
398

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Study the Throughput Outcome of Desktop Cloud
Systems Using DesktopCloudSim Tool

Abdulelah Alwabel, Robert Walters, Gary Wills
School of Electronics and Computer Science

University of Southampton
Southampton, UK

e-mail: {aa1a10, rjw1, gbw}@ecs.soton.ac.uk

Abstract— Desktop Cloud computing is a new type of Cloud
computing that aims to provide Cloud services at little or no
cost. This ambition can be achieved by combining Cloud
computing and Volunteer computing into Desktop Clouds,
harnessing non-dedicated resources when idle. However,
Desktop Cloud systems suffer from the issue of node failures.
Node failure can happen without prior notification, which may
affect the throughput outcome of these systems. This paper
studies the impact of node failures using a simulation tool.
Simulation tools are commonly used by academics and
researchers to simulate Clouds in order to investigate various
research issues and examine proposed solutions. CloudSim is a
well-known and widely employed tool to simulate Cloud
computing by both academia and industry. However,
CloudSim lacks the ability to simulate failure events, which
may occur to physical nodes in the infrastructure level of a
Cloud system. In order to show the effectiveness of
DesktopCloudSim, we evaluate the throughput of two types of
Desktop Clouds: private and public Desktop Clouds that are
built on top of faulty nodes based on empirical data sets. The
data sets are analysed and studied in this paper to reflect the
number of node failures in these two Cloud types. The
evaluation process serves two purposes: the first is that it
validate the working of the proposed tool. The second is to
show that throughput of Desktop Cloud systems is affected
badly by node failures.

Keywords-Cloud; CloudSim; DesktopCloudSim; Failure;
Nodes; Throughput; VM Allocation.

I. INTRODUCTION
DesktopCloudSim [1] is proposed in our previous paper

as an extension tool that can simulate node failures in Cloud
system. Cloud computing has emerged with a promise to
improve performance and reduce running costs. The services
of Cloud computing are provided by Cloud service providers
(CSPs). Traditionally, CSPs use a huge number of
computing resources in the infrastructure level located in
datacentres. Such resources are claimed to have a high level
of reliability, which makes them resilient to failure events
[2]. However, a new direction of Cloud has recently emerged
with an aim to exploit normal Desktop computers, laptops,
etc. to provide Cloud services [3]. This kind of Cloud can be
called Desktop Clouds [4]. In contrast to the traditional way

of CSP, which uses a huge number of computing resources
that are dedicated to be part of the Cloud. Throughout this
paper, the term Traditional Cloud refers to this traditional
way of Clouds.

The cost-effectiveness of Desktop Clouds is the key
advantage over Traditional Clouds. Researchers in Desktop
Clouds can use Cloud services at little cost, if not free.
However, such feature suffers from an issue. The nodes of a
Desktop Cloud are quite volatile and prone to failure without
prior knowledge. This may affect the throughput of tasks and
violate the service level agreement. The throughput is
defined as the number of successful tasks submitted to be
processed by virtual machines (VMs). Various VM
allocation mechanisms can yield different variations of
throughput level in the presence of node failures.

VM allocation mechanism is the process of allocation
requested VMs by Cloud’s users to physical machines (PMs)
in the infrastructure level of a Cloud. The main goal of this
paper is to study the impact of node failures on the outcome
of Desktop Cloud systems. The contribution of this paper
can be summarised into: (i) it proposes and describes the
DesktopCloudSim as being an extension for CloudSim
simulation toolkit; (ii) it investigates the impact of failure
events on throughput and (iii) three VM mechanisms: FCFS,
Greedy and RoundRobin mechanisms are evaluated in terms
of throughput using DesktopCloudSim. The reminder of this
paper is organised as follows: Section II discusses Desktop
Cloud as being a new direction of Cloud computing. Section
III proposes the simulation tool that extends CloudSim. The
section starts by reviewing CloudSim to show the need to
extend it. The section, then, reviews some VM allocation
mechanisms. Next section demonstrates experiments
conducted to evaluate the impact of node failures in a private
Desktop Cloud based on empirical data of failures in
NotreDame nodes. Another simulation of public Desktop
Cloud is conducted using data of SETI@home nodes. The
results are then analysed and discussed in Section V. Several
related works are reviewed in Section VI. Finally, a
conclusion and future work insights are given in the last
section.

399

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. DESKTOP CLOUD
The success of Desktop Grids stimulates the idea of

harnessing idle computer machines to build Desktop Clouds.
Hence, the term Desktop comes from Desktop Grids because
both of Desktop Clouds and Desktop Grids are based on
Desktop PCs and laptops etc. Similarly, the term Cloud
comes from Cloud as Desktop Cloud aims to provide
services based on the Cloud business model. Several
synonyms for Desktop Cloud have been used, such as Ad-
hoc Cloud [5], Volunteer Cloud [3], Community Cloud [6]
and Non-Dedicated Cloud [7]. The literature indicates that
very little work has been undertaken in this direction.

Table I. Traditional Clouds vs. Desktop Clouds

Feature Traditional Clouds Desktop Clouds

Resources Dedicated Non-dedicated and
volatile

Cost Relatively high Cheap

Location Limited to a number of data
centres

Distributed across the
globe

Services Reliable and available Low availability and
unreliable

Heterogeneity Heterogeneous Very heterogeneous

Desktop Clouds differ from Traditional Clouds in several

things, as it is depicted in Table I. Firstly, the infrastructure
of Desktop Cloud consists of resources that are non-
dedicated, i.e., not made to be part of Cloud infrastructure.
Desktop Cloud helps in saving energy since it utilises
already-running undedicated resources, which would
otherwise remain idle. Some studies show that the average
percentage of local resources being idle within an
organisation is about 80% [8]. It is shown that an idle
machine can consume up to 70% of the total power
consumed when it is fully utilised according to [9]. On the
contrary, the infrastructure of Traditional Clouds is made of
a large number of dedicated computing resources.
Traditional Clouds have a negative impact on the
environment since their data centres consume massive
amounts of electricity for cooling these resources.

