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Abstract—In recent years, process models tend to turn away from
common procedural models to more flexible, rule-based models.
These models are characterized by the fact that in each execution
step users usually have to decide between several rule-consistent
tasks to perform next. Precise execution paths are not given,
which is why adequate execution support needs to be provided.
Simulation is one means to facilitate the users’ decisions. In this
context, we suggest an execution simulation tool with an infinite
horizon, i.e., in each (simulated) step, users are informed about
the tasks that in any case still need to be done to properly finish
one process instance, and about tasks that may no longer be
executed. The forecasts consider an actual or a simulated history
of the process instance and the rules given by the model. In
contrast to systems that show consequences of decisions for the
next 1, 2, 3, . . . steps, our system deals with impacts until the end
of the process instance, independent of the length of the instance,
i.e., the number of steps, which is what we call “infinite horizon.”

Keywords–Process execution; Rule-based process models; Pro-
cess decision support;

I. INTRODUCTION

This paper is based on the ICCGI 2015 contribution [1].

In many fields of economy, industry, and research, process
models are used for supporting the execution of operating
processes, for designing work steps, for documentation pur-
poses, and so on [1]. Usually, these process models are a
sort of procedural process models, where the execution order
of the process steps is prescribed through the control flow.
Notations for this kind of process models are, for example,
Event-driven Process Chains (EPCs) [2], the Business Process
Model and Notation (BPMN) [3], and petri nets [4]. See the
left side of Figure 1 for an imperative process model example
in BPMN. Other execution orders than the prescribed ones
are not provided. This is why computational offloading (“the
extent to which differential external representations reduce the
amount of cognitive effort required to solve informationally
equivalent problems” [5]) is quite well achieved in procedural
process models. For rule-based process models, this is not the
case [6], as they take a different modeling and representation
approach. They are typically used when procedural process
models are too restrictive or get too complicated when complex
facts shall be displayed. The approach of rule-based process
models is to provide a set of tasks, firstly without stating
any execution order, and then to restrict all possible execution
orders by adding rules or constraints that should be met during
the execution. An example for such a rule could be: “If task A
has been executed, afterwards task C needs to be eventually
executed, too.” See Figure 2 or the right side of Figure 1 for an
example of a graphically represented rule-based process model

in the ConDec language [7] whose elements will be explained
in Section III. In some related work ConDec is also called
DECLARE [8], but the term DECLARE is also used for a
constraint-based system that supports LTL-based models like
ConDec.

The two notations of Figure 1 express the same circum-
stance, namely that task A has to be executed at least two
and at most five times in one process instance. As [9] states,
declarative process models may be transformed into imperative
ones, but the resulting model will probably look like a so-
called “spaghetti-model” as the number of execution paths is
incredibly large [10]. An example of such a transformation is
given in Figure 1. Especially for rule-based process models,
guidance for the user through the process is necessary, as the
execution sequences leading to a proper process completion
are not easy to see [11]. The paper at hand provides one
mechanism for such a guidance through rule-based process
models.

The work proceeds as follows: Section II briefly describes
the research question in contrast to related work. Section III
presents the declarative modelling language ConDec, which is
based on linear temporal logic and considered in the further
course of this paper. Section IV introduces the basic idea of
the infinite horizon decision support whereas Section V then
presents the concrete mechanism through deriving so-called
status values out of the declarative process rules. Section VI
briefly introduces a prototypical implementation. Section VII

A
A

A

A

A

A
2..5

Figure 1: The same process model: on the left hand side an imperative
representation, on the right hand side a declarative one.
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Figure 2: An example process model where ν has to look forward intelligently.

provides an exemplary process execution with infinite horizon
status indicators and Section IX concludes the paper with
topics for ongoing research.

II. RELATED WORK AND RESEARCH QUESTION

For imperative process models a variety of execution
support tools are available [12], like Workflow Management
Systems (WfMSs) and electronical or paper-based checklists
[13]. These support tools help the user to proceed the process
adequately and can be based on the underlying process models
but also on log data gained from previous process instances
[14]. This is typically done by telling the user which tasks
he has to perform or is allowed to perform next, or which
tasks still have the possibility to be performed and which are
no longer allowed due to previous decisions. Also, advice and
frequently performed task orders together with some kind of
evaluation may be provided to the user. For declarative process
models, the basic functions of execution support tools are
the same. However, due to the differences in the modelling
approaches, there may be differences in the tools as well, for
example the handling of the high level of flexibility when
executing declarative process models [15]. In the work at hand,
a mechanism for answering the following list of questions
when processing a declaratively modelled process shall be
presented:

(a) Which tasks still need to be executed during the process
instance? How many times?

(b) Which tasks still can be executed during the process
instance (but do not have to)? Is there a maximum number
of executions?

(c) Which tasks are no longer allowed to be executed during
the process instance?

(d) What changes take place for (a), (b), and (c) if a certain
task would be performed next?

We do not want to answer the question, which tasks may
be executed in the next step (finite horizon with step size 1).
This has been done in other work, e.g., in [16] for ConDec
models via automata. Instead, we want to look at the infinite
horizon, i.e., a possibly infinite number of future steps, to give
hints about process activities valid for an indefinite future time
frame, exactly as specified in (a)-(d). To the best of the authors’
knowledge, such a feature is not yet available. However, we
assume that there is a mechanism ν available, like the one of
[16], that chooses tasks for the next step in a way that every
resulting process history is model conform and that dead ends
are avoided. Furthermore, we need process models that do not

contain conflicting constraints, i.e., that there is at least one
possibility to finish the process successfully (satisfiability of
the model) and that do not contain dead activities [16].

Our approach is in general independent of the underlying
modelling language, i.e., also independent of the underlying
logic the rules are based on, e.g., linear temporal logic or
predicate logic. One reason, why we cannot use state automata
for answering the above questions (a)-(d) is that it is not clear
whether all declarative process models can be expressed as
finite state automata at all [17]. If it is possible to express a
model via an automaton, then for realistic models the automata
usually suffer from a state explosion [18] and their computation
gets very costly [19]. Furthermore, we want to be able to
express exact numbers of activity recurrences (see (a) and (b)).

