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Abstract—The exploitation of context-awareness, especially in
mobile devices bears a huge potential. For example, mobile
workers benefit from systems that adapt security settings or
user interfaces to the current situation. However, the correct
detection of contexts strongly relies on raw data from various
context information sources that might be neither trustworthy
nor authoritative. In this work, we present an extension to a
context model that explicitly copes with trustworthiness of context
information, i.e., its vulnerability to forgery, as well as their
conduciveness denoting the source’s decisive impact on context
detection. Context descriptions based on this model can, for
example, be used in security-critical environments to enforce
security policies. We show the applicability of our approach in
an industrial setting. In addition, we present the results of our
experiments with respect to precision and recall of the context
detection.
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I. INTRODUCTION

Context-awareness of software applications is still in its
infancy [1], [2], although it has been researched since the
beginning of the nineties [3]. Recently, the rise of mobile
technologies introduced a new class of devices with vari-
ous sensors providing context information. For such devices,
context-awareness can be particularly useful to adapt user
interfaces or security measures to the current situation, in order
to relieve the user. For example, context-awareness enables
more flexible control by limiting the applicability of security
measures only to situations where they are indispensable (e.g.,
display timeout for mobile devices is set to fifteen minutes
in the office, thirty minutes at home, and to two minutes
elsewhere).

An important building block for enabling context-aware
security is context modeling. The user’s contexts (i.e., her
current activity and device situation) have to be determined by
aggregating low-level contextual information, such as current
location, battery consumption, or connectivity of her mobile
device. However, in order to provide reliable decision support,
context descriptions have to be trustworthy, reliable, and accu-
rate, especially to support security decisions. Thus, the context
evaluation must consider information about how easy it is to
counterfeit contextual information.

To this end, a methodology for eliciting and modeling
contextual information is needed that yields reusable and
comparable context descriptions. In particular, this method
must support the identification of suitable context information
sources and the aggregation of low-level pieces of context
information into an overall context description.

Contribution. In [1], we present our context model and
context descriptions that explicitly include a relevance and a
security rating for each context information source. The two
quality attributes are used to improve the recognition accuracy,
which is an open challenge in activity recognition [4], [5].
These ratings enable us to provide quality statements for the
accuracy of context detections. Security decisions benefit from
the quality statements within a context description, aggregated
during run-time. We extend [1] by showing the applicability of
our approach in an industrial setting. In addition, we present
the results of our experiments with respect to precision and
recall of the context detection.

Paper Structure. The paper is structured as follows: Our
context modeling approach is presented in Section II, followed
by Section III addressing uncertainty of context information
sources. In Section IV, we apply our approach to an industrial
scenario from a large German company. We present our
evaluation with respect to the quality of our context detection
in Section V. Section VI addresses related work in the area of
context definition and context information modeling. Finally,
Section VII provides a summary and an outlook on future
work.

II. CONTEXT MODEL

Our work uses a combination of existing definitions and
descriptions of context, which are further described in our
related work section (Section VI). We partition context sources
into virtual and physical information sources, depending on the
origin of the information, and we logically link them (similar
to Hofer et al. [6]). As this work focuses on mobile devices
and their users, activities of the user are an important aspect,
as well as the operational state of the device. Thus, we define
context as:

Context is the state of all virtual and physical infor-
mation sources that characterize the activity of the
user and the operational state of the mobile device
in a specific situation at a certain time.

Figure 1 presents a macroscopic view of the core parts of
our model and their interrelations. The model mainly describes
relations between the user, the mobile device, and the context.
The context is broken up in a user context (user-centric
context) and a device context (mobile device-centric context).
We assume that a user can have one or more mobile devices
and that a user has always her own mobile device, which she
will not share with other users.

A user can perform several activities in a specific situation
at a certain time. The user context depends on the activity and
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Figure 1. Context Model (Macroscopic Viewpoint).

the current situation of the user. In an ideal world, the user con-
text would include all information about the activities and the
situation. Hence, the information in the model world would be
congruent with the information in the real world. However, due
to technical constraints of the context information retrieval, the
detection capabilities (e.g., environment sensors) are limited. In
addition, the boundaries between certain activities are fluid and
often cannot be determined by context information sources.
Accordingly, the differentiation between activity, situation, and
user context will persist. Hence, the relations between activity,
situation, and user context depends on the granularity of the
modeled user contexts. Our context model has to cope with
such uncertainties.

A mobile device has an operational state and acts within a
specific situation. Hence, the situation of the device includes
internal states of the device and attributes of the environment.
The overall device context considers the operational state,
which may be influenced by the current situation. Similar to
the relation between activity, situation, and user context, the
device context would always match the current situation and
operational state in an ideal world. However, due to technical
limitations, several distinct device situations lead to the same
device context. Moreover, the operational state may relate to
the activity of the user. This relation must not necessarily hold,
as the user can also perform device-independent activities.
However, for automatic context detection, we can only use
the operational state. Finally, the device context also depends
on the user context. Again, in an ideal world, the device
context would include all information about the situation and
the operational state.

It is apparent that the environment and internal states of the
device can only be sensed by context information sources that
are technically available. Thus, device context and user context
must be detectable by existing context information sources,
but are only approximations of the real world, neglecting
unmeasurable information. In contrast, activity, situation and
operational state strive to represent the world as it really is.

The core part of the context model is the context itself. The
goal is to model the user and device context as an abstraction
and aggregation of pieces of information obtained from various
context information sources.

A. Context Description Structure
A context description can be a logical or arithmetic ex-

pression. The context description aggregates raw sensor data as
evaluators and combines them to a tree structure. For example,
we can specify the context “LowBattery” as shown in Figure 2.

Figure 2. Example Context Tree “LowBattery”

To model contexts, Expressions can be combined to form
arbitrarily complex descriptions (see Figure 3). Expressions
can be combined and nested in a way that the respective
overall result is a Boolean value with additional ratings for
security and relevance (see Section III). GenericExpression
forms the basis for all other types of Expressions (arithmetic,
comparison, and logic) and a ConstantExpression holding a
constant value. The Expression interface has a method for
evaluating itself and a method for retrieving the return type.
For type safety, it is important to have these type assignments,
as a context description, at least in theory, could combine any
expression type. However, there is a check whether the relation
is allowed. For instance, a comparison between a Boolean type
and a list of values would be rejected.

A specialization of the GenericExpression is the BinaryEx-
pression, which allows exactly two subordinated expressions.
ComparisonExpressions, for instance, take exactly two sub-
expressions for their evaluation.

ArithmeticExpressions are expressions for addition, sub-
traction, multiplication and division. For evaluating the expres-
sion, all assigned sub-expressions are joined by the appropriate
operation. In general, ArithmeticExpressions can contain an
unlimited number of nested expressions.

