of entities of
function, input- and output parameters between provided and
required interfaces in OWL file, discovery of provide inter-
faces is supported by using SPARQL, which can represent
the entire required interface based on the graph pattern in-
cluding filter function. Especially, in this work, we use the

273

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

historical data of output parameters of interface to predicate
and filter for discovered provided interfaces.

To illustrate this approach, we use a parking space exam-
ple to show how to create an adapter to enable interaction
between semantical identical components that have been
developed by different developers or for different applica-
tions.

 The rest of this paper is structured as follows: In Section
II, we describe the already sketched problem in more detail.
Section III gives an overview of relevant related work. In
Section IV, we give a short overview of the DAiSI compo-
nent model and a few hints for further reading. Section V
explains structure of the adapter engine and adaptation pro-
cesses. In Section VI, we show Interface description with
using ontology layer. Section VII explains the discovery
process of provided services based on query engine and
triplestore, before the paper is wrapped up by a short conclu-
sion in Section VIII.

II. PROBLEM DESCRIPTION

Specifications of interfaces between the components in a
dynamic adaptive application are mostly the early stage of
developing process. Specified interfaces could not be
changed, whenever a dynamic adaptive application is devel-
oped. They are very domain specific and their definition is
driven by the use cases of the future application in mind. To
ensure many applications run in a shared context with other
applications from different domains, all specified interfaces
are centrally managed in a library that is so called interface
pool.

It is a tedious task to harmonize one large interface pool
among different developers from different vendors that oper-
ate in different domains. It often causes results in a slow
standardization process. This slows the development process
down and, especially in dynamic adaptive systems, dimin-
ishes the chances for the development of new applications.
Developers will in those cases often start their own interface
pool. This, on the other hand, reduces the chances to re-use
existing components from other domains.

Additionally, the management of one central interface
pool in a distributed system does not scale well. One way to
mitigate this issue would be a de-centralization of manage-
ment of interfaces. To tackle these challenges, we propose to
keep the domain interfaces in de-centralization and allow the
domain interfaces between different domains un-
harmonized.

To be able to harmonize services across domains, every
interface pool is required to use ontology. By either merging
these ontologies later, or by using distributed ontologies we
ensure that interfaces from different interface pools base on a
common knowledge. Based on common knowledge, on-the-
fly generated adapters enable to interaction syntactically
incompatible services across domains.

Services of components can be provided by implement-
ing domain interfaces, so called provided services. Desired
services of components can be specified by other domain
interfaces, so called required services. In this case, required
and provided interfaces could not be the same domain inter-
face. In order to build communication between provided and

required services, they must stand in relation to each other,
mapping between provided and required services are neces-
sary. In the graphical notation of DAiSI components, provid-
ed services are marked as filled circles, required services are
noted as semi-circles (similar to the UML lollipop notation
[2]) and the relation between those two services are depicted
by interfaces notations in domain area and across the DAiSI
components linking interface for provided and required ser-
vices (cf. Figure 1).

Domain

<<interface>>
RequiredService

<<interface>>
ProvidedService

Component development

config 1

config 2

config 1

Figure 1. DAiSI components and domain specific interface definitions.

We propose that services that are semantically compati-

ble, but lack compatibility on a syntactical level, should be
usable. For example, an application wants to use parking
spaces information, which is supported by different system
providers. Each provider has its own service, they are mostly
not compatible. The lack of compatibility can be covered by
the following three types of incompatibility: Different Nam-
ing, Different Data Structure, and Different Control Struc-
ture. Adapters between the different services can be generat-
ed. We believe that we can connect all semantically compat-
ible but syntactically incompatible services using adaptation
based on these three types. We illustrate the three types of
incompatibility below with parking use case.

A. Different Naming

By “Different Naming” we denote cases in which the
names of interfaces describing services or names of functions
do not match. While they are syntactically different, their
names share the same semantics and could be used synony-
mous.

Figure 2. Example of two interfaces with Different Naming.

<<Interface>>
ParkingSpaceInterface

getParkingSpaces (): ParkingSpace []

<<Interface>>
ParkingSlotInterface

getParkingSlots (): ParkingSpace []

274

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The first example, depicted in Figure 2, shows two inter-

faces: ParkingSlotInterface and Parking-

SpaceInterface. Each of them defines one of the fol-

lowing methods: getParkingSlots, and get-

ParkingSpaces respectively. The names of their input-
and output parameter of the methods are identical. They are
named differently, but offer the same service.

B. Different Data Structure

In this type of incompatibility, the names of the interfac-
es and their functions are the same. However, the parameters
differ in their data types. Moreover, the encapsulated data is
similar and the data structures can be mapped to each other.
In Figure 3, in the Different Data Structure example an inter-

face ParkingSpaceInterfacePV is depicted. It con-

tains a function getParkingSlots which returns a

parameter of the type ParkingSpace. In the interface

ParkingSpaceInterfaceCS, there is a function get-

ParkinSlots, with the same name but different output

parameter ParkingSlot.

Figure 3. Example of two interfaces with a Different Data Structure.