For run-time support, recommendations for effective execu-
tion [15] can be given. However, these recommendations are
usually based on past experiences and need a specific goal,
i.e., a rating of experiences in terms of desirability [8], as
input. Due to this preselection, parts of the executable tasks
are hidden from the executing agent. The decision support we
head for is somehow different as we do not intend to give
recommendations based on a specific goal (as input into the
system) but to provide an overview over the impact of each of
his decisions to the process participant. He can then decide,
according to the overview and a goal (which is only in his
mind), which step to execute next. The system and the model
do not need to be changed, which may cause history-based
violations when done at run-time [8]. As in declarative process
models there is not necessarily a limit of steps till the end of
an instance for answering questions (a)-(d), we talk of infinite
horizon in this context. A use case for this approach could be
the following example situation: in one section of a company
problems have occurred (e.g., power failure, machine failure).
Now, all processes that are executed until the problem is fixed
shall be proceeded without consulting this section. A change
of the workflow system is not needed as the problem can be
fixed any time.

III. THE DECLARATIVE PROCESS MODEL

At first we have to specify the process model that will serve
as input for the execution support tool. As already mentioned
in Section II, the model shall be declarative, i.e., based on
certain rules. One declarative modelling language is ConDec
[7], a language based on LTL. It is usable in the DECLARE
system [8], but it only allows for rules considering the tasks,
i.e., the functional perspective of a process model in the five
perspective approach of [20]. Rules for the other process per-
spectives like the data perspective, the operational perspective,
or the organizational perspective are not covered. The control-
flow perspective regarding the tasks is induced by the rules
themselves. The limitation to the functional and the control-
flow perspective through the use of ConDec simplifies the
presentations but still makes clear the method of our apporach.
As our approach is not dependent on ConDec but ConDec is
just an example, we can extend the infinite horizon decision
support to other rules involving other process perspectives
as well. This extensibility comes from the fact that we do
not directly use the particular modelling language’s elements
but the meaning behind the specific constructs, which can be
called dependency patterns or generic activity relationships, a

142

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I: LTL symbols and their meanings, taken from [24].

∧, ∨, ¬ Common logical operators (AND, OR, NOT)
⇒, ⇔ Abbreviations for expressions formed with above operators (IMPLICA-

TION, EQUIVALENCE)
©φ φ has to hold next in the process history (NEXT)
�φ φ has to hold always in the subsequent process history (ALWAYS)
♦φ φ has to hold eventually in the subsequent process history (EVENTU-

ALLY)
φ ∪ ψ φ has to hold in the process history at least until ψ holds where ψ

holds eventually in the process history (UNTIL)

term used in [21]. Examples for other declarative modelling
languages are the Case Management Model and Notation
(CMMN) [22] specification of the Object Management Group
(OMG) or the textual Declarative Process Intermediate Lan-
guage (DPIL) [17]. The model elements of CMMN are to some
extent very particular and exceed the scope of our approach,
which is why we did not consider CMMN. DPIL is at that
time not yet fully established, but it contains rules also for
the other perspectives as well as cross-perspective rules. As
ConDec is very common, we illustrate our approach with this
graphical notation.

Independently of the underlying modelling language we
have tasks A,B,C, . . . ∈ A that may be executed in one
process instance. The rules applied on the tasks of A are
summarized in set R. In the ConDec language there exist 19
basic rule types, also representable in linear temporal logic
(LTL) [23], which will be considered further on. The basic
LTL elements are listed in Table I.

The 19 basic rules of ConDec are the following ones. Every
rule has a textual macro, an LTL representation indicated in
square brackets, and a graphical representation, see [24]. The
graphical representations are in Figures 3 and 4.

i) existence(A,m): Task A has to be executed at least m
times, 0 < m <∞
[♦(A ∧ (©existence(A,m− 1))) where
existence(A, 1) = ♦A]

ii) absence(A): Task A may not be performed
[¬existence(A, 1)]

iii) absence(A,n + 1): Task A may only be executed up to
n times, 0 < n <∞
[¬existence(A,n+ 1)]

iv) exactly(A,n): Task A has to be performed exactly n
times, 0 < n <∞
[existence(A,n) ∧ absence(A,n+ 1)]

v) init(A): Each process instance has to start with the
execution of task A
[A]

vi) respondedExistence(A,B): If task A appears in the
process instance, then task B has to appear at some point,
too
[♦A⇒ ♦B]

vii) coExistence(A,B): If task A appears in the process
instance, then task B has to appear at some point, too,
and vice versa
[♦A⇔ ♦B]

viii) response(A,B): If task A appears in the process in-
stance, then task B has to appear after A, too
[�(A⇒ ♦B)]

ix) precedence(A,B): Task B can only be executed if task

A has already been executed, i.e., already appears in the
process history
[(¬B ∪A) ∨�(¬B)]

x) succession(A,B): If task A shall be executed, then task
B needs to be executed at some point afterwards and if
B shall be executed, A needs to be performed in advance
[response(A,B) ∧ precedence(A,B)]

xi) alternateResponse(A,B): If task A appears in the pro-
cess instance, then task B has to appear after A, too, and
A may not appear a second time before B
[�(A⇒©(¬A ∪B))]

xii) alternatePrecedence(A,B): Task B can only be exe-
cuted if task A has already been executed and between
two executions of B at least one execution of A has to
appear
[precedence(A,B) ∧�(B ⇒©(precedence(A,B)))]

xiii) alternateSuccession(A,B): Task A has to be followed
by B and B has to be preceded by A and two executions
of A need to have an execution of B before the second
A and two executions of B need to have an execution of
A after the first B
[alternateResponse(A,B)
∧ alternatePrecedence(A,B)]

xiv) chainResponse(A,B): Every execution of task A has to
be directly followed by B
[�(A⇒©B)]

xv) chainPrecedence(A,B): Every execution of task B has
to be directly preceded by A
[�(©B ⇒ A)]

xvi) chainSuccession(A,B): Every execution of task A has
to be directly followed by B and every execution of task
B has to be directly preceded by A
[�(A⇔©B)]

xvii) notCoExistence(A,B): Once task A is executed the first
time, task B may not be executed any more and vice versa
[¬(♦A ∧ ♦B)]

xviii) notSuccession(A,B): Once task A is executed, task B
may not be executed any more after A
[�(A⇒ ¬(♦B))]

xix) notChainSuccession(A,B): Task B may not be exe-
cuted directly after A
[�(A⇒©(¬B))]