Secondly, resources of Desktop Clouds are quite
scattered across the globe, whereas they are limited in
Traditional Cloud to a number of locations in data centres.
Furthermore, nodes in Desktop Cloud are highly volatile
because nodes of Desktop Clouds can be down unexpectedly
without prior notice. Node failures can occur for various
reasons such as connectivity issues, machine crashing or
simply the machine becomes busy with other work by its
owner takes priority. High volatility in resources has
negative impact on availability and performance [10].
Although, resources in both Traditional Cloud and Desktop
Cloud are heterogeneous, they are even more heterogeneous
and dispersed in Desktop Cloud. Traditional Clouds are
centralised, which leads to the potential that there could be a
single point of failure issue if a Cloud service provider goes
out of the business. In contrast, Desktop Clouds manage and

offer services in a decentralised manner. Virtualisation plays
a key role in both Desktop Clouds and Traditional Clouds.

Desktop Clouds can be confused with other distributed
systems, specifically Desktop Grids. Both Desktop Clouds
and Desktop Grids share the same concept that is exploiting
computing resources when they become idle. The resources
in both systems can be owned by an organisation or denoted
by the public over the Internet. Both Desktop Grids and
Desktop Clouds can use similar resources. Resources are
volatile and prone to failure without prior knowledge.
However, Desktop Grids differ from Desktop Clouds in the
service and virtualisation layers. Services, in Desktop
Clouds, are offered to clients in an elastic way. Elasticity
means that users can require more computing resources in
short term [11]. In contrast, the business model in Desktop
Grids is based on a ‘project oriented’ basis, which means that
every user is allocated a certain time to use a particular
service [12]. In addition, Desktop Grids’ users are expected
to be familiar with details about the middleware used in
order to be able to harness the offered services [13]. Specific
software needs to be installed to computing machines in
order to join a Desktop Grid. Clients in Desktop Clouds are
expected to have little knowledge to enable them just use
Cloud services under the principle ease of use. Desktop
Grids do not employ virtualisation to isolate users from the
actual machines while virtualisation is highly employed in
Desktop Clouds to isolate clients from the actual physical
machines.

III. DESKTOPCLOUDSIM
DesktopCloudSim is an extension tool proposed to

simulate failure events happening in the infrastructure level
based on CloudSim simulation tool. Therefore, this section
starts by a brief discussion of CloudSim. The extension tool,
DesktopCloudSim, is presented next. DesktopCloudSim is
used to evaluate VM allocation mechanisms, thus the last
subsection in this section discusses traditional mechanisms
that are used by open Cloud middleware platforms.

A. CLOUDSIM
CloudSim is a Java-based discrete event simulation

toolkit designed to simulate Traditional Clouds [14]. A
discrete system is a system whose state variables change
over time at discrete points, each of them is called an event.
The tool was developed by a leading research group in Grid
and Cloud computing called CLOUDS Laboratory at The
University of Melbourne in Australia. The simulation tool is
based on both GridSim [15] and SimJava [16] simulation
tools.

CloudSim is claimed to be more effective in simulating
Clouds compared to SimGrid [17] and GroudSim [18]
because CloudSim allows segregation of multi-layer service
(IaaS, PaaS and SaaS) abstraction [14]. This is an important
feature of CloudSim that most Grid simulation tools do not
support. Researchers can study each abstraction layer
individually without affecting other layers.

CloudSim can be used for various goals [19]. First, it can
be used to investigate the effects of algorithms of
provisioning and migration of VMs on power consumption

400

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and performance. Secondly, it can be used to test VM
mechanisms that aim at allocating VMs to PMs to improve
performance of VMs. It is, also, possible to investigate
several ways to minimise the running costs for CSPs without
violating the SLAs. Furthermore, CloudSim enables
researchers to evaluate various scheduling mechanisms of
tasks submitted to running VMs from the perspective of
Cloud brokers. Scheduling mechanism can help in
decreasing response time and thus improve performance.

Although CloudSim is considered the most mature Cloud
simulation tool, the tool falls short in providing several
important features. The first is that does not simulate
performance variations of simulated VMs when they process
tasks [19]. Secondly, service failures are not simulated in
CloudSim [20]. The service failures include failures in tasks
during running time and complex overhead of complicated
tasks. Furthermore, CloudSim lacks the ability to simulate
dynamic interaction of nodes in the infrastructure level.
CloudSim allows static configuration of nodes, which remain
without change during run time. Lastly, node failures are not
included in CloudSim tool. DesktopCloudSim enables the
simulation of dynamic nodes and node failures while
performance variations and service failures are simulated by
other tools. Section VI discusses those tools.

Several simulators have been published to simulate Grid
computing. SimGrid [17] is one of the early simulation tools
to simulate Grid environment. GridSim [15] is another tool
fits within the same goal. CloudSim is built on top of
GridSim. Donassole et al. [21] extended SimGrid to enable
simulating Desktop Grids. Their work enables building a
Grid on top of resources contributed by the public. The
simulation tool is claimed to be of high flexibility and enable
simulating highly heterogonous nodes. GroudSim [18] is a
scalable simulation tool to simulate both Grid and Cloud
platforms. The tool lets researchers to inject failures during
running time. However, all of these tools fall in short to
provide virtualisation feature, which is essential to evaluate
VM allocation mechanisms.

MDCSim [22] is a commercial, discrete-event simulation
tool developed at Pennsylvania State University to simulate
multi-tier data centres and complex services in Cloud
computing. It has been designed with three-level
architecture, including a user-level layer, a kernel layer and
communication layer for modelling the different aspects of a
Cloud system. MDCSim can analyse and study a cluster-
based data centre with in-depth implementation of each
individual tier. The tool can help in modelling specific
hardware characteristics of different components of data
centres such as servers, communication links and switches. It
enables researchers to estimate the throughput, response
times and power consumption. However, as the simulation
tool is a commercial product, it is unsuitable to run
experiments.

GreenCloud [23] is another cloud simulation framework,
implemented in C++ and focused on the area of power
consumption and its measurement. The tool was developed
on top of Ns2, a packet-level network simulation tool [24].
Having the tool implemented in C++ makes it feasible to
simulate a large number of machines (100,000 or more),

while Java is assumed to be able to handle only 2GB
memory on 32 bit machines. However, CloudSim was able
to simulate and instantiate 100,000 machines in less than 5
minutes with only 75 MB of RAM, according to Sakellari
and Loukas 2013. Although GreenCloud can support a
relatively large number of servers, each may have only a
single core. In addition, the tool pays no attention to
virtualisation, storage and resource management.

iCanCloud [26] is a C++ based open source Cloud
simulation tool based on SIMCAN [27], a tool to simulate
large and complex systems. It was designed to simulate
mainly IaaS Cloud systems, such as instance-based clouds
like EC2 Amazon Cloud. iCanCloud offers the ability to
predict the trade-off between performance and cost of
applications for specific hardware to advise users about the
costs involved. The tool has a GUI feature and can be
adapted to different kinds of IaaS cloud scenarios. However,
iCanCloud does not enable researchers to study and
investigate energy efficiency solutions.