C. Different Control Structure

In this case, the functions between provided interface and
required interface have not one to one relation. One function
could be mapped to many functions. To obtain valid results,
the control structure has to be modified. In the example in

Figure 4, two interfaces ParkingSpaceInterface and

ParkingSpaceInterfaceTUC are given. By defini-
tion, an opening hour should be composed of the start– and

the end time name of a parking space. As such, the two func-

tions getParkingSpaceOpenHour and get-

ParkingSpaceClosedHour from the Parking-

SpaceInterfaceTUC interface in comparison provide

the same information as getParkingSpaceOpening-

Hour from the ParkingSpaceInterface interface.
Therefore, workflow of functions as a composite process is
needed. A composite process specifies control structure of
functions involved in the composition, in this example, a

sequence control workflow is need for getParking-

SpaceOpenHour and getParkingSpace-

ClosedHour to provide an integrated result to get-
ParkingSpaceOpeningHour.

Figure 4. Example of two interface requiring Different Control Structures.

To enable the mapping between interfaces, a common

knowledge-base is needed. Because of the issues stated earli-
er, it should not be mandatory that both sets of interface
definitions are of the same domain. A common knowledge
base defined by ontologies can be generated using merging
or other integration mechanisms on classical ontology lan-
guages or by using a distributed ontology language. Both
interfaces do not need to contain information on how to
interpret the data of each other. That means that interfaces
can be developed independently, without knowing anything
about a possible re-use in another system.

III. RELATED WORK

A dynamic adaptive system is a system that adjusts its
structure and behavior according to the user’s needs or to a
change in its system context at run-time. The DAiSI is one
example of an infrastructure for dynamic adaptive systems
[3][4][5][6]. It has been developed over more than a decade
by a number of researchers. This work is based on DAiSI
and extends the current run-time infrastructure.

According to a publication of M. Yellin and R. Storm,
challenges regarding behavioral differences of components
have been tackled by many researchers [7]. The behavior of
the interface of a component can be described by a protocol
with the help of state-machines. The states of two involved
components are stored and managed by an adapter. In further
steps of this method, ontology is used as a language library
to describe a component’s behavior. To automate the adapta-
tion of services, a semi-automated method has been devel-

<<Interface>>
ParkingSpaceInterfacePV

getParkingSlots(ParkCity:String): ParkingSpace[]

<<class>>
ParkingLocation

+ city : String

<<class>>
ParkingSpace

+ parkingLocation : ParkingLocation
+ actualOccupancyStatus: boolean

<<Interface>>
ParkingSpaceInterfaceCS

getParkingSlots(ParkCity:String): ParkingSlot[]

<<Interface>>
ParkingSpaceInterface

getParkingSpaceOpeningHour (): OpeningHour

<<Interface>>
ParkingSpaceInterfaceTUC

getParkingSpaceOpenHour (): dateTime
getParkingSpaceClosedHour(): dateTime

<<class>>
ParkingSlot

+ city : String
+ actualOccupancyStatus: boolean

275

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

oped to generate adapters with the analysis of a possible
behavioral mismatch [8][9].

Another solution for the connection of semantically in-
compatible services is presented in [8]. They use buffers for
the asynchronous communication between services and
translate the contents of those buffers to match the syntacti-
cal representations of the involved services. The behavioral
protocols of services can automatically be generated with a
tool that is based on synthesis– and testing techniques [10].
Ontologies are used in their method to describe the behavior
of components and to create a tool for automated adaptation
[11]. Mapping-driven synthesis focuses on mapping of ac-
tions of the interfaces of services. Interfaces are identified by
correspondence between actions of the interface of compo-
nent based on the ontology and reasoning [12]. The data
mapping is still not considered in this approach. All Ap-
proaches mentioned above are based on state-machine.
However, some components require a very complex state-
machine; the development of which can easily become very
expensive. Thus, in this work, we present another way that
does not rely on the consideration of dependencies within the
behavior or the involved interfaces.

The method of transformation of an ontology into inter-
faces is already integrated into Corba Ontolingua [13]. With
this tool an ontology can be transformed into the interface
definition language (IDL). A. Kalyanpur [14] has developed
a method which allows automatic mapping from Web Ontol-
ogy Language (OWL) to Java. The Object Management
Group (OMG) [15] has defined how to transform the Unified
Markup Language (UML) into ontology. With their method,
UML classes are first converted into a helper class and then
transformed into ontology [16]. G. Söldner [17] has shown
how to transform the UML itself into ontology. A downside
of the above methods: The interface and the ontology have a
strong relation. If a developer changes the ontology, all inter-
faces which are linked to this ontology have to be modified.
In this work, we decouple this strong relation. Alternating a
part of the ontology now only affects the interfaces directly
linked to the specific part.

Another approach for semantically described Web ser-
vice is pressed in [18][19]. Web Service Modeling Ontology
(WSMO) is ontology that can be used to describe various
aspect related to semantic Web Services. Web Ontology
Language for Services (OWL-S) is an ontology for describ-
ing Web services. It consists of three elements, ServicePro-
file, ServiceModel, and ServiceGrounding. Because of the
similar structure of Web service and program interface, we
consider OWL-S useful for semantic representation of pro-
gramming interface of DAiSI components.