Graphical representations of the constraints are presented in
Figure 3 and 4. These representations correspond to that ones
shown in [16]. However, rules i)-iv) or i)-v) may be combined
into the following two rules that are also shown in Figure 3
with 0 ≤ m ≤ n ≤ ∞ and m < ∞. We consider rules i’)
and ii’) instead of the original ones in the further course of
the paper.

i’) existence(A,m, n): Task A has to be performed at least
m times but not more than n times

ii’) initExistence(A,m, n): Task A has to be performed
at least m times but not more than n times and every
process instance has to start with the execution of A

The LTL representation of each of these templates implies
that formal model checking and verification can be applied.
This is done via a translation to automata [16]. We require
that set R is executable, i.e., that the underlying set of LTL
formulas is satisfiable. Rules i)-v) or i’) and ii’), resp., are
also known as existence templates, rules vi)-xvi) as relation

143

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 3: ConDec rules i)-x) and rules i’) and ii’).

templates and rules xvii)-xix) as negative relation templates.
A fourth group of rules, choice templates, has been skipped
like in [24] where the first three groups are referred to as basic
rule types. In [16], LTL formulas for the choice templates are
listed. However, as the rules base on LTL expressions, arbitrary
rules can be added or existing rules modified or removed. The
templates are always evaluated regarding their LTL expression,
not their shortcut or graphical representation that are only used
for better readability.

IV. CONCEPT OF THE INFINITE HORIZON DECISION
SUPPORT

We already stated in Section I that a function or machine
called ν exists that correctly returns all tasks that are exe-
cutable in the next step. This means that according to every
given and rule-consistent history h ∈ H, where H is the
space of all admissible histories, function ν : H → P(A)

Figure 4: ConDec rules xi) - xix).

returns those tasks that will not inevitably lead to an erro-
neous instance state. From every task supposed by ν at least
one correct path, i.e., a rule-consistent task sequence, to a
successful process completion has to exist. Regard Figure 2
for an example. Three tasks, namely A, B, and C may be
executed during an instance of this example process. More
precisely, task A has to be executed exactly once and task
C exactly twice. However, after the execution of A, task
B may no longer be executed. But after any execution of
C task B must eventually be executed. Let h = � be the
empty history at the beginning of a process instance. Then
ν(�) = {B,C} and not {A,B,C} because if A would be
executed at the very beginning, task B may no longer be
executed. But the execution of task C, and C has to be
executed even twice, requires at least one execution of B
afterwards. This is a contradiction and would lead to a non-
correct process completion. This is why function ν may not
suggest task A as first task in the process instance.

The example in Figure 2 also illustrates the possibly
infinite length of a process instance. A valid process ex-
ecution would be to do task C twice, then B, then A:
h = C.C.B.A. This is indeed the shortest possible execu-
tion. But it would also be valid to do B ten times: h =
C.C.B.B.B.B.B.B.B.B.B.B.A, or even a hundred times,
as the number of executions of task B is not restricted. If
the user of a process support system has insight only into
the tasks executable in the next step, he will not be able to
recognize the impact of his decisions more than one step and
possibly infinite steps ahead. For answering the questions (a)-
(d) from Section I we introduce two counters for each task.
One counter for the mandatory executions of a task and one
for the optional executions. If the mandatory counter of a task
has value a ≥ 0, this means that no matter which decisions
are made from now on, this task has to be executed at least
a times. If the optional counter of a task has value b ≥ 0,
this means that from now on there is no path through the
process where this task may be executed more than b times. It
always holds that the mandatory counter is less than or equal to
the optional counter. Furthermore, the optional counter cannot
increase during the execution, otherwise the previous counter
value would have been wrong. If the optional counter value
is zero, the corresponding task may no longer be executed
during this process instance. Mandatory counters can only
decrease through the execution of a task. A process can only
be successfully finished when the mandatory counters of all
tasks are zero.

According to the declarative nature of the process model,
the initial values of the counters are zero for the mandatory
counters and infinite for the optional counters. Thus, the initial
status of every task is status(A) = (man(A), opt(A)) =
(0,∞) ∀A ∈ A. The initial status of the process of Figure
2 when subsuming the statuses of all tasks into one matrix
would be the following:

TABLE II: Initial status table for the example process of Figure 2; h = �.

Task mandatory optional
A 0 ∞
B 0 ∞
C 0 ∞

In the next step, these status values must be updated
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according to the process model rules given inR. Every process
model rule implies several status update rules. The specific
update rules are derived in Section V, but we can state several
general conditions for the change of a status value. For all
model rules, we check these general conditions whether they
apply for a model rule and determine the consequences. The
possible conditions are the occurrences of the following events:

• The process instance has just been started (start)

• A certain task has just been executed (exec(task) with
task ∈ A)

• The mandatory value of a certain task is greater than
zero (man(task) > 0 with task ∈ A)

• The optional value of a certain task is equal to zero
(opt(task) == 0 with task ∈ A)

• The optional value of a certain task is finite
(opt(task) 6=∞ with task ∈ A)

• A certain task appears somewhere in the instance
history (task ∈ h with task ∈ A ∧ h ∈ H)