There are several extensions of CloudSim that have been
developed to overcome the limitations of CloudSim tool. The
extensions are NetworkCloudSim [28], WorkflowSim [20],
DynamicCloudSim [19], FederatedCloudSim [29] and
InterCloud [30]. NetworkCloudSim is an extension
simulation tool based on CloudSim to enable the simulation
of communication and messaging aspects in Cloud
computing. The focus of the tool is on the network flow
model for data centres and network topologies, bandwidth
sharing and the network latencies involved. It also enables
the simulation of complex applications such as scientific and
web applications that require interconnections between them
during run time. Such features can allow further accurate
evaluation of scheduling and resource provisioning
mechanisms in order to optimise the performance of Cloud
infrastructure.

WorkflowSim is a new simulation extension that has
been published recently as an extension for CloudSim tool.
The tool was developed to overcome the shortage of
CloudSim in simulating scientific workflow. The authors of
WorkflowSim added a new management layer to deal with
the overhead complex scientific computational tasks, arguing
that CloudSim fails in simulating the overheads of such tasks
such as queue delay, data transfer delay, clustering delay and
postscripts. This issue may affect the credibility of
simulation results. They also point out the importance of
failure tolerant mechanisms in developing task scheduling
techniques. WorkflowSim focuses on two types of failures:
tasks failure and job failure. A task contains a number of
jobs, so failure in a task causes a series of jobs to fail.
However, our work differs from WorkflowSim in the failure
event and its impact. The focus of this research is on the
infrastructure level, containing nodes hosting VMs, whereas
its authors were interested in the service level, that is, tasks
and applications. It can be argued that service providers
should consider developing failure-tolerant mechanisms to
overcome such events in the infrastructure level.

DynamicCloudSim is another extension for CloudSim
tool. Its authors were motivated by the fact that CloudSim
lacks the ability to simulate instability and dynamic

401

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance changes in VMs during runtime. This can have
a negative impact on the outcome of computational intensive
tasks, which are quite sensitive to the behaviour of VMs. The
tool can be used to evaluate scientific workflow schedulers,
taking into consideration variance in VM performance. In
addition, the execution time of a given task is influenced by
the I/O-bound such as reading or writing data. Its authors
extended instability to include task failure. Performance
variation of running VMs is an open research challenge, but
beyond the scope of this study.

FederatedCloudSim [29] is an extension tool in the
CloudSim toolkit to enable the simulation of federated
Clouds using difference federation scenarios, while
respecting SLAs. According to Goiri et al. [31], Cloud
Federation is the idea of bringing many CSPs together in
order to avoid the case of over-demand for Cloud services by
letting a CSP rent out CSPs to other computing facilities.
FederatedCloudSim enables researchers to simulate and
study various ways to standardise interfaces and
communications between CSPs in a federated Cloud. Such a
tool can help to study optimisation solutions for exchanging
Cloud services between CSPs without violation of SLAs.
InterCloud is another simulation tool that has been
developed to simulate Cloud federation, based on the
CloudSim tool. However, InterCloud falls short of providing
sufficient simulation capabilities of SLAs, compared to
FederatedCloudSim.

B. The Architecture of DesktopCloudSim
Simulation is necessary to investigate issues and evaluate

solutions in Desktop Clouds because there is no real Desktop
Cloud system available on, which to run experiments. In
addition, simulation enables control of the configuration of
the model to study each evaluation metric. In this research,
CloudSim is extended to simulate the resource management
model. CloudSim allows altering the capabilities of each host
machines located in the data centre entity in the simulation
tool. This feature is very useful for experimentations, as it is
needed to set the infrastructure (i.e., physical hosts) to have
an unreliable nature. This can be achieved by extending the
Cloud Resources layer in the simulation tool. Figure 1
Depicts the layered architecture of CloudSim combined with
an abstract of the DesktopCloudSim extension.

	
 Cloud	
 Resources	
 Cloud	
 Resources

VM	
 Provisioning

	
 Cloud	
 Services	
 Cloud	
 Services

Cloudlet	
 Execution VM	
 Management

	
 VM	
 Services	
 VM	
 Services

Cloudlet Virtual	
 Machine

	
 User	
 Interface	
 Structures	
 User	
 Interface	
 Structures

Network	
 Topology Message	
 Delay	
 Calculation

	
 Network	
 Network

Data	
 CentreCloud	
 Coordinator Sensor Events	
 Handling

VM	
 Allocation	
 Mechanism

CPU	

Allocation Storage	
 Allocation Bandwidth	

Allocation
Memory	

Allocation

D
esktopCloudSim

Figure 1. DesktopCloudSim Abstract

Figure 2 illustrates the components of DesktopCloudSim
that read FTA trace files, as explained later in this paper. The
trace files contain the failure events of PMs. The Failure
Analyser component analyses the files of failures to send
failure events to Failure Injection component. The Failure
Injection component receives failure events from the Failure
Analyser and inject failures into associated PMs during run
time by sending events to Available PMs component. The
Available PMs contains a list of PMs that are ready to be
used, so if a PM fails then it is removed or, if a PM joins, it
is added. The Failure Injection component informs the VM
Mechanism unit if a PM fails, to let it restart the failed VMs
on another live node or nodes. The VM Provisioning
component provisions VMs instances to be allocated to PMs
selected by Select PM. The VM Mechanism controls, which
PM hosts a VM instance. The VM Mechanism creates restart
VM instances. In addition, the VM Mechanism can replicate
a running VM instance, if required.