Similar to ArithmeticExpression, a LogicExpression can
take an unlimited number of nested expressions for evaluation.
For the moment, and, or, and not with their usual semantics

Figure 3. Excerpt of Expression Model.
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have been implemented. Future extensions could include fuzzy
logic or other evaluation capabilities.

The Evaluator can express various behaviors, for exam-
ple, aggregation or temporal changes of information. Every
functionality that cannot be expressed by arithmetic or logic
expressions has to be provided by evaluators. Each evaluator
implementation encapsulates a specific operation of Sensor
data, which means, it is one possible abstraction of the
operative behavior of the information source and performs
a first aggregation of raw values from the measurement (if
needed). Evaluators can be included as sub-expressions at
arbitrary locations within the presented structure.

Sensors provide an abstract representation for context infor-
mation sources, which usually deliver low-level information,
such as the current coordinates of the Global Positioning Sys-
tem (GPS) or acceleration values. In general, we distinguish
between push and pull behavior, based on the characteristics
of the underlying information source. Some sensors can be
configured to provide (i.e., push behavior) new information as
soon as new data is available (e.g., acceleration or location
sensors). Such push sensors usually contain parameters to
configure conditions when data updates will be delivered. For
example, the location sensor will only deliver new information
if the mobile device location changed by at least 50 meters.
Other sensor information has to be queried regularly (i.e., pull
behavior) to obtain current information (e.g., mobile device
settings, calendar). Pull sensors contain a scheduleInterval
parameter specifying the frequency of data updates. For ex-
ample, wireless network information can be requested every
five minutes.

Our preferred format for a context description is XML
(see Figure 4). In general, a configuration can contain several
expressions of types arithmetic, comparison, or logic (future
extensions could extend the list of available expression types).

The specification in Figure 4 includes two different eval-
uators: a GenericLocation evaluator for checking a specific
location and a WiFiIsSSIDInRange-Evaluator to scan for spe-
cific wireless Service Set Identifiers (SSID). The location
evaluator consumes the following parameters: location values
(i.e., latitude and longitude), distance (specifying the data
delivery and distance accuracy), provider (location information
from network and/or GPS) and maxAge (allowed data age
for evaluation). The wireless evaluator uses the parameter
ssid to scan for this specific wireless SSID. In addition, the
parameter keepEnabled prevents the user from disabling the
wireless network sensing. The listing also shows an example
of arithmetic expressions and comparisons. Evaluators may
contain a relevance and a security rating, which are described
next.

III. DEALING WITH UNCERTAINTY

The basic question when building a context-aware system
is: “To which extent is the context detection reliable?” We dis-
tinguish three major uncertainties to deal with: trustworthiness,
relevance, and accuracy.

Accuracy information is typically already provided by
sensors used in mobile systems. Therefore, we focus on
other two uncertainties and introduce two quality metrics: a
security rating, denoting the difficulty for an adversary to
counterfeit the measurement of the context information source

<context id="example-context">
<logic:and>

<logic:or>
<evaluator name="GenericLocation" relevance="5">
<param name="latitude" value="49.431479"/>
<param name="longitude" value="7.7520288"/>
<param name="distance" value="15.0"/>
<param name="provider" value="0"/>
<param name="maxAge" value="3600"/>
<param name="resultType" value="boolean"/>

</evaluator>
<evaluator name="WiFiIsSSIDInRange" relevance="3">

<param name="maxAge" value="60"/>
<param name="keepEnabled" value="true"/>
<param name="scheduleInterval" value="15"/>
<param name="ssid" value="wlan-home"/>
<param name="resultType" value="boolean"/>
</evaluator>

</logic:or>
<!-- Arithmetic demo: 2*2*4 >= 10+(36/6) -->
<comparison:greaterEqual>
<arithmetic:multiply>
<constant type="double" value="2"/>
<constant type="double" value="2"/>
<constant type="double" value="4"/>

</arithmetic:multiply>
<arithmetic:add>
<constant type="double" value="10"/>
<arithmetic:divide>
<constant type="double" value="36"/>
<constant type="double" value="6"/>

</arithmetic:divide>
</arithmetic:add>

</comparison:greaterEqual>
</logic:and>

</context>

Figure 4. Evaluator Example.

and a relevance rating, expressing the value of the context
information source for the identification of the overall context.

For both quality metrics, we have to find suitable thresholds
and combine them to trust the context detection in the given
usage scenario. For example, a context based on low ranked
context information sources only, can easily be counterfeited
and might not be trustworthy. Similar, some context informa-
tion sources are more supportive to detect the current context
than others. For example, the wireless network information is
well suited to detect the context “home”, while it is rather bad
for detecting activities such as “running”.

A. Security Rating
Every evaluator has a security rating assigned to it. The

rating takes the values from one (very low) to five (very high).
Basically, the security rating denotes the trustworthiness of
the context information, i.e., its vulnerability to forgery. The
security rating within our work is defined as follows:

The Security Rating is a global indicator expressing
difficulty and challenge for an adversary to counter-
feit a context information source.

The following aspects have to be considered, when rating
an evaluator. A security expert or group of experts have to
perform this task based on an attacker model when an evaluator
is developed. The experts have to assess the necessary precon-
ditions for successfully counterfeiting an information source:

(i) insider knowledge or configuration details
(ii) special expertise or knowledge to perform the operation

(iii) special software or application
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(iv) special hardware or equipment
(v) influence on information source (backend or environment

change)

Based on these prerequisites, the metric to determine the
rating for every evaluator is defined as follows:

• 1 (very low): 0 out of 5 prerequisites needed
It is easy to counterfeit the measured values (e.g., just
change or enter the value). An example for such a
rating is the time of the mobile device or calendar
entries of the user.

• 2 (low): 1 out of 5, but not prerequisite (iv)
The manipulation of the sensed value can be done
with little effort. An example is to simulate a high
light intensity with a torch or to shake the device to
forge acceleration values.

• 3 (medium): 2 out of 5 OR 1 out of {(iii), (iv), (v)}
Some preparations are required, but they are not really
challenging. An example would be faking the SSID or
BSSID of a WiFi hotspot, which can directly be done
by using a second smart mobile device.

• 4 (high): 3 out of 5 OR 2 out of {(iii), (iv), (v)}
The required measures are challenging for an adver-
sary, and without special knowledge, it would not
be possible to perform the attack. An example is to
simulate that the device is connected to an encrypted
(mobile) network.

• 5 (very high): 4 out of 5 OR 3 out of {(iii), (iv), (v)}
Forging of context information sources requires deep
knowledge about the internal configuration and signif-
icant expertise; moreover special equipment is needed,
such as software and hardware. An example is the GPS
sensor or cell phone tower information, for which an
attacker would need special hardware and knowledge
how to use it.