• A certain task appears on the last place in the instance
history (task = `(h) with task ∈ A ∧ h ∈ H and `
a one-input function returning the last element of the
history)

• A certain task appears more recently in the instance
history than another task (`(h, task, anothertask) =
task with task, anothertask ∈ A ∧ h ∈ H and ` a
three-input function returning the more recent element
of two of the history)

• A certain task does not appear somewhere in the
instance history (task /∈ h with task ∈ A ∧ h ∈ H)

• A certain task does not appear on the last place in the
instance history (task 6= `(h) with task ∈ A ∧ h ∈
H and ` a function returning the last element of the
history)

The statuses man(task) == 0 and opt(task) == ∞ for
task ∈ A do not have any consequences as theses statuses
are the default ones. Of course, a condition can also be
the conjunction of several of the above events. The possible
consequences are the following events:

• The mandatory value of a certain task is reduced
by one if it is greater than zero (man(task) ←
max{0,man(task)− 1} with task ∈ A)

• The mandatory value of a certain task is set to a fixed
value (man(task)← n with task ∈ A ∧ n ∈ N)

• The mandatory value of a certain task is set to at
least one or the value it was before (man(task) ←
max{1,man(task)} with task ∈ A)

• The mandatory value of a certain task is set
to at least the mandatory value of another
task (maybe increased or decreased by one)
and the value it was before (man(task) ←
max{man(task),man(anothertask[±1]} with
task, anothertask ∈ A)

• The optional value of a certain task is reduced
by one if it is greater than zero (opt(task) ←
max{0, opt(task)− 1} with task ∈ A)

• The optional value of a certain task is set to a fixed
value (opt(task)← n with task ∈ A ∧ n ∈ N)

• The optional value of a certain task is set to zero
(opt(task)← 0 with task ∈ A)

• The optional value of a certain task is set
to at most the optional value of another
task (maybe increased or decreased by one)
and the value it was before (opt(task) ←
min{opt(task), opt(anothertask[±1])} with
task, anothertask ∈ A)

The reduction of the mandatory and the optional value of
a certain task by one is only done when this task is executed.

If exec(A): max{0,man(A)← man(A)− 1};
If exec(A): max{0, opt(A)← opt(A)− 1};

Setting the mandatory and optional values to a fixed value
is only done once at the beginning when existence rules are
evaluated. For the remaining consequences it holds that the
optional value of a task never increases and the mandatory
value of a task never reaches infinity during the execution of
the process.

For every process rule we now have to check which
conditions imply which consequences for the involved tasks,
i.e., we have to find the specific status update rules for every
process rule.

V. TASK STATUS UPDATE RULES

For deriving the update rules we begin with the existence
rules as these are the first ones to be evaluated after starting
a process. The relation rules come next but without the chain
rules, as these require a more thorough investigation. As third
we examine the negation rules again without the negated chain
rule. Finally, we analyze the relation and negation chain rules
and observe particular behaviour for these rules because they
do not directly influence the infinite horizon by definition. The
derivation of the update rules is accompanied by the example
process of Figure 2.

A. Existence Rules

The ConDec existence rules are equivalent to rules i’) and
ii’). These rules only change the status values of the tasks at the
beginning of the process. After start they are evaluated once
and for the rest of the execution they are no longer relevant.
What the update rules do is that they set the mandatory and
optional values to the fixed values of the existence template
that state that a task has to be executed at least m times and
at most n times. If a value is not specified it remains the inital
mandatory or optional value of 0 and ∞, respectively.

Rule i)’:
∀ existence(A,m, n) ∈ R:
If start: man(A)← m;
If start: opt(A)← n;
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Whether a task has the init property or not does not affect
the infinite horizon, thus rule ii’) is exactly the same regarding
the status update values. Of course, if a task is marked as init,
its mandatory value has to be at least one and there may only
exist at most one initExistence rule.

Rule ii)’:
∀ initExistence(A,m, n): existence(A,max{1,m}, n)

The example in Figure 2 has two existence rules, namely
existence(A, 1, 1) and existence(C, 2, 2). According to the
update rules above the status matrix in Table II changes to the
matrix shown in Table III.

TABLE III: Status table for the example process of Figure 2 after evaluating
the update rules resulting from existence rules; h = �.

Task mandatory optional
A 1 1
B 0 ∞
C 2 2

B. Relation Rules without Chain Rules

The ConDec relation rules are rules vi)-xiii) plus
chainResponse, chainPrecedence, and chainSuccession,
but we consider the chain rules not until Section V-D. We
start with the response rule. As response(A,B) states that
after A has been executed, B has to be eventually executed,
too, the execution of A sets the mandatory value of B to at
least one. But we also know that if A still has to be executed
(not matter how often), B also has to be executed at least once.
And we know that if B can no longer be executed, A must be
prevented from execution, too, by setting opt(A) == 0. The
response rule is not history dependent.

Rule viii):
∀ response(A,B) ∈ R:
If exec(A): man(B)← max{man(B), 1};
If man(A) > 0: man(B)← max{man(B), 1};
If opt(B) == 0: opt(A)← 0;

In contrast to the response rule, precedence is his-
tory dependent. We do not want to state that for rule
precedence(A,B), if A has already been executed, B may
be executed in the next step, but we want to give long-range
information. That means, if A has not yet been executed (is not
in h) and can no longer been executed, the optional value of
B has to be set to zero, because the prerequisites for executing
B can never be fulfilled. The other way round, if B still needs
to be executed and A is not yet executed, its mandatory value
has to be at least one.

Rule ix):
∀ precedence(A,B) ∈ R:
If opt(A) == 0 ∧A /∈ h: opt(B)← 0;
If man(B) > 0 ∧A /∈ h: man(A)← max{man(A), 1};

For succession both the update rules of response and
precedence hold.

Rule x):
∀ succession(A,B) ∈ R:
response(A,B) ∧ precedence(A,B)

respondedExistence is a variant of response and causes
the same update rules as response in case that the second
input task not already appears in the history. If this task already
appears in the history, then the respondedExistence process
rule has no implications on the status values.

