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Abstract — Often, same polygon objects are presented in 

Geoinformational Systems by distinct geometries with random 

positional discrepancies. It makes difficult to detect 

correspondences between data layers containing same object 

or parts of objects.  The suggested method allows the user to 

improve the accuracy of one polygon layer by another more 

accurate polygon dataset by defining correspondences between 

polygons and parts of polygon boundaries. Two main 

techniques are applied: triangulation and segmentation. The 

triangulation is used to define correspondences between whole 

polygons by comparing triples of polygons.  The segmentation 

approach is applied for the remaining polygons. Existing 

approaches do not work well in the case of partial equality of 

polygon boundaries. The main idea of the segmentation 

algorithm in this paper is based on defining correspondent 

segments of polygon boundaries and further replacing polygon 

boundary segments of the non-accurate layer with segments of 

the accurate data set; segments without pairs are rectified 

using ground control points. The resulting data contain parts 

of the accurate data set polygon boundaries, whereas the 

remaining elements are rectified according to the replaced 

boundary segments. From a review implemented by specialists 

it might be concluded that the results are satisfactory. The 

developed method could be applied to various types of 
polygonal datasets with similar scale. 

Keywords – Polyline and polygon similarity; geometry 

matching; shape descriptor; triangulation; topology. 

I.  INTRODUCTION 

The same objects on different maps, which are on an 
equal scale, might be shown with small differences. In an 
ideal situation, accurate geometries of exiting maps should 
be used for preparing new data sets or for updating. Usually, 
in the real world, new maps are digitized without respect to 
existing data sets.  Using geometries (e.g., river line) from an 
accurate topographic map for creating a thematic map (e.g., 
soil map), in many cases, is better than digitizing a new 
element. Often, data are unavailable, or available with 
significant restrictions, because of legal, technical, or other 
reasons. Additionally, even if an accurate data set is freely 
available, people usually do not want to spend time using an 
existing data set; in most cases they prefer to digitize new 
geometries on a satellite image or scanned map.  These data 
should be aligned using accurate data sets [1]. This problem 
is especially sensitive for large-scale maps and plans [2]. 

The problem which is described in the paper refers to 
cadastral and city planning maps. A cadastral map is a 

comprehensive register of the real estate boundaries of a 
country. Cadastral data are produced using quality large-
scale surveying with Total Stations, Differential Global 
Positioning System devices or other surveying systems with 
centimeter precision. Normally, the precision of maps based 
on non-survey large-scale data (e.g., satellite images) is 
lower. City planning data contain proposals for developing 
urban areas. Most city planning maps are developed by 
digitizing handmade maps, using space images. Almost all 
boundaries have small discrepancies in comparison to 
cadastral maps. It is very important to use exact boundaries, 
or their segments, on city planning data from a cadastral 
map, especially in central parts of cities. The approach 
described in the paper enables us to resolve this problem of 
matching two data types. Rectifying data using a set of 
ground control points is a popular way of improving the 
accuracy of a map [3]. The results of this approach are not 
satisfactory in many cases, because rectified objects cannot 
be identical to directly measured accurate objects. Another 
possibility is based on defining correspondent objects on an 
accurate data set by geometry or attributes and replacing 
objects from the non-accurate set with the accurate 
correspondent objects [4].  

We present a triangulation approach. It enables us to 
define correspondent polygons of two datasets. It is achieved 
by dividing polygons into triples and comparing the triples of 
two datasets. A serious problem with this approach follows 
from the fact that objects could be partially similar (e.g., 
some segments of a polygon boundary are same, other parts 
are different). In contrast to existing approaches, the main 
idea of a segmentation approach is based on defining 
correspondent segments of polygon boundaries and further 
replacing polygon boundary segments of the non-accurate 
layer with segments of an accurate data set; segments 
without pairs are rectified by ground control points. The 
segmentation complements the triangulation algorithm. 
Triangulation is a fast process for defining correspondences 
between whole polygons. Segmentation is much slower. It 
enables us to define correspondences between boundary 
segments of polygons (excluding polygon pairs defined by 
triangulation). The triangulation is also used for evaluating 
results. The proposed algorithm could be applied to different 
sorts of polygon datasets with small boundary differences. 
The approach has not only been designed for city planning 
and cadastre datasets. 

This paper is structured as follows: the related work is 
considered in Section II. Source datasets and the process of 
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defining initial variables are described in Section III. The 
triangulation approach is proposed in Section IV. The 
algorithm of defining correspondent polylines is presented in 
Section V. The process of compiling the final map is 
described in Section VI. The results are discussed in Section 
VII. The conclusion is presented in Section VIII. 

II. RELATED WORK 

In order to develop the proposed algorithm, various 
approaches were considered. The review of these approaches 
is presented in this section. Many of them were evaluated. 
We found several useful concepts for our task described in 
the considered papers.  The papers are grouped. The groups 
appear in the order in which they influenced our research. 
Most of our ideas were taken from the feature-based 
matching group of approaches. The relational matching ideas 
also affected our approach, mainly in the sense of topological 
orientation of the developed approach. We have not found 
useful concepts for the context of the discovered datasets in 
the last category (attributes-based matching), but it discloses 
and raises many useful problems of attribute processing for 
data matching researchers. Additionally, several 
programming techniques are described at the end of the 
section, in order to improve the quality of the developed 
approach. Most of the techniques are applied. 