Matching and merging existing ontologies is still a big
challenge regarding speed and accuracy. To simplify this,
many application interfaces (APIs) have been developed,
e.g., Agreement Maker [20] and Blooms [21]. Most of them
follow a survey approach [22], or use data available on the
Internet [23]. Many methods are used to match entities to
determine an alignment, like testing, heuristics, etc. To im-
prove accuracy, many of them use third-party vocabularies
such as WordNet or Wikipedia. However, we simply use

ontology merging in our approach and we did not conduct
further research on the challenges mentioned.

IV. THE DAISI COMPONENT MODEL

The DAiSI component model can best be explained with
a sketch of a DAiSI component. Figure 5 shows a DAiSI
component. The blue rectangle in the background represents
the component itself. The provided and required services are
depicted with full– and semi circles, as stated earlier. The
dependencies between these two kinds of services are de-
picted by the yellow bars. They are called component con-
figurations. At run-time, only one component configuration
can be active. Being active means that all connected, re-
quired services are present and consumed (the dependencies
could be resolved), and the provided services are being pro-
duced. To avoid conflicts, the component configurations are
sorted by quality with the best component configuration
noted at the top (Conf1 in Figure 5) and the least favorable
one noted at the bottom (Conf2 in our example). The follow-
ing paragraphs explain the DAiSI component model, depict-
ed in Figure 5.

Conf2

comp1

Conf1

Figure 5. A DAiSI component.

The component model is the core of DAiSI and has been

covered in much more detail in [24]. The component config-
urations (yellow bars) are represented by class with the same

name. It is associated to a RequiredServiceRefer-

enceSet, which is called a set to account for cardinalities
in required services. The provided services are represented

by the ProvidedService class. Interface roles, repre-

sented by InterfaceRole, allow the specification of
additional constraints for the compatibility of interfaces that
use run-time information, bound services and the internal
state of a component, and are covered.

To be able to narrow the structure of a dynamic adaptive
system down, blueprints of possible system configurations

can be specified. The classes Application, Template,

RequiredTemplateInterface, and ProvidedTem-

plateInterface are the building blocks in the compo-
nent model that are used to realize application architecture

conformance. One Application contains a number of

Templates, each specifying a part of the possible applica-

tion. A Template defines (needs and offers) Re-

quiredTemplateInterfaces and ProvidedTem-

plateInterfaces which refer to DomainInterfac-

es and thus form a structure which can be filled with actual
services and components by the infrastructure. More details

276

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

about templates and application architecture conformance in
the DAiSI can be found in [24].

Figure 6. The DAiSI component model.

The DAiSI infrastructure is composed of the DAiSI

component model, a registration service, which works like a
directory for running DAiSI components, and a configura-
tion service which manages how provided– and required
services are connected to each other and what component
configurations are marked as active. The configuration ser-
vice constantly checks (either periodically, or event-driven),
if the current system configuration (active component con-
figurations, component bindings, etc.)) can be improved.

For the adaptation of syntactical incompatible services,
we added a new infrastructure service: The adapter engine.
The adapter engine keeps track of all provided and required
services in the system. Whenever a new DAiSI component
enters the system, the adapter engine analyzes its provided

services and generates adapter components (which are DAiSI
components themselves) to all syntactically incompatible,
but semantically compatible services. We will describe this
process in the following in more detail.

V. DAISI KOMPONENT FOR ADAPTATION

In this section, we show the basic concept of adapter
generation based on Java programming language and struc-
ture of the adapter engine. In the end we present process for
adaptation in DAiSI platform.

A. Basic principle of the adapter

Figure 7 Interfaces of service and their implement.

Figure 8. Basic principle of the adapter between two interfaces.

Figure 9. Provided interface and connection of adapter.

//Interface of provided service
public interface ParkingSpaceInterfacePV {
 ArrayList<ParkingSpace> getParkingSpaces(String
parkCity);
}

//Implement of provider interface
public class ParkingSpacePV

implements ParkingSpaceInterfacePV{
 public ArrayList<ParkingSpace>
 getParkingSlots(String parkCity) {
 }

//Interface of Required Service

public interface ParkingSpaceInterfaceCS {
 ArrayList<ParkingSlot> getParkingSlots(String park-
City);
}

// generated adapter
public class generatedAdapter

implements ParkingSpaceInterfaceCS {
public ArrayList<ParkingSlot>

getParkingSlots(String parkCity)
 {

 ParkingSpaceInterfacePV ps;
 ArrayList<ParkingSpace> arrParkingSpace;
 ArrayList<ParkingSlot> arrParkingSlots;

 arrParkingSpace =
ps.getParkingSlots(parkCity);

 arrParkingSlots =
adapterEngine.mapping(arrParkingSpace);

 return arrParkingSlots;
 }
}

//Usage of generated adapter of required component
public class requiredComp {
 generatedAdapter adapter;
 ParkingSpaceInterfaceCS cs = adapter;