Rule vi):
∀ respondedExistence(A,B) ∈ R:
If exec(A) ∧B /∈ h: man(B)← max{man(B), 1};
If man(A) > 0 ∧B /∈ h: man(B)← max{man(B), 1};
If opt(B) == 0 ∧B /∈ h: opt(A)← 0;

For coExistence, the update rules of
respondedExistence with the tasks in original order
and transposed order hold.

Rule vii):
∀ coExistence(A,B) ∈ R:
respondedExistence(A,B) ∧
respondedExistence(B,A)

The status update rules implied by the ConDec alternate
rules make use of the function ` : H × A × A → A that
returns the more recent task out of two tasks under the current
history h. If only one of the two tasks is in History h then `
returns this task. If none of the tasks is in h, it returns NULL.
The update rules implied by the alternate rules are similar
to that of response, precedence, and succession, except that
for two of the update rules, a case differentiation based on the
current history has to be made. The alternateResponse is, in
contrast to the response rule, history dependent:

Rule xi):
∀ alternateResponse(A,B) ∈ R:
If exec(A): man(B)← max{man(B), 1};
If opt(B) 6=∞∧ `(h,A,B) == A:

opt(A)← min{opt(B)− 1, opt(A)};
If opt(B) 6=∞∧ `(h,A,B) == B:

opt(A)← min{opt(B), opt(A)};
If `(h,A,B) == A:

man(B)← max{man(B),man(A) + 1};
If man(A) > 0 ∧ `(h,A,B) == B:

man(B)← max{man(B),man(A)}

The second and third as well as the fourth and fifth update
rule can be combined via an indicator function. This is in line
with the possible NULL return of ` if neither A nor B appears
in h:

Rule xi):
∀ alternateResponse(A,B) ∈ R:
If exec(A): man(B)← max{man(B), 1};
If opt(B) 6=∞:

opt(A)← min{opt(B)− I`(h,A,B)==A, opt(A)};
If man(A) + I`(h,A,B)==A > 0:

man(B)← max{man(B),man(A) + I`(h,A,B)==A};

Also for alternatePrecedence, the usual precedence can
be applied modified by another history dependency:
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Rule xii):
∀ alternatePrecedence(A,B) ∈ R:
If opt(A) 6=∞:

opt(B)← min{opt(B), opt(A) + I`(h,A,B)==A};
If man(B)− I`(h,A,B)==A > 0:

man(A)← max{man(A),man(B)− I`(h,A,B)==A};

The update rules implied by alternateSuccession are the
conjuction of the update rules of alternateResponse and
alternatePrecedence:

Rule xiii):
∀ alternateSuccession(A,B) ∈ R:
alternateResponse(A,B) ∧
alternatePrecedence(A,B)

C. Negation Rules without Chain Rule

Like the relation rules, the negation rules xvii) and
xviii) are at first considered without the chain rule, in
this case without the notChainSuccession rule xix. For
notSuccession(A,B) it holds that as soon as task A is
executed, task B may no longer be executed, i.e., the optional
status value of B becomes zero. The fact that as long as B
has to be executed (man(B) > 0) prohibits A from execution
cannot be considered in the infinite horizon but this restraint
has to be realized in ν but this is not focussed in this paper.

Rule xviii):
∀ notSuccession(A,B) ∈ R: If exec(A): opt(B)← 0;

For the notCoExistence rule the fact that a mandatory
value of one of the tasks is greater than zero influences
the infinite horizon status update rules as there is no time
dependency for this rule.

Rule xvii):
∀ notCoExistence(A,B) ∈ R:
If exec(A): opt(B)← 0;
If exec(B): opt(A)← 0;
If man(A) > 0: opt(B)← 0;
If man(B) > 0: opt(A)← 0;

We can now futher analyze the model of Figure 2 and
its implications on the status update table. Table III shows the
statuses after start of the process. The update rules implied by
the relation and negation process rules have to be checked next,
still before having executed the first task. We have to consider
the following update rules, induced by response(C,B) and
notSuccession(A,B):

• If exec(C) : man(B)← max{man(B), 1};
• If man(C) > 0 : man(B)← max{man(B), 1};
• If opt(B) == 0 : opt(C)← 0;

• If exec(A) : opt(B)← 0;

Clearly, the update rules activated by exec have not effect
at the moment. Only one update rule (man(C) > 0) is
activated. The status changes are in Table IV. The mandatory
value of B has increased by one. Note that the status update
rules exclulding that ones with exec and start can in general
influence each other. The order of processing them does not

matter but they have to be processed as many times until
nothing more changes.

TABLE IV: Status table for the example process of Figure 2 after evaluating
all update rules without having executed a task; h = �.

Task mandatory optional
A 1 1
B 1 ∞
C 2 2

Tasks executable next (the output of function ν with respect
to history h = �) are B and C. The execution of B implies
the following changes: B is executed and thus man(B) ← 0
and opt(B) ==∞ (reducing ∞ by one is still ∞). Then the
update rule man(C) > 0 activates and the mandatory value
of B is again set to one. The situtation is as before. When
executing C, h = C, the statuses change according to Table
V.

TABLE V: Status table for the example process of Figure 2 after execution
of C: h = C.

Task mandatory optional
A 1 1
B 1 ∞
C 1 1

Now, we have ν(C) = {B,C}. Executing B in the second
step would again lead to no changes, but executing C will
result in a status table as shown in Table VI.

TABLE VI: Status table for the example process of Figure 2 after execution
of C again; h = C.C.

Task mandatory optional
A 1 1
B 1 ∞
C 0 0

The output of ν under h = C.C is now only B, thus, task
B needs to be executed next. This results in statuses as seen in
Table VII. The output of ν under h = C.C.B is now A and B.

TABLE VII: Status table for the example process of Figure 2 after execution
of B; h = C.C.B.