The security rating has to be defined once, and it has a
global scope for every instantiated context tree. However, it is
possible to manually change the rating by explicitly setting it
in the evaluator tag of the context description. For example,
the security rating of a virtual context information source can
vary according to its trustworthiness. A read-only enterprise
calendar will be much harder to counterfeit than the personal
calendar maintained by the user itself. Hence, we can manually
assign a higher security rating to the evaluator using the read-
only enterprise calendar.

We rated all our evaluators by asking two security experts
from our institute to assess the five preconditions. Figure 5
presents possible answers for their assessment.

Figure 5. Possible Answers for Assessing Security Rating Preconditions

In addition, the experts had to write a brief statement
for every precondition for being able to reconstruct their
assessment and for being used in later discussions with the
other security expert. Figure 6 shows the filled table for
the Bluetooth-Evaluator by one security expert. The security
expert rates the BluetoothEvaluator with a security rating of
4 (high), as 3 out of 5 preconditions are necessary for a
successful manipulation.

Figure 6. Security Rating Assessment for BluetoothEvaluator

Finally, we collected the information from the two security
experts and determined a security rating for every evaluator
based on their assessment. For instance, evaluators using the
accelerometer values have been rated with very low, as a device
user can easily manipulate these values. Contrary, evaluators
using Android’s location services are rated as very high, as
the location services are using a multitude of location sources
(i.e., GPS, Cell-ID, Wi-Fi) [7], which are hard to manipulate.

B. Relevance Rating
For each context, we assign a second rating to every

evaluator, expressing the contribution of the information source
to the overall context identification. Similar to the security
rating, it accepts values from one (very low) to five (very high).
The rating represents whether the provided information tends
to be decisive or has a less authoritative impact on context
detection. The relevance rating is defined as follows:

The Relevance Rating is a local indicator expressing
the correlation of a context information source with
an activity, or situation.

The relevance rating depends on the modeled context, but
also on the quality of a sensor and cannot be specified by
just following generic guidelines. Thus, the retrieval of the
relevance rating is part of an automatic derivation process,
which has been described in [8]. This process yields context
descriptions that can be used in operative environments.
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Figure 7. Detailed Process for Determining Context Descriptions

The entire process comprises three phases, depicted in
Figure 7:
• Collection & Preparation,
• Analysis & Representation, and
• Correlation & Creation.
1) Collection & Preparation: In the first phase, we man-

ually collect user activities/device situations and use mobile
devices to automatically collect related contextual information
(sensor data). The two data streams are fed into the process
for further processing. We are using discrete time steps in
the subsequent phase and therefore, we have to discretize the
data collected. We have different strategies to transform the
information, which depend on the nature of the given data.
In addition, we consolidate the reported user activities and
situations regarding their semantics (as users may use different
verbalisms for reporting their activities and situations).

2) Analysis & Representation: The second phase has two
objectives. First, the discretized context data can be analyzed
to derive new information from it. For example, changes in
battery level over time can be derived from absolute battery
levels at specific points in time. Second, we create graphical
representations of the data sets. For example, geolocation
over time can be visualized via heatmaps. The graphical
representations is used to allow human experts to validate
context descriptions in the end.

3) Correlation & Creation: In the third phase, context
descriptions are derived. Towards this end, the normalized
activity journals are first correlated with contextual data. We
use different statistical methods (see [8]) to correlate sensor
data with activities/situations and use the results (e.g., a cor-
relation matrix) to determine the relevance of a sensor for the
characterization of an activity or situation. Derivation rules are
then applied, producing context descriptions that correspond to
user activities.

The evaluation result of a context is obtained by evaluat-
ing the tree structure of the context description. The logical
operators have their standard meaning.

The calculation of the relevance and security rating for a
context is as follows:
• AND/OR-relation: All fulfilled quality attributes of

the elements in an AND/OR group affect the overall

relevance or security rating. They are summed up to
the denominator. The quality attributes of all evalu-
ators that are actually fulfilled in the system under
evaluation are summed up to the numerator.

• NOT-relation: The quality attribute of the element is
propagated to the parent node, if the subordinated
expression is false.

The quality attributes ensure that the fulfillment of those
evaluators with highest relevance or security rating has the
strongest impact on the overall result. For example, let us
assume a context description c with three evaluators e1, e2, e3
linked with a logical or: c = e1 ∨ e2 ∨ e3. Assume further
that evaluator e1(true, sec = 1, rel = 1) is fulfilled
and has a relevance and security rating of one, and that
e2(false, sec = 3, rel = 4) and e3(false, sec = 4, rel =
5) are not fulfilled and have a relevance rating of four and five,
respectively. Then, the overall result of the context is fulfilled,
but the relevance rating is only 1/10 = 0.1 and the security
rating is 1/8 = 0.125. The security policy specification bears
responsibility for defining suitable thresholds for the security
and relevance ratings that are sufficient to trigger a change
of the security settings. Furthermore, the decision strongly
depends on whether to tighten or to ease security restrictions.

IV. APPLICATION SCENARIO

To demonstrate how such an approach can be used in an
industrial setting, we applied it in cooperation with a large
German company that administrates mobile devices via the
mobile device management (MDM) solution MobileIron R©. Via
MobileIron R©, they adjust security settings (e.g., to impose
password restrictions or storage encryption, to install or revoke
certificates for virtual private networks, or to disable camera or
microphone), and perform actions such as sending messages
to the user or wiping the device. However, these settings and
actions are rather static and cannot be adapted according to
the current operational state of the device or the user activity.
In this setting, context-awareness can provide more flexibility.
For example, camera and microphone usage can be prevented
within company premises, but allowed elsewhere. However,
when used for security purposes, context detection has to
be accurate and reliable in order to comply with company
regulations.
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In our application, we analyzed the security demands of
the company and identified the needed flexibility. We created
appropriate context descriptions and connected our context de-
tection with the MDM solution of the company. Unfortunately,
we were not allowed to run the evaluation with productive
users and had to evaluate it with researches from our institute.

A. Setup & Execution
Security policies in MobileIron R© control security behavior

such as password restrictions of the mobile device (cf. Table I).
Lockdown policies limit the use of the mobile device such
as disabling Bluetooth, camera, or microphone (cf. Table II).
We specified two security policies (security1 and security2)
and three lockdown policies (lockdown1, lockdown2, and
lockdown3), which are briefly described in the following.

TABLE I. SECURITY POLICIES

security1 security2
Maximum Inactivity Timeout: 30 min 2 times

Maximum Number of Failed Attempts: 3 min 5 times

TABLE II. LOCKDOWN POLICIES

lockdown1 lockdown2 lockdown3
Bluetooth: Disable Enable (Audio only) Enable

Camera: Disable Enable Enable
Microphone: Disable Enable Enable

NFC: Disable Enable Enable
Screen Capture: Disable Enable Enable

Lockscreen Widgets: Disable Enable Enable
USB Debug: Enable Disable Enable

In Table I, security policy security1 has a higher priority
than security policy security2. Hence, if both policies are
activated, security1 would be used and the maximum inactivity
time would be 30 minutes. In Table II, the lockdown policy
lockdown1 has a higher priority than lockdown2, which in
turn has a higher priority than lockdown3.