}

277

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Adapter is a DAiSI component, which uses provided in-
terface of provided component and implements required
interface for required component to manage communications
between provided interface and required interface. Required
interface of required component uses provided interface of
adapter to access provided interface of provided component.
Figure 8 shows an example adapter component. The provid-

ed service of the adapter component class generate-

dAdapter implements the required interface Parking-

SpaceInterfaceCS that is shown in Figure 7. The im-

plementation of function getParkingSlots of provied

interface in the adapter calls the function get-

ParkingSlots, which provided by provided interface of

provided component. The return of function get-

ParkingSlots of required interface are mapped to func-
tion of required interface the through the function adapter
Engine mapping. Fehler! Verweisquelle konnte nicht ge-
funden werden. shows connection of the adapter and the
component with required interface.

B. Structure of the adapter engine

Figure 10 shows the structure of the adapter engine. The
task of adapter engine is generating adapter based on seman-
tic description of provided and required interfaces at run-
time.

The information collector aggregates the information
from provided– and required services (e.g., interface, meth-
ods, parameters, and return types) and then translates into
knowledge representation language such as Resource De-
scription Framework (RDF) and Web Ontology Language
(OWL). In this approach, semantic descriptions of interfaces
and related ontology are managed by a central triplestore
which is a database for storage RDF triples.

The component Service Discovery discovers provided in-
terfaces for a required interface in triplestore through
SPARQL queries and screen out best candidates.

The component Mapper compares the discovered re-
quired and provided interface based on sematic descriptions
of both interfaces and exports an assignment list, which
maps the information from provided services to required
services. Mapping of many-to-many relationship of functions
is not supported by this work.

Figure 10. Structure of the adapter engine.

The Service Generator receives the assignment lists from
the Mapper and generates a new DAiSI component, which

can use the provided interface and implements the required
interface. The Adapter Manager is a DAiSI component. It
keeps track of the lifecycle of every DAiSI component
adapter. Whenever a DAiSI component (provided or re-
quired) leaves the system, the adapter Manager destroys all
generated adapters related to the DAiSI component and
thereby removes them from the system.

C. Adaptation of DAiSi component

Figure 11 shows the process for involved DAiSI compo-

nent. The component comp.b contains a configuration
config1, which requires an interface A. The configuration

config1 of component comp.b runs at state
NOT_RESOLVED as long as it cannot find an interface with
same syntax or semantically compatible interface in the

system. When the component comp.a enters the system,
semantic descriptions of provided services are registered into
the knowledge-base, this means, the description of service B
can be found in the knowledge-base. After this, the service B
is provided in the system. Adapter engine can now discover
description of service B in triplestore. If service B and ser-
vice A is syntactically and/or semantically compatible, the
adapter engine could check another candidate, which wants

to use service B, if number of components which service B
can only serve are limit. As long as a free place is provided
by service B, thus, it generates an adapter – a DAiSI compo-

nent called adapter, which requires the service B and pro-

vides service A. The DAiSI configuration service connects

comp.b to adapter and adapter to comp.a. The dependen-

cy of comp.b could be resolved.

Figure 11. Adaptation process with adapter engine.

VI. SEMANTIC DESCRIPTION OF DAISI COMPONENTS

INTERFACE

Description of a machine-readable interface with all
relevant semantical information is a key aspect of our
concept. In this section we show how to describe a interface
semantically.

There are two abstract semantic levels in our system,
software level, which contains programming code and in-
stance of parameter (data), semantic level, which provides
semantic representation of programming code and data.
Required Interface can discover provided interface in triple-

278

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

store based on his semantic representations. Figure 12 shows
interface GetParkingSlot noted with Parking Ontology is
represented by ParkingSpace Interface in T-Box. Instances
of parameters of interface GetParkingSlot is descripted in A-
Box with TUCParkSSE, which link to ParkingSpaceInterface
in T-Box.

For our system, we use a four-layer ontolgy structure for
the construction of the knowledge-base. The four layers are
part of two groups A-Box and T-Box. T-Box describes the
concepts of domain in terms of controlled vocabularies, e.g.,
classes, properties and relationship of classes. A-Box con-
tains the knowledge of instance of domain concepts, e.g.,
instance of classes. The basic knowledge is defined in the T-
Box group. Such knowledge can be divided in different up-
per ontologies. Corresponding of ontologies can be merged,
if different dynamic adaptive systems are being associated.
Merging ontologies is a different research area on which we
do not focus, however, the available results are sufficient for
our work.

Figure 12. Overview of relation of semantic level and software level.