Task mandatory optional
A 1 1
B 0 ∞
C 0 0

As soon as A is executed, the process has successfully finished
as all mandatory values have reached zero. Furthermore, all
optional values are zero as well, which means that no task may
be executed again as well, see Table VIII. Before executing
A, B can be executed arbitraritly often without changing the
status values.

D. Relation and Negation Chain Rules

The chainResponse behaves similar to the
alternateResponse with the difference that in the sequence
of several tasks A and B, B has to directly follow A.
Therefore, the update rules of alternateResponse can be
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TABLE VIII: Status table for the example process of Figure 2 after execution
of A; h = C.C.B.A.

Task mandatory optional
A 0 0
B 0 0
C 0 0

modified through considering `(h) instead of `(h,A,B) with
` : H → A returning the most recent task in instance history
h.

Rule xiv):
∀ chainResponse(A,B) ∈ R :
If exec(A): man(B)← max{man(B), 1};
If opt(B) 6=∞:

opt(A)← min{opt(A), opt(B)− 1`(h)==A};
If man(A) + 1`(h)==A > 0:

man(B)← max{man(B),man(A) + 1`(h)==A};

The same modifications hold for chainPrecedence.

Rule xv):
∀ chainPrecedence(A,B) ∈ R :
If opt(A) 6=∞:

opt(B)← min{opt(B), opt(A) + 1`(h)==A};
If man(B)− 1`(h)==A > 0:

man(A)← max{man(A),man(B)− 1`(h)==A};

For chainSuccession, the update rules of chainResponse
and chainPrecedence are conjuncted.

Rule xvi):
∀ chainSuccession(A,B) ∈ R:
chainResponse(A,B) ∧ chainPrecedence(A,B)

Rule xix): notChainSuccession has no direct implica-
tions on the status update rules but affects them indirectly. We
address these indirect consequences in Section V-F.

E. Additional notSuccession and notChainSuccession
caused by chainResponse and chainSuccession

For chainResponse, as well as for chainSuccession
as it includes the chainResponse, we can make another
observation. As soon as A is executed, B has to be executed
next, and so all status changes B causes are actually
already caused through the execution of A. For the status
update rules, this transfer caused by a chainResponse
resp. chainSuccession is already done indirectly except for
the notSuccession and notChainSuccession rules. The

Figure 5: ConDec model where notSuccession(B,C) causes the addition
of notSuccession(A,C) because of chainResponse(A,B).

notSuccession only has one update rule, which is triggered
by the execution of a certain task, the notChainSuccession
has no update rules at all. Figure 5 shows a situation
where a notSuccession causes the addition of another
rule. Task A has to be directly followed by B and
then, after the execution of B, C may no longer be
executed because of the rule notSuccession(B,C). The
update rule implied by the notSuccession is, however,
If exec(B) : opt(C) == 0 although it is already clear
when executing A, C can no longer be executed. We
want the update rule If exec(A) : opt(C) == 0. This
can be achieved by including a notSuccession(A,C)
in addition to the original notSuccession(B,C).
Similar to this, it holds for notChainSuccession:
chainResponse(A,B) ∧ notChainSuccession(B,C):
add notChainSuccession(A,C) to the model. The addition
of a notChainSuccession may look like a redudant thing
to do because the chainResponse prohibits all other tasks
except the responding task in the next step, but the problem
gets clear with another observation described in Section V-F.

The chainPrecedence is only history dependent and does
not imply additions of process rules.

F. Infinite horizon implications of notChainResponse

At a first glance, the notChainSuccession rule does not
affect the infinite horizon as it prevents the execution of a
certain task only in the next step (which would be a matter for
ν). But indeed, it can have a considerable impact on the infinite
horizon. See Figure 6 for an example of the infinite horizon
effect of a notChainSuccession. The model consists only of
three tasks, A, B, and C, where A needs to be executed at least
once and C may not be executed directly after A. As soon as
B is executed, C may no longer be executed. When starting
with A, there is no direct infinite horizon status change for C.
The notSuccession causes no status changes at this point as
well, as it only triggers through the execution of B. But in fact,
C may no longer be executed as the next task after A is again
A or B (C is prohibited through the notChainSuccession).
Executing A again implies no changes, but the execution of
B sets the optional value of C to zero. That means, through
exec(A) is should have followed immediately opt(C) == 0.

The detection of such a connection can be very complicated
as it can involve any number of steps. A helpful approach
is to conduct a review of the notChainSuccession(A,B)
rules under the current history if A is executed. In our
example in Figure 6, the notChainSuccession implies the
same process behavior when executing A as a notSuccession
under h = �, i.e., it actually affects the infinite horizon
statuses. So, for the situation h = � the notChainSuccession
rule is translated into a notSuccession implying all status
update rules of the notSuccession. We call these trans-
lated notChainSuccession rules deFactoNotSuccession
rules. They turn back to notChainSuccession after one
process step as their transformation is history depen-
dent. That is, the status update rules implied by a
deFactoNotSuccession only hold for one turn. Figure
7 shows a situation where the notChainSuccession not
necessarily turns into a notSuccession. Before execution,
the rule notChainSuccession(A,D) has to be added to
the original model because of chainResponse(A,B) and
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Figure 6: ConDec model where notChainSuccession(A,C) is a
deFactoNotSuccesion(A,C).

notChainSuccession(B,D). It is possible, to start the
process with execution of A: h = A. Now it has
to be checked, if task D is only locked for the next
step because of notChainSuccession(A,D) or if it is a
deFactoNotSuccession(A,D) setting opt(D) == 0. With
history h = A we find the following path to execute D
afterwards: task B has to follow immediately: h = A.B.
But also here, D is not allowed at least in the next step and
we also have to check for deFactoNotSuccession(B,D).
Task E requires C, but C immediately prohibits any fur-
ther execution of D. Instead, task F can be executed:
h = A.B.F . After execution of F , execution of D does
no longer conflict with notChainSuccession(A,D) and
notChainSuccession(B,D) and thus, D can be executed
next. However, if we consider the situation where F is ex-
ecuted first and then A, we are no longer able to find a way
to executed D afterwards. The only possible way to executed
D after A was to do F , but it has exact execution number
of one, i.e., its mandatory and optional values have turned to
zero after the first process step. So, with history h = F.A the
execution of A causes the rule notChainSuccession(A,D)
to transform to a notSuccession(A,D) and the optional value
of D is immediately reduced to zero. When executing B
afterwards, rule notChainSuccession(B,D) does not need
to be checked for being a deFactoNotSuccesion(B,D) as
already opt(D) == 0.