MobileIron R© allows the definition of labels and the as-
signment to security and lockdown polices. In our case,
we defined four labels, namely default label, work1 label
where security is tightened, work2 label where security is
eased and home label. These labels have been assigned to
our policies as depicted in Figure 8.

Figure 8. Mapping between Labels and Policies.

In the described setting, two contexts are of relevance:
“Home” and “Work”. Both contexts are modeled by using
wireless, location, calendar, and time evaluators. Figure 9

illustrates the context tree for the “Work” context c1, including
all assignments for the security and relevance ratings. As the
security rating has a global scope for each evaluator type, the
value does not change within the same type of evaluator. In
contrast, the relevance rating changes, depending on the results
from the statistical calculation.

Figure 9. Context Tree Example for Context “Work”.

For example, the wireless network wlan-staff has the
highest statistical significance (correlation result), followed
by wlan-guest and wlan-extern. This is reflected in the final
relevance ratings of the wireless evaluators. wlan-staff is the
employer’s wireless network and has the highest relevance.
The calendar seems to be a relevant context factor, but as
users usually do not schedule their entire working day in
the calendar, the calendar evaluator has the lowest relevance.
Similar behavior holds for the time evaluator. The company has
flexible working hours, but the core working hours are between
09:00am to 4:00pm. Hence, users arrive earlier or stay longer
at work, to reach their daily working time. Nevertheless, the
time evaluator is more relevant than the calendar evaluator.

The company has defined several policies assigned to the
“Work” context, on which we focus in the following. On the
one hand, there are policies easing security restrictions of the
mobile device at work (in favor of usability). For example,
the company increases the display timeout at work to thirty
minutes for usability reasons (work1 label → security1).
On the other hand, there are policies tightening the security
at work. For example, the company prohibits the usage of
camera, microphone, etc. at work to meet organizational poli-
cies (work2 label → lockdown1). The idea is now to define
appropriate thresholds to reflect company needs.

To tackle this, we calculated the following cases:

• Context c1 is true with highest relevance → 1.00

• Context c1 is true with lowest relevance
e1, e4, e5, e6 are true → 0.46

• Context c1 is false with highest relevance
e1, e2, e3, e5, e6, e7 are true → 0.96

• Context c1 is false with lowest relevance → 0.00

Hence, the relevance range for c1 is true is between 0.46
and 1.00, and for c1 is false is between 0.00 and 0.96.
Analogously, we calculated the security rating for c1. Figure 10
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shows our policy state chart and the state change criteria to
activate and deactivate the policies. To change the states by
using the relevance and security rating, as well as the fulfill-
ment of the context, allows us to model hysteresis behavior.
For example, changing from the state work1 label (inactive)
to work1 label (active) is harder than changing from the state
work1 label (active) to work1 label (inactive).

Figure 10. Policy Statechart.

For instance, assume that work1 label is inactive, the
evaluators e1, e4, e5, e6 are true, and the evaluators e2, e3, e7
are false. This results in context c1 to be true. However, the
relevance is only 0.46 and the security is only 0.50, which
would prevent the change from inactive to active. Hence, we
need at least one more evaluator changing its state to true
for reaching the relevance threshold and even one more for
reaching the security threshold. Vice versa, let us suppose that
work1 label is active and the evaluators have the same state
as before. Although c1 is still fulfilled, we would make the
change as the ratings are below the defined thresholds of 0.60
(relevance) and 0.80 (security).

B. Lessons Learned
The practical application was performed by two of our

internal researchers, as they had to manually observe the
mobile devices. For our case study, we used a Samsung Google
Nexus 10 running Android 5.1 and a Samsung Galaxy Tab
(SM-P600) running Android 4.4.2. Both devices were added to
the MDM solution and had to adhere to the company-specific
security policies. We made several observations in our practical
application, which we describe next.

Some sensors have uncertainties and inaccuracies in their
measurements. In our scenario these are the location and
the wireless sensors. We configured the wireless sensor to
scan for specific wireless networks every five minutes and
prevented the user from disabling by setting the keepEnabled
flag. However, the sensor occasionally misses some wireless
networks although the networks are available. If we measure
for a specific wireless network ten times, the sensor will miss
this specific network one to two times. Hence, we have a
failure rate of 10 to 20 percent in our measurements. Let us
assume our context “work” c1 is fulfilled and work1 label is
active as well as work2 label is active. The affected wireless
evaluators are e1, e2, e3. All other evaluators are assumed to
be fulfilled, i.e., working correctly. As they are in OR-relation
(cf. Figure 9), all three have to provide a wrong measurement
to yield an overall evaluation result of c1 that is wrong, which
did not happen during our evaluation period. Evaluator e2
has the highest impact on the relevance and security ratings.
If the evaluation of e2 fails, the relevance rating is at 0.81
and the security rating is at 0.86. Both ratings are above the
specified thresholds to trigger a state change for the labels
work1 label and work2 label. The failure of an additional

wireless evaluator, for instance e1 or e3, puts the ratings to 0.65
(relevance) and 0.73 (security), which are below the thresholds.
Such ratings result in a change of work1 label from active to
inactive, which is uncritical as it tightens our security settings.
Regarding work2 label, we will stay in the active state, as
the overall context c1 is still true, which is also uncritical. To
trigger a state change, we would need all three evaluators to
fail, which did not happen during our evaluation period, as
already mentioned.

Regarding the location evaluation, we observed that we
have some uncertainties in the location evaluation of e6 and
e7 when people are entering the specified locations. Such
location changes usually happened in the morning, when
people arrived at work, and after noon, when people came
back from lunch outside the company. The reason for detection
failures is the inaccurate location fix after a location change.
The Android location services return a coarse grained location,
which is outside our specified locations for the evaluators.
Let us assume our context “work” c1 is not fulfilled and
work1 label is inactive as well as work2 label is inactive.
The affected wireless evaluators are e6, e7. All other evaluators
are assumed to be fulfilled, i.e., to work correctly. To trigger
a state change, both evaluators have to be evaluated to true.
Regarding work1 label, it is uncritical as we are remaining
in the high security settings; however, work2 label is critical.
As we configured to receive a location fix latest every five
minutes and after location changes greater than fifteen meters,
we may stay five to ten minutes in a wrong state. However,
as the Android location services pushes new information after
the location fix, we observed to stay less than five minutes in
the wrong state.