Discrepancy problems on digital maps can be resolved in 
different ways. Common shape matching techniques are 
currently used in the raster and vector fields, and sometimes 
in combination with each other. Several common techniques 
in the field of Shape Similarity or Pattern Recognition could 
be applied to the various needs of the matched objects and 
relevant research questions. 

Vector matching techniques can be divided into three 
main categories. 

A. Feature-based matching 

This group of methods is based on an object's geometry 
and shape. The degree of compatibility of objects is 
determined by their geometry, size, or area. The process is 
carried out by structural analysis of a set of objects and 
comparing whether similar structural analysis of the 
candidates fits the objects of the other data set [5][6]. In [4], 
comparison of objects is based on analysis of a contour 
distribution histogram. A polar coordinates approach for 
calculating the histogram is used. A method based on the 
Wasserstein distance was published by Schmitzer et al. [7]. 
A special shape descriptor for defined correspondent objects 
on raster images was developed by Ma and Longin [8]. 
Feature-based matching approaches do not allow for 
resolving our problem, because they have been developed 
mainly for single shapes; however, we can use them as part 
of our approach. 

B. Relational matching 

This group of methods takes objects' relationships into 
account. In [9], topological and spatial neighborly relations 
between two data sets, preserved even after running 
operations such as rotation or scale, were discovered. In 
relational matching, the comparison of the object is 

implemented with respect to a neighboring object. We can 
verify the similarity of two objects by considering 
neighboring objects. The problem of non-rigid shape 
recognition is studied by Bronstein et al. [10]; the 
applicability of diffusion distances within the Gromov-
Hausdorff framework [10] and the presence of topological 
changes have been explored in this paper. A multiple-point 
geostatistical modeling based on cross-correlation functions 
is proposed by Tahmasebi et al. in [11]. 

C. Attributes-based matching 

Matching two data sets' objects by attributes could be 
very effective if a similar data model is used. Two types of 
attribute matching could be mentioned: Schema-based [12] 
and Ontology-based. The concept of semantic proximity, 
which is essentially an abstraction/mapping between the 
domains of the two objects associated with the context of 
comparison, is proposed by Kashyap and Sheth in [13]. In 
[14], an approach based on both types is presented. An 
ontology-based integration of XML Web Resources focusing 
on the significance of offering appropriate high-level 
primitives and mechanisms for representing data semantics is 
described by Amann et al. in [15]. A technique for building 
approximate string join capabilities on top of commercial 
databases by exploiting facilities already available in them is 
described by Gravano in [16] and [17]. Attributes-based 
matching is a specific group of approaches; it can only be 
applied efficiently in special cases with special data. In most 
situations it is ineffective.  

The merging and fusion of heterogeneous databases has 
been extensively studied, both spatially [18] and non-
spatially [19].  The Map conflation method is based on data 
fusion algorithms; the aim of the process is to prepare a map 
which is a combination of two or more maps (often for 
updating an old map).  Map conflation approaches are 
presented in [2] [20] [3]. In [21], three approaches for the 
linking of objects in different spatial data sets are described. 
The first defines the linking as a matching problem and aims 
at finding a correspondence between two data sets of similar 
scale. The two other approaches focus on the derivation of 
one representation from the other one, leading to an 
automatic generation of new digital data sets of lower 
resolution. 

In order to resolve the described problem, the mentioned 
approaches have been considered. It has been concluded, that 
a new solution need to be developed. 

Computer Vision algorithms are popular in the field of 
data matching [22]. The Open Computer Vision (OpenCV) 
framework [23] is widely used today; it provides a number 
of "out-of-the-box" functions enabling us to detect and 
compare objects and bindings for popular programming 
languages (e.g., Python [24]). This makes the OpenCV 
framework very useful for data-matching tasks.  Delaunay 
Triangulation [25] and Voronoi Polygons [26] are very 
useful techniques for working with discrete vector data and 
neighbor analysis. We should also note that in practice, data 
is distributed in non-topological formats (e.g., Shape File 
format). That leads to complication of the analysis, because 
of a surplus number of objects and duplication of primitives, 
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e.g., polygon boundaries, unexpected gaps between objects 
etc. We need to use one of the topological data formats 
presented by Landa [27] to avoid these obstacles. The 
topology in GIS context is described in detail by Blazek et al. 
in [28]. The main topological data types are presented: point, 
line (comprising nodes, vertices and segments), and 
polygons (consisting of boundaries and centroid).  Many 
useful GIS definitions and techniques, including geometry 
relations, topology and operations (e.g., overlay), are 
described by Herring in [29]. 