Failure	
 Analyser

Select	
 PM

Failure	
 Injection VM	
 Mechanism VM	
 Provisioning

Allocation

VM	
 Instance

PMAvailable	

PMs

Failure	
 Events

PM	
 Fail

PM	
 Failure,
PM	
 Join

VM	
 Create
VM	
 restart

FTA	
 Traces
VM	
 Replicate

Figure 2. DesktopCloudSim Model

C. VM Allocation Mechanisms
Several VM allocation mechanisms that are employed in

open Cloud platforms are discussed in this subsection. VM
allocation mechanisms are: (i) Greedy mechanism, which
allocates as many VMs as possible to the same PM in order
to improve utilisation of resources; (ii) RoundRobin
mechanism allocates the same number of VMs equally to
each PM; and (iii) First Come First Serve (FCFS)
mechanism allocates a requested VM to the first available
PM that can accommodate it. This paper is limited to these
mechanisms because they are implemented in open source
Cloud management platforms such as Eucalyptus [32],
OpenNebula [33] and Nimbus [34].

When a VM is requested to be instantiated and hosted to
a PM, the FCFS mechanism chooses a PM with the least
used resources (CPU and RAM) to host the new VM. The
Greedy mechanism allocates a VM to the PM with the least
number of running VMs. If the chosen PM cannot
accommodate the new VM, then the next least VM running
PM will be allocated. RoundRobin is an allocation
mechanism, which allocates a set of VMs to each available
physical host in a circular order without any priority. For
example, suppose three VMs are assigned to two PMs. The
RoundRobin policy will allocate VM1 to PM1 then VM2 to
PM2 then allocate VM3 to PM1 again. Although these

402

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mechanisms are simple and easy for implementation, they
have been criticised for being underutilisation mechanisms,
which waste energy [35]. The FCFS mechanism is expected
to yield lowest throughput among the aforementioned
mechanisms because it assigns VMs to PMs in somehow
random manor.

IV. EXPERIMENT
The experiment is conducted to evaluate VM

mechanisms mentioned in Section III.C. There are two input
types needed to conduct the experiment. The first input is the
trace file that contains failure events happening during the
run time. Failure trace files are collected from an online
archive. Subsection A discusses further this archive. The
second input set is the workload submitted to the Desktop
Cloud during running time. Subsection B talks about this
workload.

A. Failure Trace Archive
Failure Trace Archive (FTA) is a public source

containing traces of several distributed and parallel systems
[36]. The archive includes a pool of traces for various
distributed systems including Grid computing, Desktop Grid,
peer-to-peer (P2P) and High Performance Computing (HPC).
The archive contains timestamp events that are recorded
regularly for each node in the targeted system. Each event
has a state element that refers to the state of the associated
node. For example, an event state can be unavailable, which
means this node is down at the timestamp of the event. The
unavailable state is considered a failure event throughout this
report. The failure of a node in an FTA does not necessarily
mean that this node is down. For example, a node in a
Desktop Grid system can be become unavailable because its
owner decides to leave the system at this time.

The Notre Dame and SETI@home FTAs were retrieved
from Failure Trace Archive website. The NotreDame FTA
represents an archive of a pool of heterogeneous resources
that have run for 6 months within the University of Notre
Dame during 2007 [37]. The nodes of this archive can be
used to simulate the behaviour of nodes in a private Desktop
Cloud system. Each month is provided separately
representing the behaviour of nodes located in the University
of Notre Dame. The FTA contains 432 nodes for month 1,
479 nodes for month 2, 503 nodes for month 3, 473 nodes
for month 4, 522 nodes for month 5 and 601 nodes for month
6. The second trace archive is SETI@home FTA. The FTA
has a large pool of resource (more than 200 thousand nodes)
that have been run for a year in 2008/09 [38]. The nodes in
SETI@home are highly heterogeneous because most of these
computing nodes are denoted by the public over the Internet.
A random sample of 875 nodes has been selected from
SETI@home FTA for six months. The selected PMs are
those who have trace files with sufficient failure events to
simulate SETI@home Desktop Cloud, which is considered a
public Desktop Cloud system.

We calculated the average percentage failure of nodes on
every hour basis. Such study can help in evaluating the
behaviour of VM mechanisms. The failure percentage is
calculated as:

𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ℎ =
𝑛𝑢𝑚𝑏𝑟 𝑜𝑓 𝑓𝑎𝑖𝑙𝑒𝑑 𝑛𝑜𝑑𝑒𝑠 𝑎𝑡 ℎ
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠

 ∗ 100

Figure 3. Average Hourly Failure

Figure 3 shows an average hourly failure percentage in
24 hour-period for analysis of 6 months run times of
NotreDame and SETI@home nodes. The period is set to 24
hours because this is the running time set for our
experiments. NotreDame failure analysis shows that failure
percentage is about 3% as minimum in hour 6. Hour 17
recorded the highest failure percentages at about 10%. It is
worth mentioning that on average about 6.3% of running
nodes failed in an hour during the 6-month period. For
SETI@home nodes, the highest failure percentage was about
21% in hour 1 while lowest was about 10%. However, it was
recorded that the percentage of node failures can reach up to
80% in some hours. Overall, the average hourly failure rate
of SETI@home is about 13.7%. This can demonstrate that
failure events in Desktop Clouds are norms rather than
exceptions.

B. Experiment Setting
The experiment is run for 180 times once for NotreDame

Desktop Cloud and another for SETI@home Desktop Cloud,
each time represent a simulation of running NotreDame
Desktop Cloud for one day. The run time set to one day
because the FTA provides a daily trace for NotreDame nodes
as mentioned above. Each VM allocation mechanism is run
for 180 times representing traces of 6 months from the FTA.
This makes the total number of runs is 540 (3 * 180). The
workload was collected from the PlanetLab archive. The
archive provides traces of real live applications submitted to
the PlanetLab infrastructure [39]. One day workload was
retrieved randomly as input data in this experiment. Each
task in the workload is simulated as a Cloudlet in the
simulation tool. The workload input remains the same during
all the experiment runs because the aim of this experiment is
to study the impact of node failures on throughput of
Desktop Clouds.

The FTA files provide the list of nodes along with
timestamps of failure/alive times. However, the
specifications of nodes are missing. Therefore, we had set
specification up randomly for physical machines. The
missing specifications are technical specifications such as
CPU power, RAM size and hard disk size.

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

22	

24	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	

Fa
ilu
re
	
 (%

)	

Notredame	

403

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Clients requested that 700 instances of VMs to run for 24
hours. There are four types of VM instances: micro, small,
medium and large. They are similar to VM types that are
offered by Amazon EC2. The type of each requested VM
instance is randomly selected. The number of requested VMs
and types remain the same for all run experiment sets. Each
VM instance receives a series of tasks to process for a given
workload. The workload is collected from PlanetLab archive,
which is an archive containing traces. PlanetLab is a research
platform that allows academics to access a collection of
machines distributed around the globe. A one day workload
of tasks was collected using CoMon monitoring tool [40].
The same workload is submitted in every one day run.