We modeled all evaluator groups in AND-relation, which
was a bad decision regarding the time and calendar evalua-
tors. As the working hours was given between 09:00am and
04:00pm, e5 was also configured to be true in the specified
interval. However, people usually do not completely stick to
these working hours. We observed that work1 label stayed
too long in state inactive (starting working before 09:00am) or
changed from active to inactive too early (working longer than
04:00pm). Similar observations were made for the calendar
evaluator e4. We learned to model evaluators with lower
relevance in an OR-relation rather than in an AND-relation.
However, we have to gain more experience to make a final
decision.

Overall, we conclude that our approach is feasible to adapt
security settings provided by the MDM solution in our given
scenario. Future work has to analyze the performance, focusing
on the latency between the context detection and the effective
enforcement of the security settings on the mobile device.

V. EXPERIMENTAL EVALUATION

In our practical application, we evaluated our approach in
a company setting. However, we run tests with two researchers
in our premises and were not allowed to monitor the behavior
in the company. In addition, our researchers did not use the
mobile devices for their daily work. Hence, we did not evaluate
the correctness of the context detection.

We started another experiment to evaluate precision and
recall of our context detection in a real world setting. The
following steps have been performed:
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• Preparation 1 - Data Collection: Automated collec-
tion of contextual data and manual reporting of user
activities and situations. This data is required for the
context description generation.

• Preparation 2 - Context Description Generation:
Derivation of context descriptions by using the process
depicted in Figure 7. The derived context descriptions
are used for the real world context detection.

• Execution - Real World Context Detection: Detec-
tion of context by using the generated context descrip-
tions to adapt mobile device behavior (for convenient
and security reasons) in a real world application.

• Analysis & Discussion: Analysis of the reported
context detections with respect to precision and recall.

A. Preparation 1 - Data Collection

We first performed some data collection experiment before
our actual evaluation experiment. In our first experiment, seven
voluntary participants collected their contextual real-life data
over a period of four weeks. The collection has two main
parts: Subjects manually report their activities and situations
in a context journal. Concurrently, mobile devices automat-
ically collect contextual information from different sources;
for example, physical sources such as built-in sensors (e.g.,
accelerometer, wireless networks) and virtual sources such as
calendar entries.

For data collection, we use a mobile application, the funf
framework [9]. The funf team implemented the application
for sensing and processing contextual information on smart
mobile devices. We use the “funf Journal” app from Google’s
PlayStore [10]. It allows a flexible sensing, processing, and
storing of contextual information. We can configure the mobile
application to collect data from different context information
sources. The mobile app allows flexible scheduling based on
time constraints and configurable triggers. Funf supports 38
different context information sources for data collection, so-
called probes. Funf divides them into the following categories:
device, device interaction, environment, motion, positioning,
and social. After configuring and starting the funf application,
it autonomously collects data as background process and stores
the results in a SQLite database on the mobile device. The
user can export the database to the local file system or upload
the data to a server. Overall, we configured fourteen different
sensors that collected about 110 million data entries in four
weeks.

Besides raw context data, we also need information about
the current activity/situation, in which the subject acts during
the measurements for determining the relation between raw
sensor data and user activities/device situations. Hence, our
participants manually report their perceived context during the
data collection phase in a context journal. The participants
reported their activities paper-based or using the mobile appli-
cation “Gleeo Time Tracker” [11].

During the automated context data collection, the partici-
pants are also reporting their activities. We tell the participants
to check whether there are still active activities when they
report a new activity. This is only important for the reporting
on paper as the Gleeo Time Tracker app automatically stops
running tasks when the user starts another task. Overall, the

participants manually reported 65 different activities and situa-
tions during the measurement. Most of the activities occurred
only a few times and could not be used in our process, as
we are using statistical methods to calculate the correlation
between contextual information and activities/situations. The
three most relevant contexts for our experiment and further
evaluation are “home”, “work” and “sleeping”.

B. Preparation 2 - Context Description Generation
In this step, the contextual and the journal data are fed

to the derivation process to produce context descriptions. To
determine the correlation, we choose binary correlation as
statistical method. The method produces a correlation matrix
considering all variables. Figure 11 shows binary correlations
of reported activities followed by wireless networks. The
values range from -1, denoting maximal anti-correlation, to
+1, denoting maximal correlation. For instance, we take the
first line with the activity “Office (Work)”, which has a
high correlation with “X” (0.87) and “WLAN mab” (0.94).
Contrary, “Office (Work)” has a high anti-correlation with
“Home (Private)” (-0.76) and “Cherrynetz” (-0.69). The anti-
correlation between the two activities “Home (Private)” and
“Office (Work)” is an obvious result.

Figure 11. Correlation Matrix (Binary Correlation)

The correlation matrix is used to generate operative context
descriptions for the three relevant contexts: “home”, “work”
and “sleeping”. In general, the generation process can optimize
the produced context descriptions in terms of precision and
recall. Precision is the relation of true positives to true positives
and false positives. It denotes that if our context test detects a
specific context, it will be correct or not. Contrary, recall is the
relation of true positives to true positives and false negatives. It
denotes that if a context is happening in the real world, our test
will detect it. For our evaluation, we decided to choose context
descriptions optimized in terms of precision for the transition
0 → 1. Hence, the precision should be high for detecting the
entering into a specific context.

C. Execution - Real World Context Detection
In the actual experiment four voluntaries participated (out

of the seven voluntaries for the first experiment). For these four
participants, we take precision-optimized context descriptions
to detect “home”, “work”, and “sleeping” (based on the data
from the collection experiment). The voluntaries used the fol-
lowing private mobile devices to participate in the evaluation:
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• Participant P1, Nexus 5 running Cyanogenmod 12.1
• Participant P2, Nexus 5 running stock ROM 4.4.4
• Participant P3, Nexus 4 running Cyanogenmod 12.1
• Participant P4, HTC One (M7) running Cyanogenmod

11

We equipped their private mobile devices with the
Integrated Distributed Data Usage Control Enforcement
(IND2UCE) framework for Android [12] where the following
features were used in our evaluation:

• Device Administration: The framework acts as
device administrator for Android [13]. Hence, it sup-
ports device administration features such as changing
security related settings, wiping, or locking the device,
and disabling the camera.

• Volume Control: The framework supports control-
ling settings related to the volume control of the
mobile device (i.e., setting the ringtone volume).

• Captive Portal Login: One extension addresses the
automated login to a captive portal for granting access
to the internet (without having to manually login via
a webpage)

• Network Settings: We are able to control network
settings with the framework. A simple example is the
activation or deactivation of Bluetooth or Wifi.