  Additionally, two perspective methods could be used in 
GIS data matching to reduce the time and computer 
resources required: Genetic Algorithms [30] help to avoid 
Brute-force operations in some cases; OpenCL technology 
[31] makes it possible to split a process into a huge number 
of parallel threads on a video card. 

 

 
 

 
 

Figure 1.  Source data: land-use city planning (color background) and 

cadastre (black polylines) of Nesher (upper) and Yokne'am (lower) 
datasets.  

III. DEFINING INITIAL VARIABLES  

For implementing and testing our approach, GIS data 
provided by Survey of Israel have been used. They contain 

cadastre and land-use city planning polygon shape files 
covering a part of Nesher and Yokne'am (towns in the Haifa 
District of Israel). Figure 1 depicts source data; red numbers 
in circles correspond to numbers of extents in Figure 21. 
Overlaid polygon boundaries of two data sets are presented 
in Figure 2. From the figure, one can conclude that 
transformation of lines would not yield positive results, 
because the gaps are extremely variable - the curved parts of 
lines consist of different numbers of vertices; thus, even with 
correct parameters of transformation, the result would not be 
satisfactory. 

 

 
 
 

 
 

Figure 2.  Positional discrepancies of city planning (red lines) and cadastre 

(black lines) datasets: Nesher (upper) and Yokne'am (lower). 

 
Source shape files have been converted to GRASS GIS 7 

topological data format [27]. Data preparation can be divided 
into 3 steps: 

 Extracting polygon boundaries. 

 Splitting polylines into a set of equidistant points. 
For depicting this parameter we will use the symbol 
d in the paper.  

 Calculating an array of distances between the nearest 
points of two datasets. Setting of initial measures. 

We have decided to use 2 meters between equidistant 
points. Using a greater distance makes impossible to detect 
small curves, whereas a smaller distance significantly 
increases the calculation time.  

Several initial measures need to be calculated. Maximal 
distance (Dmax) between the nearest points of two datasets 
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and maximal standard deviation (σmax) have been calculated. 
To calculate these parameters we need to create a list of 100 
percentiles. Then we implement a loop from the first to the 
last percentile on the list. Dmax equals percentile i and  σmax  
equals  the double standard deviation of distance in the 
interval between percentiles number i and 100  if the 
standard deviation of distances between percentiles i-1 and i 
is more than 1. We calculate tail parameter (t) as follows: t= 
Dmax/d, minimal tail parameter equals 4. Tail defines a 
starting or ending segment of polyline that can be ignored. 

We have developed a special shape descriptor (S), based 
on the descriptor presented in [8]. The descriptor measures 
the similarity of polylines. Polylines are more similar if S is 
larger. 
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In the equation, 1 means matrix of ones, distA – matrix 

of distances between all pairs of points laid on polyline a. 
distB – matrix of distances between all pairs of points laid on 
polyline b. If the number of points of a line is k, then matrix 
size is k×k. angA and angB are matrices of angles in radians 
between all pairs of points of lines a and b, correspondingly. 
The shape descriptor is calculated for the segments with 
equal length (k). 

A list containing pairs of point sets has been prepared, 
where all points laid on line A are closest to points laid on 
line B of another dataset. For each element of the list, two 
shape descriptors of tails with t number of points have been 
calculated and collected into a list of shape descriptors of 
tails. St_min, St_max – minimal and maximal elements of 
the list. Also, we use maximal tail standard deviation of point 
distances (σt), and its (maximal tail) maximal value – 
σt_max. 

The list of initial variables has been calculated:  
Nesher datasets: Dmax=2.1, σmax=1.0, 

St_min=0,St_max=0.23; Yokne'am datasets: Dmax=7.9,  
σmax=1.5, St_min=0,St_max=0.25. 

IV. DEFINING CORRESPONDING POLYGONS OF DATASETS 

BY TRIANGULATION 

As we can see in Figure 1, many polygons of city 
planning datasets have corresponding polygons in cadastre 
datasets. Thus, we can simply take attributes of these city 
planning polygons and link them to the geometry of 
correspondent cadastre polygons. To implement this idea we 
have developed a triangulation algorithm. 

The triangulation consists of several stages: calculating 
of Delaunay triangulation based on polygon centroids; 
comparing all possible pairs of polygon triples and defining 
correspondent candidate pairs of polygon triples of two 
datasets by area and perimeter comparison; defining correct 
triple correspondence by considering distances between 

polygon centroids. Further in this section, the algorithm will 
be described in detail. 

 
 

 

 
Figure 3.  Delaunay triangulation (red lines) of cadastre (upper) and city 

planning (lower) datasets. Black lines are polygon boundaries, blue points 
are polygon centroids. Yokne'am. 