In the experiment, if a node fails then all hosted VMs
will be destroyed. The destruction of a VM causes all
running tasks on the VM to be lost, which consequently
affect the throughput. The lost VM is started again on
another PM and begins receiving new tasks. During running
time, a node can become alive and re-join the Cloud
according to the used failure trace file. The simulation was
run on a Mac i27 (CPU = 2.7 GHz Intel Core i5, 8 GB MHz
DDR3) running OS X 10.9.4. The results were analysed
using IBM SPSS Statistics v21 software.

V. RESULTS AND DISCUSSION
Table II shows a summary of descriptive results obtained

when measuring the throughput output for each VM
allocation mechanism implemented in NotreDame Cloud.
Kolmogorov-Smirnov (K-S) test of normality shows that the
normality assumption was not satisfied because the FCFS
and Greedy mechanisms are significantly non-normal,𝑃 <
 0.05 . Therefore, the non-parametric test Friedman’s
ANOVA was used to test which mechanism can yield better
throughput. Friedman’s ANOVA test confirms that
throughput varies significantly from mechanism to
another, 𝑋!! 2 = 276.6,𝑃 < 0.001 . Mean, median,
variance and standard deviation are reported in Table II.

Table II. Throughput Results for NotreDame Desktop Cloud

Mechanism Mean (%) Median (%) Var. St. Dev. K-S Test

FCFS 82.66 82.2 40.32 6.35 P = 0.034

Greedy 92.47 93.1 18.34 4.28 P < 0.001

RoundRobin 89.14 89 16.47 4.06 P = 0.2

Three Wilcoxon pairwise comparison tests were

conducted to find out which mechanism with highest
throughput. Note that three tests are required to compare
three pairs of mechanisms, which are FCFS Vs. Greedy,
FCFS Vs. RoundRobin and Greedy Vs. RoundRobin
mechanisms. The level of significance was altered to be
0.017 using Bonferroni correction [41] method because there
were 3 post-hoc tests required (0.05/3 ≈ 0.017). The tests
show that there is a significant different between each
mechanism with its counterpart. Therefore, it can be
concluded that Greedy mechanism yield highest throughput

since it has the median with highest value (median =
92.47%).

The median throughput of FCFS was about 83%, as
being the worst mechanism among the tested mechanisms.
The RoundRobin came second in terms of throughput
because the mechanism distributes load equally. So, node
failures are ensured to affect the throughput. The median
throughput was about 92% when Greedy VM mechanism
was employed. The mechanism aims at maximising
utilisation by packing as many VMs as possible to the same
PM, thus reduce the number of running PMs. The average
failure rate in submitted tasks is about 8%, given the average
node failure percentage is about 6% as Section IV.A shows.

Table III shows a summary of descriptive results
obtained for throughput output for the FCFS, Greedy and
RoundRobin VM allocation mechanisms employed in
SETI@home Desktop Cloud. Kolmogorov-Smirnov (K-S)
test of normality shows that the normality assumption was
violated because the FCFS and RoundRobin mechanisms are
significantly non-normal, 𝑃 < 0.05 . Therefore, the
non-parametric test Friedman’s ANOVA was used to test,
which mechanism can yield better throughput. Friedman’s
ANOVA test confirms that throughput varies significantly
from mechanism to another, 𝑋!! 2 = 86.63,𝑃 < 0.001 .
Mean, median, variance and standard deviation are reported
in Table III.

Table III. Throughput Results for SETI@home Desktop Cloud

Mechanism Mean (%) Median (%) Var. St. Dev. K-S Test

FCFS 82.04 83.28 20.23 4.5 P < 0.001

Greedy 81.80 81.93 16.1 4.01 P = 0.2

RoundRobin 80.45 81.04 16.11 4.01 P = 0.004

Three Wilcoxon pairwise comparison tests were

conducted to find out which mechanism yielded highest
throughput. As explained before, three tests are required to
compare three pairs of mechanisms which are FCFS Vs.
Greedy, FCFS Vs. RoundRobin and Greedy Vs.
RoundRobin mechanisms. The level of significance was
altered to be 0.017 using Bonferroni correction [41] method
because there were 3 post-hoc tests required (0.05/3 ≈
0.017). The tests show that there is a statistically significant
different between RoundRobin vs. Greedy mechanisms and
RoundRobin vs. FCFS mechanisms. However, Greedy vs.
FCFS mechanisms did not show a significant difference.
Therefore, it can be which mechanisms yielded highest
throughput.

The throughput results of employed mechanism for
SETI@home Desktop Cloud showed that the difference
between throughput of results were quite limited, by less
than 2%. The FCFS and Greedy mechanisms yielded highest
throughput at about 82% and 81% respectively. RoundRobin
came the last with throughput of about 80% only. The mean
reason behind the drop of throughput results of mechanisms
in SETI@home Desktop Cloud compared to NotreDame
Desktop Cloud is the average failure rate of nods in

404

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SETI@home is almost the double of average failure rate of
NotreDame nodes. We can conclude that based on the results
of experiments there is a potential to develop fault-tolerant
VM mechanism for Desktop Cloud systems.

VI. RELATED WORK
The literature shows that the focus is on how to minimise

the power consumed by physical nodes in order to maximise
revenue for CSPs. Researchers are motivated to tackle the
issue because power in data centres accounts for a large
proportion of maintenance costs [42]. The idea is that better
utilisation leads to more servers that are idle, so can be
switched to power saving mode (e.g., sleep, hibernation) to
reduce their energy consumption. According to Kusic et al.
an idle machine uses as much as 70% of the total power
consumed when it is fully utilised [9].

Srikantaiah et al. studied the relationship between energy
consumption, resource utilisation and performance in
resource consolidation in Traditional Clouds [43]. The
researchers investigated the impact of resource high
utilisation on performance degradation when various VMs
are consolidated at the same physical node, introducing the
notion of optimal points. They argued that there is a
utilisation point that allows placement of several VMs at the
same physical node without affecting performance. Once this
point is reached in a PM, no new VMs are placed, and the
proposal is to calculate this optimal point of utilisation then
to employ a heuristic algorithm for VM placement, since the
authors defined the consolidation problem as a multi-
dimensional Bin Packing problem and showed that the
consumption of power per transaction results in a ‘U’-shaped
curve. They found that CPU utilisation at 70% was the
optimal point in their experiment, but that it varied according
to the specification of the PMs and workload. The approach
is criticised because the technique adopted depends heavily
on the type of the workload and the nature of the targeted
machines [44].