We created policies for the IND2UCE framework to react on
context changes. Hence, we created a security policy for every
possible context transition:

• Context was not fulfilled and is now fulfilled:
0→ 1-Transition

• Context was fulfilled and is now not fulfilled:
1→ 0-Transition

Such a context transition is modeled as depicted in Figure 12.
The condition is checked every five minutes, as configured
in the timestep-tag. In the condition, we resolve the actual
context by using a so-called Policy Information Point (PIP)
with the name “context”. As parameter, we add the context
id, which is “P1 home” in our case for participant P1. We
link this request with a before-operator by using a logical and.
Within the before-operator, we have a negated PIP request with
the same parameters as our first one. To sum it up, if the first
PIP request is now true and the second PIP request has been
false in the timestep before, the condition will be true. Hence,
we can phrase it as follows: We had a context change for the
context “P1 home” from being not fulfilled to being fulfilled
within the last five minutes.

We had two meetings with the participants to elicit conve-
nient and security functions, they wanted to have depending on
their current context. The focus was set to the three contexts:
“home”, “work”, and “sleeping”. Hence, every participant
stated wanted behavior when, for instance, she is coming home
or leaving home. Here are some examples we elicited:

• “When I am leaving Fraunhofer IESE [work], I would
like to set my ringtone volume to 100%.”

• “When I am at Fraunhofer IESE [work], I would like
to set my ringtone volume to 20%.”

• “When I am at home, I would like to activate the Wifi.”

<timestep amount="5" unit="MINUTES" />
<condition>
<and>
<pip:boolean name="context" default="true">
<param:string name="value" value="P1_home" />

</pip:boolean>
<before amount="1" unit="TIMESTEPS">
<not>
<pip:boolean name="context" default="true">
<param:string name="value" value="P1_home" />
</pip:boolean>
</not>

</before>
</and>
</condition>

Figure 12. Transition Example for 0 → 1-Transition for Context “P1 home”

• “When I am not at home and not at work, I would
like to deactivate the Wifi.”

• “When I am at home, in my bedroom, and the time
is between 10pm - 7am, then activate FlightMode.”

• “When I am leaving my home, I would like to set my
ringtone volume to 100%.”

We elicited 29 rules to be applied based on the context
detection. However, we are only able to fulfill the requirements
of 20 rules with the IND2UCE framework.

<detectiveMechanism name="home_0->1">
<description>
Context change from false to true
</description>
<timestep amount="5" unit="MINUTES" />
<condition>
<and>
<pip:boolean name="context" default="true">
<param:string name="value" value="P1_home" />
</pip:boolean>
<before amount="1" unit="TIMESTEPS">
<not>
<pip:boolean name="context" default="true">
<param:string name="value" value="P1_home" />
</pip:boolean>
</not>

</before>
</and>

</condition>
<!-- setRingToneVolume to 50% -->
<executeAction name="urn:action:local:volume">
<param:int name="level" value="3"/>

</executeAction>
<!-- setDisplayTimeout to 30min -->
<executeAction name="urn:action:local:SecuritySettings">
<param:int name="display" value="30"/>

</executeAction>
<!-- feedback for context change -->
<executeAction name="urn:action:local:feedback">
<param:string name="mode" value="context" />
<param:string name="value" value="P1_home" />
<param:string name="flag" value="1" />

</executeAction>
</detectiveMechanism>

Figure 13. Policy Mechanism Example for 0 → 1-Transition for Context
“P1 home”

We created for every participant appropriate rules, which
we call policies in the IND2UCE framework. Figure 13 illus-
trates a policy for the handling of the 0→ 1-Transition for con-
text “P1 home”. In other words, it handles what will happen
when the participant is coming home. There are four execute
actions to be performed by the IND2UCE framework: First, the
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framework will set the ringtone volume to about 50%, which is
done by the execute action “volume”. Second, IND2UCE sets
the display timeout to 30 minutes by performing the execute
action “SecuritySettings”. Third, we will trigger our feedback
app. When the feedback app is triggered in mode “context”, it
displays a sticky notification to the user and possibilities for
the user to confirm or reject (cf. Figure 14):

Verify context detection 15:25
“atWork” is now active

Yes / No
A “yes”-button means, the context detection was right and

the user confirms the correctness. By clicking on the “yes”-
button, we count the context detection as correct. A “no”-
button means, the context detection was wrong and the user is
forwarded to a list of already recorded other contexts. If the
context is not in the list, the user can add a new context. We
count the context detection as wrong and add a new entry to
the table with the context entered by the user. Doing so, we
are capable to count all true positive and false positive context
detections and can easily calculate the precision of the context
detection.

Figure 14. Context Check PXP: Notification

If the user misses to process the notification, we store all
information in a list of unanswered context detection entries
(see Figure 15). The user has the possibility to answer the
questions later. By clicking on the “yes”-button or “no”-button,
the app behaves as in the notification interaction.

We conducted the experiment over a period of two weeks,
in which the participants had their usual working times (no va-
cation, no business trips, etc.). Unfortunately, we experienced
technical difficulties for one participant and had to continue
the experiment without him. For the three other participants,
everything worked as expected.

D. Analysis & Discussion
The participants reported 243 context detections in two

weeks, which results in about six context detections per day
(in average). This is a plausible value, as it can be seen in the
following reported feedback schedule of one of the participants
(counting eight context detections):

However, the feedback occurrence distribution is 96 for
P1, 44 for P2, and 103 for P3. P1 and P3 are nearly equal,
P2 has much less context changes detections. There are two
explanations for this behavior: First, P2 usually stays at work
for having lunch and is not leaving the institute. Second, there
are less changes for the context “home” in contrast to the other
two participants.

Figure 15. Context Check PXP: Unprocessed Entries

TABLE III. Excerpt of Feedback Result

No. Time Context Transition Description
1 15.10.2015 07:08 sleeping 1→ 0 waking up
2 15.10.2015 08:06 home 1→ 0 leaving home
3 15.10.2015 08:38 work 0→ 1 entering work
4 15.10.2015 11:58 work 1→ 0 leaving work (e.g., lunch)
5 15.10.2015 12:36 work 0→ 1 entering work
6 15.10.2015 16:41 work 1→ 0 leaving work
7 15.10.2015 17:47 home 0→ 1 entering home
8 15.10.2015 22:57 sleeping 0→ 1 sleeping

Table IV illustrates the overall result of the context detec-
tion for every participant. The first identifies the participant.
The second and third column represents whether the context
detection was reported as correct or wrong. The fourth and last
column indicates the user input, if the context detection was
wrong. As shown in the table, participant P1 and P2 always
corrected the context detection, participant P3 missed it two
times.

TABLE IV. Context Detection Results

Participant
Context Change Detected

Correct Wrong User Input
P1 53 (55.21%) 43 (44.79%) 43
P2 32 (72.73%) 12 (27.27%) 12
P3 76 (72.38%) 29 (27.62%) 29
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The correctness of the context detection is between 55.21%
and 72.73%. The result is not very convincing for being
used in security related settings. However, the figures rep-
resent the overall correctness of the context detection. As
we created precision-optimized context descriptions for the
0→ 1-transitions, we have to split up the data. The result is
presented in Table V.