Delaunay triangulation maps are presented in Figure 3. 
These maps enable us to select triples of polygons, where 
each triple belongs to one of the triangles (centroids of 
polygons are vertices of Delaunay triangles).  Then, for each 
triple we try to find a candidate counterpart triple on a 
second dataset. A candidate counterpart is detected by 
comparing perimeters and areas of polygons as follows. A 
triple of first dataset polygons is the candidate counterpart of 
a triple of a second dataset, if for each polygon in the first 
triple we can find a polygon in the second triple (each 
polygon can only participate in one correspondence). The 
area and perimeter of the first polygon are more than the area 
and perimeter of the second polygon minus 20% and less 

27

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



than the area and perimeter of the second polygon plus 20%. 
The value 20% is empiric. It has been defined as optimal for 
the considered datasets, but it may be used with other 
datasets. It could be feasible to let the user modify the value.  

At this time a list of candidate counterpart triples is 
prepared. The candidates are evaluated by distances between 
centroids of counterpart polygons to define the most likely 
correspondence of polygons in the triple pair 
(TripleB.GetTheMostSimilar() function in Figure 4). For 
each candidate triple of polygons, all possible combinations 
of polygon correspondences implemented by permutation are 
considered. For each combination, a sum of distances 
between correspondent polygons is calculated. A 
combination with the lowest sum describes the most likely 
correspondence of polygons in the current triple pair. The 
correspondence of polygons in the triple pair is correct if one 
of the two follows conditions is true. The first condition is 
valid if the sum of distances between centroids of 
correspondent polygons is less than Dmax defined in the 
previous section. This condition does not work for incompact 
long curve polygons (e.g., road polygons), because even 
small changes in polygon boundary significantly changes 
centroid position. That is why another condition has been 
developed. This condition is valid if the mean distance 
between boundaries of all correspondent polygons in the 
triple pair is less than Dmax. To calculate the mean distance 
between polygon boundaries, the boundaries have been split 
by equidistance points with intervals equaling d (2 meters) as 
defined in the previous section. For each point of the first 
polygon boundary, a distance to the closest point of the 
second polygon boundary is calculated. The mean distance 
between the polygon boundaries equals the mean value of 
the calculated point distance.  

The described algorithm is presented as a pseudo code 
listing in Figure 4 and Figure 5. Figure 4 explains the process 
of preparing a candidate counterpart triples list. It mainly 
comprises standard geoprocessing operations like buffering, 
triangulating and overlaying. In order to improve the 
performance of the algorithms, we used a number of tricks 
for calculating a list of candidate counterpart triples, 
presented in Figure 4. In Figure 5, we consider a process of 
evaluating the candidate list by a number of conditions and 
loops. Each element of a result list contains polygon pairs of 
two datasets. The following text contains more detailed 
explanation of the listings.  

Figure 4 starts from the definition of source polygon 
maps. PolsA and PolsB compare polygon maps. For each 
map several preparatory procedures are applied. Area, 
perimeter and centroid coordinates have been added to the 
attribute table for each polygon. Then, a map of centroids is 
created. An attribute table of source polygon is inherited.  
GetBuffer function returns the 0.1 m buffers around 
centroids. In our case, 0.1 m means the small value that we 
can ignore, i.e., we consider it as “almost 0”. Another small 
value could be used; it depends on specific datasets and 
software. The attribute table is also inherited. GetDelaunay 
pseudo function generates a triangulation map based on 
centroids. OverayMap is the result of overlaying the buffer 
and triangulation map with an “and” operator. The three last 

described operations are illustrated in Figure 4. This 
approach of grouping polygons into triples works very fast. 
Many GIS applications have the described functions in the 
standard edition. 

 
PolsA=first_polygon_map 
PolsB=second_polygon_map 
InitTriples=GetEmptyList() 
 
Foreach map in [PolsA, PolsB] { 
 
    CalculateAreaOfPolygons(map) 
    CalculatePerimeterOfPolygons(map) 
    CalculateXYOfPolygonsCentroids(map) 
    CentroidMap=GetCentroidsAsPoints(map) 
    BufferMap=GetBuffer(CentroidMap, buffer_size=0.1) 
    TriangMap=GetDelaunay(CentroidMap) 
    OverlayMap=GetOverlay(BufferMap, TriangMap) 
    TempList=GetEmptyList() 
 
    Foreach TriangleId in GetIds(TriangMap) { 
 
       Attributes=GetAttribs(OverlayMap,get=map_perimeter, 
map_area,map_centroidXY, where=TriangMap_id= TriangleId) 
       TempList.append(Attributes)     
 
   } 
 
    InitTriples.append(TempList) 
 
} 
 
CandidateTriples= GetEmptyList() 
Foreach TripleA in InitTriples[0] { 
   Foreach TripleB in InitTriples[1] { 
      Appropriate=True 
      Foreach PolA in TripleA { 
         PolB=TripleB.GetTheMostSimilar(PolA) 
         TripleB.remove(PolB) 
 
         If not (0.8*PolB.area < PolA.area < 1.2*PolB.area) and not 
(0.8*PolB.perimeter < PolA. perimeter < 1.2*PolB. perimeter) { 
              Appropriate=False          
          } 
 
       } 
 
       If  Appropriate==True { 
           CandidateTriples.append([TripleA,TripleB]) } 
       } 
 

Figure 4.  The first part of the triangulation algorithm: preparing of a list 

of candidate counterpart triples. 