Figure 13 shows the four-layer ontology structure. The

Basic Thing and Domain independent Ontologie, called
Upperontolgoy layer, define the basic knowledge, which can
be widely used in different domains and has already got
agreement by many committees, such as OWL-S,
schema.org, Dbpedia, etc. Domain ontology describes the
domain related vocabularies. Every application or domain
can define its own domain ontology. In the Domain
Ontology, which is the second, or middle layer, all necessary
definitions can be found that are relevant for an application.
In our approach, we develop a parking ontolgoy for our
application to extentent the vocabularies for the parking
relevant services. The layer of the Application dependent
ontology is the lowest level in T-Box. It represents the code
of domain interfaces, more precisely their names, methods,
parameters and return types. The domain dependent and
independant ontology could be used in the application
ontology in order to enriche the represention of services.
This three-layer ontology in T-Box has the main advantage
that every part can be developed separately. Every fragment
of a layer can be merged with other fragments using ontolgy-
merging and ontolgy-mapping. In addition, data, e.g.,
instance of java class or vaule of parameter, can be
semantically represented in the A-Box.

Figure 13. Layers ontology structure.

Figure 14. Data structure of the example.

Figure 14 shows the layout of the ontologies for the

parking use case. We used upmost ontologies, OWL-S,
Dbpedia and Schema.org. The Parking ontolgoy is delevoped
based on the Dbpedia and schema.org. To describe interfaces,
OWL-S is needed to define relations for representation of the
interfaces, like methods, relation between parameters and
methods. Paramter and return tpyes are created as new
ontolgoy and directly mapped to the existing ontolgoy like
Parking Ontolgoy, Dbpedia, etc. Represention of interface
has no limit to usage of ontologies. Every information in any
of the ontologies can be used in any interface. Semantic
description of interface and java Interface can be bi-
directional translated. Each description of interface could
have an ontology item, in order to facilitate management of
the ontology data in datastore such as updata, remove,
modification. Run-time information such as instance of input
and output parameters, so called datatyp object, could be
descripted with owl instance of owl class, which can be
found in T-Box. In our approach, we use historical datatyp
objects to increase accuracy of services discovery. The fol-
lowing examples show how the Ontology is defined.

A. Domain independent ontology

Domain independent ontologies could be used for differ-
ent domains. They are independent on domains and com-
monly are upper ontology to define basic vocabularies and

279

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

data schema, e.g., schema.org, which is schemas for struc-
tured data on the Internet, Semantic Sensor Network Ontolo-
gy (SSN), which can be used to describe sensor, observations
and related concepts. In our approach, Domain independent
ontology can be used to directly describe interface and to
link to the domain dependent ontology. Especially, OWL-S
is an important part for description of interfaces.

OWL-S is one ontology for describing Web services. The
essence of semantic Web Servic description is to realize
automatic web Service discovery, which shares the same
goals of automatic adaptation of DAiSI components in our
approach. Three elements of OWL-S, ServiceProfile,
ProcessModel and ServiceGrounding, can be well mapped to
DAiSI services. ServiceProfile uses for publishing and
discovering services. ProcessModel describes in detail for
the operation of a service. ServiceGrounding provides details
of how the message service interoperability. In particular,
because of similarity of ServiceProfile and interface,
ServiceProfile can be used to describe programming
interface.

Figure 15 shows relation of OWL-S and programming
interface. Interface name can be descripted with Ontology
Serviceprofile, which are depicted by anelliptical shape.
Function name corresponds to process and input and output
parameter corresponds to process:input and process:ouput.

<<Interface>>
interfacename

functionname(InputParameter): OutParameter

Process

&process:#Input

&process;#Output

Service Profile

hasInput

hasOutput

hasProcess

Figure 15. Relationship of programming interface and process in OWL-S.

B. Application Ontology Parking Ontolgoy

Unfortunately, domain independent ontology cannot cov-
er requirements of vocabularies in every individual domain.
We need to develop domain ontologies to meet the demand.
Domain ontology can use the independent domain ontology
to increase its reusability.

In our approach, we define a Parking Ontology. Parking
Ontology is an ontology, which describes Parking space
relevant issues, such as location, usage, ticket, opening hours,
etc. Figure 16 shows a fragment of Parking Ontology, which
contains relevant parts for the example in this paper.
ParkingSpace is the main part, it relates to ParkingLocation
with OWL objectproperty parkingLocation and Sta-
tusOfParkingSpot with statusOfParkingSport. ParkingLoca-
tion is static information.Static means, the information is not
modified in run-time, mostly the value is stored in database
or local in device. StatusOfParkingSpot is run-time infor-
mation, which’s value can be changed at run-time.

ps:EVChargingStation xsd:boolean
ps:ADASpaces xsd:boolean
ps:usageForVehicleType ps:VehicleTypeOfUsage
ps:suitedVehicleType gs:VehicleType

ps: ParkingSpace

ps:ParkingLocation

Ps:centralPositon schema:GeoCoordinates
Ps:city dbpedia:City
Ps:street rdfs:LIteral

Ps:parkingLocationps:statusOfParkingSpot

ps:StatusOfParkingSpot

ps:actualState gs:ActualStateOfParkingSpot
ps:LastOccupancyStateChange xsd:dateTime

ps:LastChangeTime xsd:dateTime

Figure 16. Relationship of programming interface and process in OWL-S.