Verma et al. presented ‘pMapper’, a power-aware
framework for VM placement and migration in virtualised
systems, where the monitoring engine collects current
performance and power status for VMs and PMs in case
migration is required [45]. The allocation policy in pMapper
employs mPP, an algorithm that places VMs on servers with
the aim of reducing the power they consume. The algorithm
has two phases. The first is to determine a target utilisation
point for each available server based on their power model.
The second is to employ a First Fit Decreasing (FFD)
heuristic solution to place VMs on servers with regard to the
utilisation point of each. The optimisation in the framework
considers reducing the cost of VM migration from one server
to another. The migration cost is calculated by a migration
manager for each candidate PM in order to determine which
node is chosen. The work is criticised as it does not strictly
comply with SLA requirements [46]; the proposed allocation
policy deals with static VM allocation where specifications
of VMs remain unchanged. This is not the case in Cloud
computing, where clients can scale up or down dynamically.
In addition, it requires prior knowledge of each PM in order
to compute the power model.

Meng et al. proposed a VM provisioning approach to
consolidate multiple VM instances for the same PM in order
to improve resource utilisation and thus reduce the energy
consumed by under-utilised PMs [47]. A VM selection
algorithm was developed to identify compatible VM
instances for consolidation. Compatible VM instances are
those with similar capacity demand, defined as their
application performance requirement, and these are grouped
into sets allocated to the minimum number of PMs. It can be
argued that consolidating compatible VM instances to the
same PMs will have a small negative effect on applications
assigned to each VM instance and thus keep SLA
requirements from being violated. The study found an
improvement of 45% in resource utilisation.

The authors in [48] and [32] devised an algorithm to
allocate VM instances to PMs at data centres with the goal of
reducing power consumption in PMs without violating the
SLA agreement between a Cloud provider and users. The
researchers argued that assigning a group of VMs to as few
PMs as possible will save power [49]. The energy-aware
resource algorithm [46] has two stages: VM placement and
VM optimisation. The VM placement technique aims to
allocate VMs to PMs using a Modified Best Fit Decreasing
(MBFD) algorithm. This is based on the Best Fit Decreasing
(BFD) algorithm that uses no more than 11/9 * OPT + 1 bins
(OPT is the optimal number of bins) [50].

The MBFD algorithm sorts VMs into descending order
of CPU utilisation in order to choose power-efficient nodes
first. The second stage is the optimisation step responsible
for migrating VMs from PMs that are either over- or under-
utilised. However, VM migration may cause unwanted
overheads, so should be avoided unless doing so reduces
either power consumption or performance, so the authors set
lower and upper thresholds for utilisation. If the total
utilisation of the CPU of a PMs falls below the lower
threshold, this indicates that the host might consume more
energy than it needs. Similarly, if the utilisation exceeds the
upper threshold then the performance of the hosted VMs
may deteriorate. In this case, some VMs should migrate to
another node to reduce the level of utilisation. The authors
concluded that the Minimisation of Migrations (MM) policy
could save up to 66% of energy, with performance
degradation of up to 5%. It was found that the MM policy
minimised the number of VMs that have to migrate from a
host in the event of utilisation above the upper threshold.

Graubner et al. proposed a VM consolidation mechanism
based on a live migration technique with the aim of saving
power in Cloud computing [44]. They developed a relocation
algorithm that periodically scans available PMs to determine
which PM to migrate VM instances from, and which PM to
migrate them to. The approach was found to save up to 16%
of power when implemented in the Eucalyptus platform,
however the relocation process was unclear, with no further
explanation of when it is triggered during run time [51].

The authors in [52] proposed GreenMap, a power-saving
VM-based management framework under the constraint of
multi-dimensional resource consumption in clusters and data
centres. GreenMap dynamically allocates and reallocates
VMs to a set of PMs within a cluster during runtime. There

405

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are four modules in the framework: clearing; locking; trade-
off; and placement. The clearing module is responsible for
excluding VMs inappropriate for dynamic placement, for
instance those with unpredictable or rapid variation in
demand. The locking module monitors SLA violations
caused by the workload, in which event the module will
switch to a redundant VM for execution. The trade-off
module evaluates the potential of a new placement generated
by the placement module in respect of performance and cost
trade-off. The placement module performs a strategy for
reallocating live VMs to another physical resource to save
power, based on a configuration algorithm. The algorithm
starts by randomly generating a new placement
configuration. The placement module then delivers the
configuration to the trade-off module. The experiment
showed that it is possible to save up to 69% of power in a
cluster, with some performance degradation, but it did not
consider the overheads of the placement module.

The authors in [51] proposed an energy-saving
mechanism developed and implemented for a private Cloud
called Snooze, tested using a dynamic web workload. The
authors argued that it differed from other power-aware VM
mechanisms in two aspects, in that it was applied and tested
in a realistic Cloud environment, and that it takes dynamic
workload into consideration. A monitor unit was introduced
periodically to check running PM; any under- or over-
utilised nodes were reported to a general manager module to
issue a migration command. There are four VM allocation
policies: placement; overload relocation; underload
relocation; and consolidation.

The placement policy allocates new VM instance
requests to PMs using RoundRobin scheduling, which
distributes the load to PMs in a balanced way. The overload
policy scans PMs to check if a PM is overloaded with VM
instances and, if so, searches for a PM that is only
moderately loaded to accommodate these VM instances in
all-or-nothing way (i.e., migrate all running VMs or none).
The migration command is sent to the migration policy for
straightforward execution. Similarly, the underload policy
issues a migration command to migrate VMs from under-
utilised PM in an all-or-nothing way. The mechanism
managed to save up to 60% of power, the experiment
concluded, but it was conducted in a homogenous
infrastructure, that is, it assumed that all PMs have the same
computing capacity. In addition, the all-or-nothing method
may be a drawback as it leads to PMs being overloaded,
which may cause performance degradation in instances of
hosted VM.