Rule xix):
notChainSuccession(A,B): As this rules points exactly
one task execution into the future, it has no direct implica-
tions for the infinite horizon. When A is executed, it must
be checked whether it is an actual notChainSuccession or
a deFactoNotSuccession, which applies the status update
rules of a notSuccession, depending on the current history.

This possible translation of notChainSuccession
rules into deFactoNotSuccession rules is the
reason why notChainSuccession rules have
to be added due to chainResponse rules as
described in Section V-E. The conduction whether a
notChainSuccession is a deFactoNotSuccession or

Figure 7: ConDec model where notChainSuccession(A,D) is a
deFactoNotSuccesion(A,D) with underlying history h = F .

an actual notChainSuccession can be done via model
verification: For notChainSuccession(A,B) simulate the
execution of A based on the current history h (simulated
history: h′ = h.A) and check the model for freeness
of conflicts when adding the rule response(A,B).
If the original model was conflict-free and now a
conflict occurs, it means that B cannot be executed
after A and thus, the notChainSuccession(A,B) is a
deFactoNotSuccession(A,B).

VI. IMPLEMENTATION

In this section, we demonstrate the functioning of the
derived infinite horizon status update rules with a prototyp-
ical proof-of-concept implementation of the infinite horizon
system in Java. This implementation is a stand-alone program
reflecting the infinite horizon mechanism and can be integrated
into existing process execution systems. Figure 8 presents a
reduced UML class diagram that shows the structure of the
infinite horizon update rule system. The rules not shown in
Figure 8 indicated through the “incomplete” annotation are
included in the same way as the respresented ones. The update
rules derived in Section V are implemented as methods in the
respective rule classes.

Because we did not implement interfaces yet in the pro-
totype, the process models we checked were entered by
hand. If necessary, we added transferred notSuccesion and
notChainSuccession rules. The derivation of those tasks that
are executable next, i.e., the functionality of ν, can be achieved
with an automaton based approach as described in [8]. The
same automaton based approach can be used when checking
for deFactoNotSuccessions as described in Section V-F: for
every notChainSuccession(A,B), history h = history.A
with history being the status of the process instance so
far and the model has to be entered into the verification
system. Additionally, the rule response(A,B) is needed to
check whether there are any conflicts or not, i.e., whether
B is eventually executable or not. If a conflict occurs, the
notChainSuccession(A,B) is a deFactoNotSuccession
and the respective update rule has to be added into our system.

Basically, the procedure of the update rules trigger mecha-
nism is the following where start-update rules (s-update rules)
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view::IHD Runner

+ main(String[]) :void
+ start(List<Task>,TaskProcessor) :void

model::Task

+ addMasterShipOf(Rule) :void
+ addSlaveryOf(Rule) :void

rule::Rule

+ apply(Task, Task, boolean) :void
+ exec(Task) :Set<Task>

processor::TaskProcessor

+ exec(Task) :void
+ execUpdate(Task) :Set<Task>
+ update(Task) :void

rule::Precedence

+ exec(Task) :Set<Task>
+ update() :Set<Task>

rule::Response

+ exec(Task) :Set<Task>
+ update() :Set<Task>

rule::ChainResponse

+ exec(Task) :Set<Task>
+ update() :Set<Task>

#master

#slave

-ruleList

0..*

{incomplete}

Figure 8: UML class diagramm of the infinite horizon status update rule system.

are those beginning with “If start” and execution-update rules
(e-update rules) are those beginning with “If exec(·)”:

1) h← �;
initialization of status table (mandatory values zero, op-
tional values ∞);

2) start process:
go through s-update rules once;
go through other update rules (except e/s-update rules) as
many times until nothing more changes;

3) execution of task ∈ ν(h):
h← task;
go through e-update rules once;
go through other update rules (except e/s-update rules) as
many times until nothing more changes;

4) execution of task ∈ ν(h):
h← h.task;
go through execution-update rules once;
go through other update rules (except e/s-update rules) as
many times until nothing more changes;

5) etc.

The order of the rules when going through s-update rules, e-
update rules, or all other update rules is not important, as long
as the other update rules are processed until in one run no
changes apply to the status values. We tested the behavior
of the infinite horizon status update mechanism with several
distinct process models and always reached the desired, correct
behavior of the status updates. One such execution example is
provided in Section VII to illustrate the functionality of the
implemented prototype.

VII. EXAMPLE

As an illustrational example of the infinite horizon deci-
sion support we take the process given in Figure 9 repre-
senting a (fictional) clinical diagnosis process. The example
contains three precedence rules, one response rule, one
respondedExistence rule und one notChainSuccession
rule. In this example, the notChainSuccession rule never
turns into a deFactoNotSuccession rule as task “magnetic
resonance tomography” can always be executed. Thus, the
notChainSuccession rule has no influence on the infinite

TABLE IX: Diagnosis process: status table with history h = �.

Task mandatory optional
MRT 1 ∞
blood 0 1
assistant 1 ∞
Xray 0 ∞
head 0 1

horizon. With the abbreviations MRT (magnetic resonance
tomography), assistant (assistant physician’s round), blood
(blood test), head (head physician’s round), and Xray (X-ray
examination) for the tasks and the status rules applied after
initializing the states the table for history h = � looks like
Table IX.