  
Now we can easily get a polygon triple belonging to any 

triangle. The first element of InitTriple contains all triples of 
polygons of the first polygon map; the second element 
contains all triples of polygons of the second polygon map. 
Then the triples of the two polygon maps are compared by 
area and perimeter and appropriate triples are added to the 
CandidateTriples list. 
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 In Figure 5, an algorithm for evaluating candidate 
counterpart triples and defining correspondences between 
polygons is described. The combinations list comprises all 
possible correspondences of polygons in a triple pair. For 
each combination, a sum of distances between the centroids 
of correspondent polygons is calculated. A combination with 
a minimal sum of distances is kept in optimal variable for 
further processing.  

 
Result= GetEmptyList() 
 
 Foreach TripleA, TripleB in CandidateTriples { 
 
   Combinations=getAllPossibleCombinations(TripleA, TripleB) 
    DistList= GetEmptyList() 
 
    For {i=0; i<length(Combinations);i++} { 
 
            PolA1,PolB1,PolA2,PolB2,PolA3,PolB3= 
Combinations.GetPolygonsAsList() 
 
            DistList.append( CentoidDistance(PolA1,PolB1)+ 
CentoidDistance(PolA2,PolB2)+ CentoidDistance(PolA3,PolB3)+) 
 
    } 
 
    MinDist= Minimal(DistList) 
    Index=DistList.GetIndex(MinDist) 
 
    Optimal= Combinations[Index] 
    Foreach PolA, PolB in Optimal { 
 
       If not (0.8*PolB.area < PolA.area < 1.2*PolB.area) and not 
(0.8*PolB.perimeter < PolA. perimeter < 1.2*PolB. perimeter) { 
             Continue 
} 
 
   Appropriate=True 
   
    If MinDist < max_dist { 
       Appropriate=True     
    } 
 
    Else { 
      Foreach PolA, PolB in Optimal { 
         Xa,Ya=PolA.CentroidCoords 
         Xb,Yb=PolB.CentroidCoords 
         AreaA=PolA.area 
         Delta=Sqrt(AreaA)+max_dist 
 
         If (Xa-Delta < Xb <Xa+Delta) and (Ya-Delta < Yb 
<Ya+Delta)  {    
   
           EqdBoundsMapA= GetEquidistancePoints(PolA)  
           EqdBoundsMapB= GetEquidistancePoints(PolB) 
           DistArray=PointDistance(EqdBoundsMapA, 
EqdBoundsMapB) 
 
           If Mean(DistArray)>max_dist { 
               Appropriate=False      
           } 
 
          } 
          Else { 

               Appropriate=False 
          } 
      } #end of Foreach PolA, PolB in Optimal 
 
      If Appropriate == True { 
 
        PolA1,PolB1,PolA2,PolB2,PolA3,PolB3= 
Combinations.GetPolygonsAsList() 
 
         Result.append([PolA1,PolB1])  
         Result.append([PolA2,PolB2])  
         Result.append([PolA3,PolB3]) 
 
     }     

Figure 5.  The second part of the triangulation algorithm: preparing a list 

of polygon correspondences. 

All polygon correspondences are evaluated using areas 
and perimeters; if the condition is false, the triple pair is not 
considered and the next candidate is processed. If the sum of 
distances is less than Dmax (max_dist in the listing; the 
parameter has been defined in the previous section), the 
polygon correspondences are correct and are added to the 
Result list. If the previous condition is false, then we 
calculate mean distance between polygon boundaries. It is 
implemented by calculating distances between equidistant 
points splitting boundaries. If the mean distance is less than 
Dmax, a polygon pair passes the check. This condition has to 
be true for all polygon pairs in the combination. The 
performance of the described condition is quite low, which is 
why we use the Delta variable for filtering distant polygons. 
Delta equals to the square root of PolA’s area plus Dmax. 
Only if centroid PolB is placed inside a rectangle Xa-Delta, 
Ya-Delta, Xa+Delta and Ya+Delta (where Xa and Ya are 
PolA’s centroid coordinates), we can calculate mean distance 
between polygon boundaries. 

 
   

   
  

Figure 6.  Grouping polygons into triples by triangulation (color 

background and red boundaries), buffering (circles) and overlaying (color 
sectors of the circles).Yokne'am. 

      The cadastre and city planning polygon datasets have 
been compared by the triangulation algorithm, and 
counterpart polygons have been detected. The result is 
presented in Figure 7 and in Figure 8: counterpart polygons 
are depicted by gray background and black boundaries, 
polygons without pairs are light gray areas with gray 
boundaries. 
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Almost all polygons of the Nesher datasets (see Figure 8) 
have correspondences; only several northern polygons do not 
have pairs. Many polygon correspondences have been 
defined on the Yokne'am datasets (see Figure 7). Several 
polygons look similar in the figure and have no defined 
correspondences. That means that either we do not see the 
differences because of the scale, or that polygons participate 
only in incorrect triples (triples with at least one polygon 
without correspondences).  
 