Van et al. proposed a virtual resource manager focused
on maintaining service levels while improving resources
utilisation via a dynamic placement mechanism [53]. The
manager has two levels: a local decision module and a global
decision module. The first is concerned with applications, as
the manager deals with complex N-tier levels in, for
instance, online applications that require more than one VM
instance to process. The global decision module has two
stages: the VM placement stage, concerned with allocating a
VM to a specific PM with the goal of improving resource
utilisation; and the VM provisioning stage of scheduling

applications to VMs (i.e., sending applications to be
processed by VM instances).

The authors in [54] proposed a novel VM placement
approach of two phases: candidacy and placement. The
former elects a list of PMs eligible to accommodate VM
instances, choosing the candidate PM on the basis of
migration capability, network bandwidth connectivity and
user deployment desire, which should be available
beforehand. Available PMs have a four-level hierarchy
representing an ordering system of PMs available to be
candidates. The latter phase selects one of the candidate PMs
from the first phase to host a VM instance on the basis of
low-level constraints. The authors argue that the first phase
can help to reduce the time spent choosing the most suitable
PM. However, this work requires prior knowledge of user
deployment of VM instances, which is not supported in
CSPs. CSPs usually offer different classes of VM instances
for end users to choose between. Asking further questions
regarding user preferences is not economically viable.

The authors in [55] proposed a VM placement technique
that employs the FF heuristic solution to maximise revenue
for CSPs under performance constraints, expressed as an
SLA violation metric measuring performance degradation of
VM instances caused by using the FF mechanism to improve
resource utilisation. The proposed system has two managers:
the global manager decides which PM hosts a VM instance;
and the local manager is concerned with scheduling VM
instances within the hosted PM. The global manager
employs a decision-making policy for each candidate PM’s
viability for hosting a VM instance in such a way as to
improve resource utilisation.

Calcavecchia et al. proposed the Backward Speculative
Placement as a novel VM placement technique [56]. The
VM placement technique has two phases: continuous
deployment and ongoing optimisation. The continuous
deployment phase allocates a VM instance to the PM with
the highest demand risk, a scoring function to measure the
level of dissatisfaction with a PM at the final unit of time. It
is, however, not clearly explained how this is awarded. The
ongoing optimisation phase migrates VM instances hosted to
a PM with high risk demand to another PM with a low score,
as long it is able to accommodate the VM instances. The
Backward Speculative Placement technique was able to
decrease the execution time of submitted tasks.

The authors in [57] proposed a VM placement and
migration approach to minimise the effect of transfer time of
data between VM instances and data storage. In Cloud
computing, a CSP can provide VM instances to end users to
process data while these data are stored in different locations,
for example Amazon EC2 and Amazon S3. Therefore, the
approach developed takes network I/O requirements into
consideration when VM placement is applied. In addition,
the VM migration policy is triggered when the time required
to transfer data exceeds a certain threshold. Network
instability is the main reason for this increase of time, and
the threshold is stated in the SLA agreement. The study
showed that the time taken to complete the task fell, on
average, due to the placement of VM, depending on location.

406

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A novel traffic-aware VM placement technique was
developed by [58] with the goal of improving network
scalability. The mechanism employs a two-tier approximate
algorithm to place VM instances with PMs in such a way
that significantly reduces the aggregate traffic in datacentres.
The two-tier algorithm partitions VMs and PMs separately
into clusters. The VMs and PMs are matched individually in
each cluster. The partitioning step is achieved using a
classical min-cut graph algorithm that assigns each VM pair
with a high mutual traffic rate to the same VM cluster.
Having VM instances with a high traffic rate in the same
cluster of PMs means that traffic is exchanged only through
that cluster, which can reduce the load upon switches at a
data centre.

Purlieus [59] is a resource allocation tool developed to
improve the performance of MapReduce jobs and to reduce
network traffic by paying attention to the location of
resources. MapReduce enables the analysis and processing
of large amount of data in a quick and easy way [60].
Purlieus employs VM placement techniques that allocate
VM instances to PMs according to their location. Purlieus
was able to reduce the execution time of jobs by 50% for a
variety of types of workload.

The authors in [61] studied the VM allocation problem
from the network perspective [61]. They proposed a novel
VM placement mechanism that considers network constraint,
which is the variation in traffic demand time. Its goal is to
minimise the load ratio across all network cuts by
implementing a novel mechanism, the two-phase connected
component-based recursive split, to choose the PM with
which to place a VM instance. It exploits the recursive
programming technique to formulate a ranking table of each
VM instance that is connected. The PM with the least
connected ranks of associated VMs is selected to host a new
VM instance, but the proposed mechanism is for static VM
placement only, thus it does not consider moving VM
instances around during run time to reduce the cut load ratio.

The authors in [62] introduced S-CORE, a scalable VM
migration mechanism to reallocate VM instances to PMs
dynamically with the goal of minimising traffic within a
datacentre. They showed that S-CORE can achieve cost
reductions in communication of up to 80% with a limited
amount of VM migration. S-CORE assigns a weight for each
link in a datacentre, taking into consideration the amount of
data traffic routed over these links. If the line weight exceeds
a certain threshold, then some VM instances with high traffic
load have to migrate to another PM using a different link.
Such an approach avoids traffic congestion on core links at
data centres to prevent any degradation in the performance of
a Cloud system.

The aforementioned studies investigated various VM
allocation mechanisms with the aim of minimising power
consumption, improving performance or reducing the traffic
load in Cloud systems. However, they all fell short of
providing a mechanism tolerant of failure events in Clouds’
PMs. Therefore, these VM allocation techniques are neither
practical to employ nor to implement in a Desktop Cloud
system. The following subsection reviews several studies
that have tackled the issue of node failure.

A wide range of techniques and approaches has been
developed to tackle node failure issues in Desktop Grid
systems, because a node within a Desktop Grid system can
voluntarily join or leave the system, increasing the
probability of node failure, heightening the risk of losing
results. For example, the authors in [63] developed a
fault-tolerant technique in Desktop Grid systems that
employs replication of applications to avoid losing them in
failure events. Another approach was proposed by [64],
based on the mechanism of application migration. This
checks applications periodically during runtime, and in the
event of node failures all associated application are restored
and migrated to another node. However, this is not practical
in this study because it is concerned with the applications
level and violates the concept of the Cloud computing
paradigm that isolates the infrastructure layer from the
service layer to prevent CSPs from having control over
services run by end users.