C. Descrption of Interface

To semantically understand programming interfaces, they
should be translated into semantic technology supported data
format. In fact, the chosen sematic language has big influ-
ence for interface discovery. On the one hand, translation
between semantic data formats is supported mostly only in
one direction, e.g., JSON-LD can be translated into
RDF/XML, but it is difficult to translate it back to its original
format. On the other hand, format of results of the transla-
tions from different language of same programming interface
are usually not identical. Therefore, in our approach, we use
only semantic Language RDF/XML, so that the system is
kept more harmonious.

In this work, we use OWL-S (implemented in RDF/XML)
to descript an interface. The descriptions are separated into 3
parts, description interface, description function, description
parameters.

1) Interface description
Figure 17 shows an interface description. An interface

contains many methods, which are described by processes.
In this example, an interface is described by the process
GetParkingProcess with Service:describedBy.

Figure 17. interface description.

2) Function description
Figure 18 shows the structure of a method description. A

method is described by AtomicProcess and constants of
input and output parameters. The parameter can use existing

ontology, e.g., for input ParkingCity use Ontology from

Ddpeida db;#City, or use self-defining parameter
THIS;#ParkingSlot, which we will show below.

<service:Service rdf:ID="ParkingSlotService">

<service:presents

rdf:resource="&Parking_profile;#Profile_Parkin

gSlot_Service"/>

<service:describedBy

rdf:resource="&Parking_process;#GetParkingProc

ess"/>
</service:Service>

280

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 18. Function description.

3) Input and Output Parameter

Figure 19 shows the self-defining parameter description.

Self-defining datatype is described by owl-class and relate to
the developed Parking Ontology. Linking to existing Ontol-
ogies ensures the relations between the elements of different
parameters can be also discovered. Each relations for this
class should be described by owl:objectproperty or
owl:dataproperty and relate to existing ontology on demand.

Figure 19. Two example interfaces with annotations.

D. Java-Annotations for the Interface and Class Description

Programming interface and semantic interface descrip-
tion should be bilateral transformable. In this approach, Java
is used to implement DAiSI framework. We use an aspect
oriented method – annotations in Java as a link between the
ontology and the actual implementation.

In an interface, every element has at least one label that

links it to the ontology. Every label has an attribute has-

Name to reference the ontology. Ontology names can be
found in the application layer. Interface names, for example,

need only one label: @Interfacename. Functions have

three types of labels: @Activity, @OutputParam and

@InputParameter. The label for input or output is used
only if a function has input– or output parameters. With the
help of annotations, the definition of elements of an interface
is decoupled from the actual ontology. This measure was
taken to ease the changes of either an interface or the ontolo-
gy, without the necessity to alter both. The code-snippets in
Figure 20 present two Java interfaces as examples.

Figure 20. Example interface with annotations.

VII. DISCOVERY AND MAPPING

Discovery and Mapping play an important role in adapt-
er. In this approach, discovery process bases on database,
which stores semantic information of services. Mapper uses
results from discovery process to create the alignment be-
tween required and provided DAiSI services. In this section,
we present the details below.

A. Storage of Semantic Information.

Semantic descriptions of all interfaces should storage in
dynamic adaptive systems. Management of huge information
in memory is a big challenge for the device. Therefore, we
store semantic information in permanent storage to tackle
this issue. Triplestore is a kind of database for storing RDF
triples. It can build on relational database or non-relational
such as Graph-base databases. Querying of semantic infor-
mation in these databases is partly supported by the
SPARQL.

The ontology layers, which mentioned above, are not
forced to be stored in one triplestore. They could be distrib-
uted in different databases and expose their ontology through
a Web service end-point, typically urls in an ontology, so
that increase the reusability of the ontology. SPARQL engine
supports partly discovery in using such external urls. In order
to reduce management difficulty, we save domain ontology,
application ontology and corresponding instance of parame-
ters in a database.

Input and output parameters contain two kinds of
information, static value and dynamic value. Static value is
value of parameter, which usually save in local database and
do not change in the run-time. Accordingly, dynamic value
changes at run-time. However, because of huge amount of
data, it is difficout even impossible to store all historical
datat in database. Therefore, in our appraoch, we store last
few historical data.

<process:AtomicProcess rdf:ID=getParkingProcess">

<process:hasInput>

<process:Input rdf:ID="ParkingCity">

<process:parameterType

rdf:datatype="&xsd;#string">&db;#City</pro

cess:parameterType>

 </process:Input>

</process:hasInput>

<process:hasOutput>

<process:Output

rdf:ID="ExpressParkingSpace">

<process:parameterType

rdf:datatype="&xsd;#anyURI">&THIS;#Parking

Slot</process:parameterType>

 </process:Output>

</process:hasOutput>
</process:AtomicProcess>

<owl:Class rdf:ID="ParkingSlot">

<owl:equivalentClass

rdf:resource="&ps;#ParkingSpace"/>

</owl:Class>

<owl:ObjectProperty rdf:about="parkingLocation">

<owl:equivalentProperty

rdf:resource="&ps;#parkingLocation"/>

<rdfs:range rdf:resource="#ParkingLocation"/>

<rdfs:domain rdf:resource="#ParkingSlot"/>

</owl:ObjectProperty>

<owl:ObjectProperty

rdf:about="actualOccupancyStatus">

<owl:equivalentProperty

rdf:resource="&ps;#ActualState"/>

<rdfs:range

rdf:resource="#ActualStatueOfParkingSpot"/>

<rdfs:domain rdf:resource="#ParkingSlot"/>

</owl:ObjectProperty>

@Interfacename(hasName = " ParkingSlotService")
public interface ParkingSpaceInterfacePV{