TABLE V. Context Detection Result (split)

Part.
Context Change Detected (0→ 1) Context Change Detected (1→ 0)

Correct Wrong Sum Correct Wrong Sum
P1 44 (95.65%) 2 (4.35%) 46 9 (18.00%) 41 (82.00%) 50
P2 18 (100.0%) 0 (0.0%) 18 14 (53.85%) 12 (46.15%) 26
P3 51 (98.15%) 1 (1.85%) 54 23 (45.10%) 28 (54.90%) 51

Now, we get a much better result regarding context de-
tection precision for the 0 → 1-transitions. All values are
above 95%, which fulfills our expectations. Moreover, we
made no error for participant P2 and reached 100%. From our
expectations, this is a good result and such context descriptions
could be used to ease security mechanisms.

However, the precision for the context detection for the
1 → 0-transitions ranges from 18% to nearly 55%. In other
words, the context detection would be wrong for every second
detection in best case. This result cannot be used to adapt se-
curity mechanisms with high precision. We could improve the
precision by either adapting the parameters for the hysteresis
behavior (cf. Section IV) or using precision-optimized context
descriptions also for the 1→ 0-transitions.

Obviously, there is a trade-off between these two kinds
of context changes and we managed to optimize our context
detection only in one direction (i.e., 0→ 1-transitions). Hence,
we achieved a high precision for easing security mechanisms,
but allow lower precision for tightening security mechanisms.
In addition, we have to achieve a higher recall rather than
having a high precision for tightening security mechanisms.
Regarding the recall of our approach, we cannot provide
reliable figures for this calculation as we have not monitored
the real world behavior. Hence, we do not know how often
or long the user was already in the specific context, but the
context detection did not recognize.

VI. RELATED WORK

This section provides an overview of the state of the art in
context-awareness and context-aware computing. More specif-
ically, the term context and its early definitions are introduced
and different context modeling approaches are described.

A. Definitions of the term “Context”
The notion of context emerged over time, the earliest

definitions in our sense originate in the early nineties. All of
them share similarities, but they also show differences. We will
present the most prevalent and influential definitions.

In 1994, an early definition was provided by Schilit et al.
[3], stating that a context is characterized by three aspects:
where you are, whom you are with, and what resources
are nearby. Therefore, Schilit et al. infer that context-aware
systems have to depend on the location of use, nearby people,
hosts, and accessible devices, as well as on changes over time.
Although they state that context is more than just location,

location is apparently a very important information source for
context-aware systems. Interestingly, although smart mobile
devices did not nearly have the same capabilities in 1994 as
today’s devices have (especially the plethora of sensors), the
authors already named today’s sensors (e.g., light intensity,
network connectivity) as additional context sources.

In 1997, Brown and Bovey [14] describe context similar to
Schilit et al. but include temporal attributes, such as time of
day, season, and temperature, as additional contextual informa-
tion sources. In addition, the authors propose to enrich context
by using additional (user-provided) information to obtain more
valuable information for their application.

Hull et al. [15] describe context as “many aspects of a
user’s situation”, such as “user identity, location, companions,
vital signs, air quality, and network availability”. Franklin and
Flachsbart [16] focus on intelligent environments observing
their users. They state that context-aware computing should
consider the observed situation of the user. A similar descrip-
tion can be found in [17]. Ryan et al. [18] state that context
should include location as well as states of external and internal
sensors of the computer itself. Hence, they also consider virtual
context sources such as the state of the software running on
the device. Pascoe [19] also considers virtual context sources,
but describes them as the states of the application and its
environment rather than states of the computer itself. Pascoe
et al. [20] reveal the more rich and complex nature of context
and that context can be complex. Furthermore, in accordance
with other publications, they state that context is more than
just location.

In 1999, Abowd et al. [21] define context as any informa-
tion that is used to characterize the situation of an entity. As
mentioned in other publications, context is seen as additional
information or as an attribute of an entity. They also state that
context information has to be categorized in different context
types, which makes it easier for context-aware computing.
They introduce four primary context types for characterizing
an entity’s situation: location, identity, time, and activity.

Hofer et al. [6] partition context information regarding its
origin and differentiate between physical, virtual, and logical
context information. Physical context information, such as lo-
cation, acceleration or light intensity, can directly be measured
by sensors. Such physical measures are described as low-
level context sources that are continuously updated. Virtual
information stems from user data or internal system data. The
latter context category, logical context information, is obtained
by combining physical and virtual context sources according
to some abstract logical rules.

B. Modeling Context Information
Context-aware systems strongly rely on the quality of the

context information, which is usually represented in a context
model. The modeling and provision of context information is
very important to fulfill the desired task. In this work, context
awareness aims at the enforcement and adaptation of flexible
security policies on the mobile device and its applications.
Different approaches for modeling context information have
been suggested. In [22] and [23], the authors survey the most
relevant approaches and classify them into five categories:

Key-Value Models are the simplest model for structuring
context information. As such models provide no structuring
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of information, they are easy to manage. They are often
used, although they provide only limited support for more
sophisticated modeling [22][23]. Key-Value models allow easy
querying by simple algorithms matching the key value pairs.
The querying can be enriched by Boolean operators or wild-
cards for the matching algorithm.

Markup Scheme Models use a hierarchical structure of
markup tags containing attributes and their values. A well-
known example is the eXtensible Markup Language (XML).
A markup scheme has been proposed, for instance, in [24]. In
contrast to key-value models, markup scheme models provide
a mechanism for structuring context information. However,
querying such models becomes more complex than in the
simple key-value model, but is essentially done similarly by
matching the values of the markup tags or their attributes.
In [25], Samulowitz et al. define “Context-Aware Packets
(CAPs)” for storing context information. CAPs are organized
in “context constraints, scripting, and data”, where the context
constraints part contains the modeled context information. This
sub part is in turn subdivided into “abstract entities, relations,
and events”. Figure 16 illustrates a CAP example taken from
[25]. The given CAP describes two entities (i.e., Printer and
Florian) and a relation “inRoom” between the two entities. The
relation describes the context “ContextC”.

Figure 16. Context-Aware Packets Example from [25]

Graphical Models can strongly vary in their representa-
tion. The best-known representative is probably the Unified
Modeling Language (UML), which is also suitable for mod-
eling context, as shown in [26] or [27]. Such models are easy
to understand for human beings, but often lack formality.

Henricksen et al. [28] present a context extension for
the Object-Role Modeling (ORM) approach, which describes
context as collection of facts (as shown in Figure 17).

The model can directly be used to derive an entity rela-
tionship model as a basic structure for relational databases. An
interesting aspect of their model is the differentiation between
static context information (i.e., facts that remain unchanged as
long as the entities they describe persist) and dynamic context
information. They distinguish between contextual information
that can be treated as property or constant attribute and
changing contextual information such as location.