Regarding the console output of our prototype in Figure
10, we get the same result.

Table IX says that there are two tasks that need to be
done in any case, even in every instance of this process as
the history is empty at the moment, namely tasks MRT and
assistant. All other tasks may be done at some point during
an instance, however, not necessarily all tasks in one instance.
Now imagine that there is a patient for whom a diagnosis has
to be made without performing the X-ray examination in this
particular case. Is there a possibility to perform the diagnosis
process without this specific task? Table IX states “yes” as the
mandatory value of Xray is 0. This means, there is at least
one successful execution without having to perform the X-ray
examination.

Possible tasks in the first step give by ν(�) are MRT ,
blood and XRay. When executing blood, the output of the
prototype is shown in Figure 11.

Summarized in a status table, the status values for h =
blood are represented in Table X. The status values reveal that
if the blood test is done then the X-ray examination eventually
needs to be done, too. This is not desired for our patient, so
the blood test should not be the choice in the first step.

Instead of the blood test the MRT is executed in the first
step (this task has to be executed anyway during the process),
so we have history h =MRT . The prototype output of Figure
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TABLE X: Diagnosis process: status table with history h = blood.

Task mandatory optional
MRT 1 ∞
blood 0 0
assistant 1 ∞
Xray 1 ∞
head 1 1

TABLE XI: Diagnosis process: status table with history h =MRT .

Task mandatory optional
MRT 0 ∞
blood 0 1
assistant 1 ∞
Xray 0 ∞
head 0 1

12 and the summarized status table in Table XI show that this
choice is fine since the X-ray examination is still optional, but
not mandatory.

The only remaining mandatory task is assistant. If this
task is performed next, then the diagnosis process can be
finished successfully as all mandatory values are 0. This is
apparent from both Figure 13 and summarized status Table
XII.

So, the answer to the question if the process can be
performed without having to do the X-ray examination can
be given directly after initializing the tasks’ states, but the
concrete steps that have to be taken to reach this goal can
only be detected through simulation. However, the execution
h = MRT.assistant.end is one possibility to finish the
process under the given constraints. There may exist others
as well.

VIII. INCLUSION OF THE NEXT FUNCTION

The function that returns the tasks executable in the next
step is not in the focus of this paper. However, to obtain a
satisfactory decision support tool, the functionality of such
a mapping ν has to be integrated into the system. At the
moment, the output of function ν is generated externally. We

Figure 9: A fictional clinical process model representing a diagnosis process.

Figure 10: Prototype output of the Diagnosis process for h = �.

Figure 11: Prototype output of the Diagnosis process for h = blood.

Figure 12: Prototype output of the Diagnosis process for h =MRT .

Figure 13: Prototype output of the Diagnosis process for h =
MRT.assistant.
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TABLE XII: Diagnosis process: status table with history h =
MRT.assistant.

Task mandatory optional
MRT 0 ∞
blood 0 1
assistant 0 ∞
Xray 0 ∞
head 0 1

TABLE XIII: Diagnosis process: user decision support with next executable
tasks and their implications with h = �.

mandatory impossible

Current MRT , assistant

MRT assistant

blood MRT , assistant, Xray, head blood

Xray MRT , assistant

are currently working on the inclusion of ν in the same manner
as the mandatory and optional values are generated. We add
a third type of status value to each task indicating whether a
task is locked by certain process rules or not. The update rules
have to be extended by locking rules.

The response rule does not have any influence on the
locking of tasks, but for the precendence rule, we have to add
the following status update rule: ∀ precedence(A,B) ∈ R: If
A /∈ h: lock(B). This functionality could be realised with a
map in Java to ensure that a lock is released only once as one
task may have several locks from different process rules. This
locking mechanism wourld detach the dependency on process
models representable as finite state automata (see, e.g., [16])
but extent the set of possible process models.

A schematical representation of the user decision support
with next executable tasks is depictured in Table XIII. The
process is that one of Figure 9 with an empty history. Table
XIII shows the current mandatory/optional values not with
their concrete values but only distiguishes between a value of 0
or > 0. This current state is shown in the row above the double
horizontal line: MRT and assistant have to be executed
somewhen to finish the process under the current situation.
There are not any non-executable tasks at the beginning. The
tasks executable next, i.e., in the first step, are shown in the
left column below the double horizontal line as well as their
implications on the infinite horizon in the respective rows: the
tasks that are mandatory after the execution of one of the next
executable tasks and the tasks that are impossible to execute in
the further process instance. For example, if blood is executed
in the next, i.e., first, step, then it cannot be executed any more
but Xray and head get mandatory, too. MRT and assistant
remain mandatory as they have not been executed yet. The
optional values are indirectly given. If a task has an optional
value of zero, it is listed in column impossible. For example,
blood gets impossible for all future steps after execution of
blood in the first step.

IX. CONCLUSION AND ONGOING RESEARCH

The work at hand presents a possibility for decision support
for declarative process models. The presented decision support
applies to an infinitely long forecast horizon. It makes use of

the process rules and their implications to the states of the tasks
they refer to. The rules considered in this paper only concern
the sequence flow of a process so an extension to other rule
types, e.g., concerning roles and agents, is worthwhile. Further-
more, the tasks are only points in time, i.e., only their final
execution is registered. However, due to concurrency issues
it would be beneficial to split one task into different events,
at least into taskstarted and taskfinished. According to
these events, the update rules need to be adjusted. Furthermore,
tasks can also serve as containers implying subprocesses, like
activities marked as subprocesses in BPMN do. For such
nested process models the update rules can also be nested,
meaning, the execution of a container task initializes a separate
set of update rules for the subprocess. For larger process
models, the status value tables can be stored via a hash key
once they are computed to reduce runtime.

The mechanism presented in this paper can be seen as
an extension for existing decision support systems or process
navigation tools where it can be embedded into. Interfaces
for the respective target system have to be built then, but the
mechanism, i.e., the logic of the task status update rules, can
be taken one to one.
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