@Activity(hasName = "GetParkingProcess")

@OutputParam(hasName= "ParkingSpace")

public ParkingSpace []getParkingSlots (

@Inputparam(hasName = "&db;#City")

ParkCity:String);

}

281

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Discovery

SPARQL is a set of specifications that define a query
language for RDF data, concerning explicit object and prop-
erty relations, along with protocols for querying, and seriali-
zation formats for the results. Reasoner can infer new triples
by applying rules on the data, e.g., RDFS reasoner, OWL
reasoner, transitive reasoner and general purpose rule engine.
By using reasoner more required information can be found,
e.g., equivalent classes, classes with parents relation, etc.
SPARQL engine can use reasoner in forward chaining,
which proceed to add any inferred triples to data set in data
store, and backward chaining, which reasoning between a
SPARQL endpoint and the data store. Backward chaining is
used when ontologies are constantly updated. DAiSI is an
adaptive system, components frequently enter and discharge
a system, this issue causes regularly addition of new ontolo-
gies for service of components in data store. Hereby, change
backward chaining is most suitable for DAiSI.

Discovery has two steps, first step is discovery with defi-
nition of interface’s information, that means only with inter-
face name, input and output parameter name; second step is
using static instance information of class to filter results.
E.g., application wants to look for services, which could
provide parking space in Clausthal in Germany. In the first
step, all semantic compatible interfaces, which could provide
parking spaces in different locations, are found. Locations of
parking spaces are static information which saved mostly in
database. Such location information can be used to filter the
mount of discovered interfaces to find interfaces which can
provide parking spaces in Clausthal. Using static information
avoids accessing each interface, so that it avoids the side
effect, -component state changed with calling function.

Figure 21. Example SPARQL query.

Figure 21 shows the SPARQL query example. To find

interface we need description required input and output pa-
rameters in query. Query could be created directly from
semantic noted programming interface.

C. Mapping

 Discovery result is the interface name of component. In
order to create an adapter we need create details relation
between required and provide interface. Mapping of each
parameter in input and output parameter can be restructured
with help of his sematic annotation. According to the results
of mapping, an adapter (new DAiSI component) will be
created.

VIII. CONCLUSION

This paper is an extended version of the work published
in [1]. In first approach, we presented the enhancement to the
DAiSI: A new infrastructure service. Syntactically incompat-
ible services can be connected with the help of generated
adapters, which are created by the adapter engine. The
adapter engine is prototypically implemented with Java. Re-
use of component across different domains is enabled with
this approach. In this paper, we extend our previous work by
detail of the layered structure of ontologies, an improved
discovery process based on SPARQL and triplestore. The
new layer structure supports description of instance of pa-
rameters and it increases the re-use of ontology. By using
triplestore and SPARQL, it facilitates discovery service in a
huge number of components. Semantic description hat still
strength influence on discovery results. In further steps, we
will reduce the closed related relation between semantic
description and discovery.

IX. ACKNOWLEDGEMENT

This work is supported by BIG IoT (Bridging the Inter-
operability Gap of the Internet of Things) project funded by
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 688038

REFERENCES

[1] Y. Wang, D. Herrling, P. Stroganov, and A. Rausch,
“Ontology-based Automatic Adaptation of Component
Interfaces in Dynamic Adaptive Systems,” in Proceeding of
ADAPTIVE 2016, The Eighth Intermational conference on
Adaptive and Self-Adaptive Systems and Application, 2016,
pp. 51-59.

[2] OMG, OMG Unified Modeling Language (OMG UML)
Superstructure, Version 2.4.1, Object Management Group
Std., August 2011, http://www.omg.org/spec/UML/2.4.1,
[Online], retrieved: 06.2015.

[3] H. Klus and A. Rausch, “DAiSI–A Component Model and
Decentralized Configuration Mechanism for Dynamic
Adaptive Systems,” in Proceedings of ADAPTIVE 2014,
The Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications,Venice, Italy, 2014, pp.
595–608.

[4] H. Klus, “Anwendungsarchitektur-konforme Konfiguration
selbstorganisierender Softwaresysteme,” (Application arch-
itecture conform configuration of self-organizing software-
systems), Clausthal-Zellerfeld, Technische Universität
Clausthal, Department of Informatics, Dissertation, 2013.

[5] D. Niebuhr, “Dependable Dynamic Adaptive Systems:
Approach, Model, and Infrastructure,” Clausthal-Zellerfeld,
Technische Universität Clausthal, Department of
Informatics, Dissertation, 2010.