 

 

 

 
 

Figure 7.  The result of  triangulation. Upper – cadaster, lower – city 

planning. Yokne'am. 

 
The counterpart polygons are excluded from further 

processing and will be involved in the processing only at the 
last stage of the approach. The polygons without pairs are 
extracted from the datasets for defining correspondences 
between boundaries and boundaries’ segments.   

V. DEFINING CORRESPONDING LINES OF DATASETS 

To define corresponding lines, we have developed a 
special descriptor based on several measures: distances 
between points, standard deviation of distances, shape 
descriptor.  Figure 9 depicts the main idea – using 
equidistant points on a polyline to detect corresponding 
polylines, or segments of polylines. In the figure, a polyline 
of cadastral data set with the nearest polylines of a city 
planning map are presented.  

 

 

 
 

Figure 8.  The result of triangulation. Upper – cadaster, lower – city 

planning. Nesher. 

 

 
 

Figure 9.  Equidistant points used to calculate similarity of polylines and 

polylines’ segments. Red line – city planning dataset, black – cadastre. 

 
The algorithm for line pairs searching is presented in 

pseudo code in Figure 10.  
The pseudo-function gets the ‘id’s_of_closest_lines () 

and returns a pair of neighboring lines’ ids points which are 
closest. Usually, for one line A, several pairs of ids can be 
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defined (idA1-idB1, idA1-idB2, …). All id pairs are 
processed. Pts_A – points of a city planning dataset are 
situated on a line with id idA; Pts_B – points of line idB 
(cadastral map). The pseudo function gets_segments (Pts_A, 
Pts_B) and splits lines into segments at intervals where the 
distance between the nearest points is more than Dmax.  In the 
first line of the pseudo function - finding_pairs (PtsA,PtsB) - 
we test distances from start point of line A to start and end 
points of line B. If start-start distance is more than start-end, 
we invert the order of points in line A. Then we set l,i,j 
variables: l – length of line, i - number of starting points on 
line A, j  - number of starting point on line B. 

 
Foreach idA,idB in get_ids_of_closest_lines(){  
    Pts_A     = get_points(‘city planning’,idA)  
    Pts_B =     get_points(‘cadastre’,idB) 
    If min(len(Pts_A),len(Pts_B)) > tail { 
       Foreach segm in get_segments(Pts_A,Pts_B){ 
           Pts_A_segm=segm[‘Pts_A’]  
           Pts_B_segm=segm[‘ Pts_B’]  
           Result_line_pair=find_pair(Pts_A_segm,Pts_B_segm)}}} 
 
Function find_pair(PtsA,PtsB) {  
   If (distance(PtsA[0],PtsB[0]) >  
     distance(PtsA[0], PtsB[-1])){ PtsA=reverse(PtsA)   } 
   Length=min(len(PtsA), len(PtsB))  
   Global_measures=[ ] 
   Foreach l in reverse([tail,…,length]){ 
     Local_measures=[ ] 
     Foreach i in [0,…,len(PtsA)-tail]{  
       Foreach j in [0,…,len(PtsB)-tail]{  
          cur_measure=Calc_measures(PtsA,PtsB,i,j,l) 
          if (cur_measure[0]<max_stand_dev and  
               cur_measure[1]<max_distance){ 
             Local_measures.append(cur_measure)} } } 
     Global_measures 
.append(Find_local_indicator(Local_measures)) 
     If Global_measures and (l==length or 
len(Global_measures)>tail){ 
        Gen_desc_list=[calculate_global_indicator(cur) for cur in                     
                                   Global_measures]   
        If max(Gen_desc_list[:-tail])> max(Gen_desc_list[-tail:]){ 
            Return 
Global_measures[index_of_maximal(Gen_desc_list)]}}} 
 
Function Calc_measures(PtsA,PtsB,i,j,l){ 
 
   cur_PtsA= PtsA[i:i+l] 
   cur_PtsB= PtsB[j:j+l] 
   dists=Distances(cur_PtsA,cur_PtsB) 
 
   Return [stand_dev(dists),max(dists), 
     min(dists),delta_x,delta_y, 
    get_max_stddev_of_tailes(cur_PtsA,cur_PtsB), 
    get_min_shape_descr_of_tails(cur_PtsA,cur_PtsB), 
    get_shape_descriptor(cur_PtsA,cur_PtsB),    i, j, l]}  

 

Figure 10.  Searching for equal polylines or polylines’ segments.      

 
The function Calc_measures (PtsA, PtsB, i, j, l) and 

calculates a set of parameters (standard deviation of 

distances, shape descriptor, minimal shape descriptor of line 
tails, minimal and maximal distance between points). This 
enables us to define similarity of line A segment from i to i+l 
and for line B - from j to j+l. Variables i and j, which define 
the optimal segment (pseudo function Find_local_optimal 
(Local_measures)), have been found for each possible length 
l using (2). 
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Figure 11.  Segment of line A (city planning) – green; segment of line B 

(cadastre) – blue. Start and end point of the most similar line segments are 
red points (i=6,j=6, Loc_ind=0.86); blue points – i=2, j=1, Loc_Ind=0.026.  