Object Oriented Models provide their information as a
collection of objects that contain context information. Such
models can employ all object-oriented modeling techniques

Figure 17. Excerpt from Context Extension for the Object-Role Modeling
approach [28]

such as encapsulation, reuse, or inheritance. The objects can
represent different context types and provide interfaces for the
retrieval and processing of their context information. Hofer et
al. used such object oriented models for the Hydrogen context
framework [6].

In 2002, Henricksen et al. [29] presented an object-oriented
approach which is the predecessor to their extension for the
ORM approach. They already have a graphical representation,
as depicted in Figure 18. Henricksen et al. use classifications
for context modeling, such as “static” (i.e., “remain fixed over
the lifetime of the entity”) or “dynamic” associations. They
split the dynamic associations into “sensed”, “derived”, and
“profiled”.

Figure 18. Example for an Object Oriented Context Model taken from [29]

Logic Based Models use formal methods to specify con-
text information and rules that can be applied to them. Hence,
they usually provide a high degree of formality. Typically, in
the reasoning process new facts can be derived based on known
facts and a given set of deduction rules. Albeit being very
formal and precise, profound logic-based modeling is quite
hard and modeling given facts can become very complex. One
such approach has been published in 1994 by McCarthy and
Buvac [30].
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Ontology Based Models are used to represent concepts
and interrelations. They are a very promising instrument for
context modeling, especially with the option to apply ontology
reasoning techniques and automatic derivation of new relation-
ships. A representative of this class of models is the Aspect-
Scale-Context (ASC) model (shown in Figure 19), which is
based on the Context Ontology Language proposed by Strang
et al. [31]. According to this model, an Aspect has one or
more Scales, and a Scale has one or more ContextInformation
items. These model elements are “interrelated via hasAspect,
hasScale and constructuredBy relations” [31].

Figure 19. Example for an Ontology Based Context Model taken from [31]

For further details, the reader is referred to two surveys:
Baldauf et al. [23] survey existing context systems and frame-
works, including their respective context models. Another
survey by Bettini et al. [32] describes the state of the art
in context modeling and reasoning. In summary, the decision
which kind of modeling approach to choose can only be made
by investigating the underlying application scenario and the
context to be modeled. Regardless of the presented approaches,
none of them consider the uncertainty in context detection and
are thus unsuited for security purposes.

In our work, we use a combination of the presented
context modeling approaches (hybrid approaches) and extend
them with two quality attributes to deal with uncertainty. The
introduced quality attributes improves the context detection to
be reliable and secure. Hence, our approach is also suited for
security purposes and can improve security decisions.

C. Context-awareness Enhancing Mobile Device Security
There exist several frameworks for enhancing systems and

especially Android with context awareness. We will provide
an overview by presenting solutions especially for enhancing
mobile device security.

Context-Related Policy Enforcement (CRePE), devel-
oped by Conti et al. [33], is a context-aware framework
that enhances mobile device security. The approach is to
hook into Android’s permission checking mechanism and to
take dynamic security decisions based on context informa-
tion. Moreover, CRePE may perform different actions (e.g.,
system shutdown) specified in the user-definable policies. To
enable dynamic permission checks, CRePE makes modifica-
tions to the Android system. The context check is done in
the PolicyManager component that interacts with the CRePE
PermissionChecker and the ActionPerformer component (see
Figure 20).

CRePE offers no context model. However, Conti et al.
define policies that include rules and context information (only
location). In addition, priorities for rules and the handling of
conflicts are described in [33].

CRePE improves security of the Android system by mak-
ing permission checks context-aware, and it adds additional
context-aware features, such as actions controlled by policies.

Figure 20. CRePE Architecture [33]

Context-Aware Usage Control for Android (ConUCON)
by Bai et al. [34] is an extension of the UCON model [35]
for Android. The framework consists of different components
such as Policy Enforcement Point (PEP), Policy Decision
Point (PDP), Policy Information Point (PIP) and a Policy
Administration Point (PAP), as depicted in Figure 21. The
components and their behavior relates to XACML [36], which
is a standard describing declarative access control policies and
a processing model for it.

Figure 21. ConUCON Framework [34]

Contexts are part of these policies and are specified by
using the tags Context, ContextComposition, and Factor. A
context constraint is broken down into different ContextCom-
positions, which are always connected with a Boolean ∧. The
composition defines a logical operator (i.e., ∧, ∨, ¬), which
is used to aggregate the subordinated factor-tags. Finally, a
factor specifies the context information such as time, battery,
or Wifi state. A factor can have complex expressions such
as “batteryPower ≥ 30%” or periodic expressions (cf. [34]).
The model used can be described as Boolean logic with
expressions. ConUCON also improves security of the Android
system by using context-aware usage control policies.
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Similar to our work, CRePE [33] and the ConUCON
system [34] provide a technical solution to use context in-
formation to enhance security of mobile devices. However,
CRePE uses only location as context information. Contrary
to our approach, they do not address reliability and security
of the context detection. In addition, they cannot deal with
uncertainty of context information.

VII. CONCLUSION AND FUTURE WORK

We presented a model for representing security-relevant
contexts as context descriptions. The model contains a security
rating for each evaluator to quantify the overall trustworthiness
of the context description during runtime. In addition, the
model provides a relevance rating expressing the conducive-
ness of a context information source to the overall context. The
context descriptions enable context-aware security decisions by
referencing them as a decision criterion in security policies.

We applied the context detection mechanism in an in-
dustrial scenario and showed its general applicability. The
Mobile Device Management (MDM) solution can be enriched
with contextual information to improve its decision making.
We have taken some lessons learned from this industrial
application, which we used to improve the generation of our
context description.

In a second evaluation, we used the context-aware
IND2UCE framework for Android to analyze the improvement
in context detection. The overall correctness of our context
detection ranges from 55% to nearly 73%. But, the precision
optimized context descriptions for the 0 → 1-transitions
reached a correctness of 100% for one participant (best case)
and nearly 96% for the participant with worst results. These
values fulfilled our expectations and they are promising for
being used in security related settings. However, the general-
izability has to be shown in future work.

Future work will investigate potentials to return additional
data types as an overall context result. Enriched context types
facilitate the use of contextual information in the decision
making process and improve expressiveness for security policy
specifications. Presently, context descriptions are specified
manually before being activated and are therefore rather static.
Future work will investigate how context descriptions can be
parametrized at runtime. This may include the use of context
results as parameters for other context descriptions.

Regarding the security and relevance rating, we will further
extend our evaluation criteria. We realized that faking the
presence of contextual information can be easier in some cases
then faking its absence (e.g., it is easier to simulate the SSID
of a wireless access point than jamming the beacons from an
existing one). Finally, we will explore the inclusion of accuracy
information into our model as an additional quality attribute
for judging the reliability of context information.
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