[6] D. Niebuhr and A. Rausch, “Guaranteeing Correctness of
Component Bindings in Dynamic Adaptive Systems based
on Run-time Testing,” in Proceedings of the 4th Workshop
on Services Integration in Pervasive Environments (SIPE 09)
at the International Conference on Pervasive Services 2009,
(ICSP 2009), 2009, pp. 7–12.

[7] D. M. Yellin and R. E. Strom, “Protocol Specifications and
Component Adaptors,” ACM Transactions on Programming
Languages and Systems, vol. 19, 1997, pp. 292–333.

select ?interface

where {

?interface <process#hasInput> ?var

?var <process#paramterTyp> “dbpedia#City”

?interface <process#hasOutput> ?var2

?var2 <process#paramterTyp> “this#ParkingSlotApp”
}

282

International Journal on Advances in Software, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] C. Canal and G. Salaün, “Adaptation of Asynchronously
Communicating Software,” in Lecture Notes in Computer
Science, vol. 8831, 2014, pp. 437–444.

[9] J. Camara, C. Canal, J. Cubo, and J. Murillo, “An Aspect-
Oriented Adaptation Framework for Dynamic Component
Evolution,“ Electronic Notes in Theoretical Computer
Science, vol. 189, 2007, pp. 21–34.

[10] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli,
“Automatic Synthesis of Behavior Protocols for Composable
Web-Services,” Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of
Software Engineering, 2009, pp. 141–150.

[11] A. Bennaceur, C. Chilton, M. Isberner, and B. Jonsson,
“Automated Mediator Synthesis: Combining Behavioural
and Ontological Reasoning,” Software Engineering and
Formal Methods, SEFM – 11th International Conference on
Software Engineering and Formal Methods, 2013, Madrid,
Spain, pp. 274–288.

[12] A. Bennaceur, L. Cavallaro, P. Inverardi, V. Issarny, R.
Spalazzese, D. Sykes and M. Tivoli, “Dynamic connector
synthesis: revised prototype implementation,”, 2012.

[13] OMG, “CORBA Middleware Specifications,” Version 3.3,
Object Management Group Std., November 2012,
http://www.omg.org/spec/#MW, [Online], retrieved:
02.2016.

[14] A. Kalyanpur, D. Jimenez, S. Battle, and J. Padget,
“Automatic Mapping of OWL Ontologies into Java,” in F.
Maurer and G. Ruhe, Proceedings of the 17th International
Conference on Software Engineering and Knowledge
Engineering, SEKE’2004, 2004, pp. 98–103.

[15] OMG, OMG Unified Modeling Language (OMG UML)
Superstructure, Version 2.4.1, Object Management Group
Std., August 2011, http://www.omg.org/spec/UML/2.4.1,
[Online], retrieved: 06.2015.

[16] J. Camara, C. Canal, J. Cubo, and J. Murillo, “An Aspect-
Oriented Adaptation Framework for Dynamic Component
Evolution,“ Electronic Notes in Theoretical Computer
Science, vol. 189, 2007, pp. 21–34.

[17] G. Söldner, “Semantische Adaption von Komponenten,”
(semantic adaption of components), Dissertation, Friedrich-
Alexander-Universität Erlangen-Nürberg, 2012.

[18] D. Martin, M. Bursten, J.Hobbs, et al., “OWL-S: Semantic
markup for web services,” W3C member submission, 22,
2007-04.

[19] D. Martin, M. Bursten, J.Hobbs, et al., “OWL-S: Semantic
markup for web services,” W3C member submission, 22,
2007-04.

[20] D. Faria, C. Pesquita, E. Santos, M. Palmonari, F. Cruz, and
M. F. Couto, The AgreementMakerLight ontology matching
system, in On the Move to Meaningful Internet Systems:
OTM 2013 Conferences, Springer Berlin Heidelberg, pp.
527–541.

[21] P. Jain, P. Z. Yeh, K. Verma, R. G. Vasquez, M. Damova, P.
Hitzler, and A. P. Sheth, “Contextual ontology alignment of
lod with an upper ontology: A case study with proton,” in
The Semantic Web: Research and Applications, Springer
Berlin Heidelberg, 2011, pp. 80–92.

[22] P. Shvaiko and J. Euzenat, “Ontology matching: state of the
art and future challenges,” IEEE Transactions on Knowledge
and Data Engineering, vol. 25(1), 2013, pp. 158–176.

[23] M. K. Bergmann, “50 Ontology Mapping and Alignment
Tools,” in Adaptive Information, Adaptive Innovation,
Adaptive Infrastructure, http://www.mkbergman.com/1769/
50-ontology-mapping-and-alignment-tools/, July 2014,
[Online], retrieved: 02.2016.

[24] H. Klus, A. Rausch, and D. Herrling, “Component Templates
and Service Applications Specifications to Control Dynamic
Adaptive System Configuration,“ in Proceedings of
AMBIENT 2015, The Fifth International Conference on Am-
bient Computing, Applications, Services and Technologies,
Nice, France, 2015, pp. 42–51.