 

 
 

Figure 12.  Plot of indicator Loc_Ind: X axis – i, Y axis - j. The segment 

with i=6 and j=6 is the most optimal. 

 
The meaning of parameters in (2): d – maximal distance 

between points of lines A and B for (l,i,j), s - minimal tail 
shape descriptor. In this step, we have a Global_measures list 
containing elements that correspond to some l and contain 
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measures of line segments with maximal indicator Loc_Ind 
derived from the list (Local_measures) with variable (i,j). 

This process is illustrated in Figures 11 and 12 (segment 
length is 20 meters). Figure 11 depicts different segments 
with the same length; Figure 12 is a plot of indicator 
Loc_Ind depicted by color. The next stage is defining 
optimal segment length. In the previous stage, we defined 
optimal segments i,j for some length l by calculating local 
indicator Loc_Ind. To define optimal segment length we use 
global indicator G_Ind; its formula is presented as (3). 

In the equation, σt means maximal standard deviation of 
point distances of line segments’ tails; for more details see 
Section III and (2). The resulting optimal line length is 
defined by maximal global indicator G_Ind. The process is 
illustrated in Figures 13 and 14. Figure 13 depicts examples 
of optimal segments with different lengths. Figure 14 is a 
plot of indicator G_Ind. It is obvious that the optimal 
segment length is 41 meters (element with maximal G_Ind, 
according to the plot presented in Figure 14). 

 

 
 

Figure 13.  Segment of line A (city planning) – green; segment of line B 

(cadastre) – blue. Nodes of the most similar line segments with different 

lengths of segment: red points – l=41,i=5,j=5,G_Ind=2.35; green points – 
l=10,i=5,j=5 G_Ind=1.69; blue points – l=43,i=3,j=3 G_Ind=1.64. 

 

 
 

Figure 14.  Plot of indicator G_ind: X axis – segment length (in meters), Y 

axis – G_Ind. 

VI. COMPILING A FINAL MAP 

At this point, we have the pairs of corresponding 
polygons and polygon boundary segments. Some segments 
are overlapped; to resolve conflicts, a special parameter was 
developed: 
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where: l is length of line of one of the lines in a line pair, 
min_len – minimal length of line of all line pairs, range_len 
– range of length of  all line pairs. A line pair with maximal 
P will be saved; others will be removed. The process is 
shown in Figure 15.  
 

 
 

Figure 15.  Overlaped line pairs: red line pair – P=1.23, green line pair – 

P=1.09 . Green line pair will be removed. 

 

 
 

Figure 16.  Moving segments without pairs and closing boundaries: green – 

lines that do not have pairs in cadastral dataset, blue – moved green lines, 

red – closing boundary by moving nodes, black – cadastral pair of city-
planning line segments. 

 
After removing overlapping line pairs, we can use a 

correspondent line segment of the cadastral dataset instead of 
the city-planning dataset. The boundaries of counterpart 
polygons are extracted from polygon maps calculated by 
triangulation. The pair segments are composed with the 
extracted boundaries. We will use nodes of pair segments 
and centroids of pair polygons as control ground points for 
transformation. 

The lines and line segments of the city-planning dataset 
without corresponding lines of the cadastral dataset have 
been moved. Delta X and delta Y have been calculated as 
average delta X and delta Y of neighboring nodes of line 
pairs and centroids of pair polygons. Unclosed boundaries of 
polygons have been closed by moving the nodes of an 
unclosed line to the nearest node of a neighboring line (see 
Figure 16). 

We now have a map containing closed boundaries. All 
legacy centroids have been removed. To create polygons we 
add a new centroid to each set of closed boundaries (see 
Figure 17). As mentioned above, we have prepared a list of 
control ground points. The list contains coordinates of 
correspondent polygons’ centroids and line pairs’ nodes. We 
use these control ground points to transform the original city 
planning dataset to its accurate position. The transformed 
city panning dataset could be used as a product by itself, 
because it is a more accurate dataset in comparison to the 
original map. But we will use it mainly for detecting 
attributes of the resulting dataset. 
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As mentioned earlier, the legacy centroids have been 

removed from the resulting map and new centroids have 
been added. In other words, we have removed all 
connections between result and original datasets. To define 
the final correspondences we need to apply the triangulation 
process one more time, but now we will compare the results 
(Figure 17) with the transformed city planning dataset. For 
each polygon a correspondence must be found, otherwise the 
polygon will be marked as an error polygon. We have 
applied the triangulation to both datasets. For each polygon a 
correspondence has been established; no error polygons have 
been detected. 

 

 
 

Figure 17.  Adding centroids to closed boundaries. Yokne'am. 

 

Figure 18.  Calculation of minimal distances from segmented boundaries of 

the result dataset (color segments) to cadastre dataset (black lines). 

VII. RESULTS 

In order to evaluate the results, we use distances between 
the boundaries of the result and cadastre datasets as a main 
measure. As mentioned in the previous section, no error 
polygons have been defined by the triangulation, i.e., no 
semantic errors have been detected.   

In order to evaluate the geometrical accuracy of the 
resulting map, the result boundaries have been split to 0.5 m 
segments and a minimal distance to the boundaries of the 
cadastre dataset is calculated. In Figure 18 the prepared color 
segments and black lines are presented. The minimal 
distance from each segment to the closest point on the 
nearest line is calculated. 

TABLE I.  GEOMETRIC ACCURACY OF THE RESULT DATASETS 

Measures 

in meter 

 

Nesher datasets compared with cadastre boundaries 

Original Transformed Result 

Mean 

distance 
 

0.59 0.55 0.01 

Standard 

deviation 
0.55 0.54 0.05 

 Yokne'am datasets compared with cadastre boundaries 

Mean 

distance 

 

0.82 0.63 0.13 

Standard 

deviation 
0.81 0.84 0.77 

 
Table I presents the geometric accuracy of the result 

datasets estimated by the distances between result boundary 
segments and cadastre (accurate) dataset. We can conclude 
that positional accuracy has been significantly improved for 
the result datasets. The accuracy of transformed maps has 
only slightly improved.   

In addition to the table, the histograms of distances are 
presented in Figures 19 and 20. The vertical axis of the 
histogram is the number of segments, the horizontal axis 
depicts distance in meters. The histograms also prove the 
significant improvement in positional accuracy. 

In contrast to the mean and the standard deviation values 
presented in the table, we cannot unambiguously conclude 
from the histograms in Figure 19 (Nesher dataset), that the 
transformed map is more accurate. The main reason for this 
is the fact that most polygons of the map have 
correspondences, and only several northern polygons do not. 
That leads to a situation of the presence of one type of 
control ground points (line pair nodes) in the northern part of 
the dataset only, with another type in the remaining area. For 
larger and more differentiate datasets this would not work. 
The histogram of result datasets depicts significant 
improvement of positional accuracy in comparison to 
original and transformed maps.   
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As mentioned earlier, in the case of a larger and more 
differentiate dataset, the contrast between the histograms of 
original and transformed datasets will be clearer. We can see 
this in Figure 19. 
 

 
 

 
 

 
 

 

Figure 19.  Histogram of distances. From top to bottom: original, 

transformed, and result datasets. Nesher. X axis – distance in meter, Y axis 
– number of segments. 

Results are presented in Figure 21 for six extents. The 
extents correspond to the red numbers in circles in Figure 1. 
Color background is the result dataset. It is overlaid by red 
and black lines. Red lines are the original city planning 
dataset. Black lines are the cadastre dataset. We can 
conclude that most line segments have been taken from the 
cadastral dataset; others have been transformed to 
correspond with cadastral polyline segments. The result 
looks satisfactory; the final map is holistic and does not 
contain significant deficiencies. A review implemented by 
specialists enables us to state that the results are satisfactory 
and the approach could be used in real applications after 
fixing some lacks. 

VIII. CONCLUSION 

An approach for improving the accuracy of polygons’ 
data is presented. Land-use city planning dataset locations 
have been corrected according to the cadastral dataset. The 
polylines’ segments along the polygons have been split by 
equidistant points. Analysis has been performed using 
statistics based on the points of the neighboring polylines of 
the two datasets. A set of parameters has been used: shape 
descriptor of polyline segments, standard deviation of point 
distances, minimal and maximal point distances, standard 
deviation of segment tails, etc. A set of correspondent 
polyline segments using special indicators has been found. It 
enables us to find optimal segments from the list of polyline 
segments with different lengths and starting points.  

 

 

 

Figure 20.  Histogram of distances. From top to bottom: original, 

transformed, and result datasets. Yokne'am. X axis – distance in meter, Y 

axis – number of segments. 

The polyline segments of the city planning data with 
parameters similar/identical to the segments of the cadastral 
data were linked to these segments (defining counterpart 
segments). Segments without a counterpart were 
transformed. The triangulation process has been used to 
define correspondences between polygons. It enables us to 
find optimal segments from the list of polyline segments 
with different lengths and starting points. 
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1 2 

3 4 

5 6 

Figure 21.    Results. Color background is result polygons. Red lines are original city planning polygons’ boundaries. Black lines are 

cadastre polygons’ boundaries. 1 and 2 - Nesher; 3-6 – Yokne'am. Figure 1 depicts the positions of the extents. 
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       The polyline segments of the city planning data with 
parameters similar/identical to the segments of the cadastral 
data were linked to these segments (defining counterpart 
segments). Segments without a counterpart were 
transformed. The triangulation process has been used to 
define correspondences between polygons.  

In the future, we need to test the approach with additional 
datasets and different parameters, to compare it with other 
approaches, and to improve calculation speed.  

To implement the approach, we used Python 2.7 
programming language (with numpy, scipy and matplotlib 
additional libraries), GRASS GIS 7.1, and Debian 
GNU/Linux 7 operating system. 
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