Machida et al. proposed a redundancy technique for
server consolidation [65]. The focus was complex online
applications requiring several VM instance for each
application, and the technique offers k fault tolerance with
the minimum number of physical servers required for
application redundancy [65]. It relies on replicating an
application a times and running it for k number of VM
instances. The number of VM instances is calculated on the
basis of the requirements of application a, but requires full
knowledge of and access to the applications and services that
run on VM instances in order to replicate them. This, again,
violates the concept of Cloud computing whereby CSPs are
prevented from being able to access and control the
applications of end users. Furthermore, the approach
assumes that all physical servers have the same computing
capacity, impractical in the era of Cloud computing where
PMs are usually quite heterogeneous.

The authors in [66] proposed the BFTCloud, a
fault-tolerant framework for Desktop Cloud systems that
tackles the specific malicious behaviour of nodes known as
Byzantine faults: machines that provide deliberately wrong
results. The framework employs a replication technique with
a primary node by 3 * f, where f is the number of faulty
nodes at run time. The framework considers failure
probability as the mean to choose primary nodes and their
replicas in respect of QoS requirements. Byzantine faults are
identified by comparing the results reported by a primary
node with those of its replica; if the results are inconsistent
then they will be sent to another node to process and
compared to detect which machine is behaving suspiciously.
However, the calculation of failure probability is not clearly
given. In addition, although the framework was said to be for
Desktop Cloud systems, it does not possess the essential
feature of employing virtualisation to keep the service layer
isolated from the physical layer; in fact, the technique is to
replicate tasks by sending one to a primary node and its 3* f
replicas of nodes. Another issue worth mentioning about the
BFTCloud mechanism is the notion of f, which means that
the number of faulty nodes should be known before run time.
However, this technique is impractical since the number of

407

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

node failures in such distributed systems is unpredictable and
difficult to calculate [67].

The authors in [68] addressed the issue of node failure in
hybrid Clouds, that is, private and public Clouds. The
problem is formulated as follows: a private Cloud with
limited resources (i.e., PMs) has a certain number of nodes
with a high failure rate. The question is how to minimise the
dependency of public Clouds to achieve better QoS, given
that sending workload to a public Cloud costs more. The
authors proposed a failure-aware VM provisioning for hybrid
Clouds, a ‘time-based brokering strategy’, to handle failure
of nodes in private Clouds by redirecting tasks required long
term into a public Cloud. The decision to forward a task to a
public Cloud is based on the duration of the request; if longer
than the mean request duration of all tasks, then it will be
forwarded. Although the proposed strategy considers that a
public Cloud solves the issue of node failure in private
Clouds, the issue is not answered unless the reliability of this
public Cloud can be guaranteed.

The review of VM mechanisms in this section shows that
the design of a fault-tolerant VM allocation mechanism
remains an open research problem that needs to be tackled in
Cloud environments with faults, such as in Desktop Cloud
systems.

VII. CONCLUSION
Desktop Cloud can be seen as a new direction in Cloud

computing. Desktop Cloud systems exploit idle computing
resources to provide Cloud services mainly for research
purposes. The success of Desktop Grids in providing Grid
capabilities stimulated the concept of applying the same
concept within Cloud computing. However, Desktop Clouds
use infrastructure that is very volatile since computing nodes
have high probability to fail. Such failures can be
problematic and cause negative on the throughput of
Desktop Clouds.

This paper presented a DesktopCloudSim as an extension
tool CloudSim, a widely used Cloud simulation tool.
DesktopCloudSim enables the simulation of node failures in
the infrastructure of Cloud. We demonstrated that the tool
can be used to study the throughput of a Desktop Cloud
using NotreDame and SETI@home FTA traces. We showed
that the average failure rate of nodes in NotreDame and
SETI@home FTAs. Such study can help to show that node
failure in Desktop Cloud is quietly expected.

The results of experiments demonstrate that node failures
affect negatively the throughput outcome of Desktop Clouds.
However, the related works lack the ability to solve the
problem of throughput decrease as a result of node failures.

This opens a new direction to design a fault tolerant
mechanism for Desktop Cloud. We intend to develop such
mechanism and evaluate it using the proposed tool. In
addition, several metrics such as power consumption and
response time should be used to evaluate VM mechanism.

REFERENCES
[1] A. Alwabel, R. Walters, and G. B. Wills, “DesktopCloudSim  :

Simulation of Node Failures in The Cloud,” in The Sixth

International Conference on Cloud Computing, GRIDs, and
Virtualization CLOUD COMPUTING 2015, pp. 14-19, 2015.

[2] R. Buyya, R. Buyya, C. S. Yeo, C. S. Yeo, S. Venugopal, S.
Venugopal, J. Broberg, J. Broberg, I. Brandic, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Futur. Gener.
Comput. Syst., vol. 25, no. 6, p. 17, Jun. 2009.

[3] B. M. Segal, P. Buncic, D. G. Quintas, D. L. Gonzalez, A.
Harutyunyan, J. Rantala, and D. Weir, “Building a volunteer
cloud,” Memorias la ULA, 2009.

[4] A. Alwabel, R. Walters, and G. B. Wills, “A View at Desktop
Clouds,” in Proceedings of the International Workshop on
Emerging Software as a Service and Analytics, 2014, pp. 55–61.

[5] G. Kirby, A. Dearle, A. Macdonald, and A. Fernandes, “An
Approach to Ad hoc Cloud Computing,” Arxiv Prepr.
arXiv1002.4738, 2010.

[6] A. Marinos and G. Briscoe, “Community Cloud Computing,” pp.
472–484, 2009.

[7] A. Andrzejak, D. Kondo, and D. P. Anderson, “Exploiting non-
dedicated resources for cloud computing,” in Proceedings of the
2010 IEEE/IFIP Network Operations and Management
Symposium, NOMS 2010, 2010, pp. 341–348.

[8] A. Gupta and L. K. L. Awasthi, “Peer enterprises: A viable
alternative to Cloud computing?,” in Internet Multimedia
Services Architecture and Applications (IMSAA), 2009 IEEE
International Conference on, 2009, vol. 2, pp. 1–6.

[9] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G.
Jiang, “Power and performance management of virtualized
computing environments via lookahead control,” Cluster
Comput., vol. 12, no. 1, pp. 1–15, Oct. 2008.

[10] A. Marosi, J. Kovács, and P. Kacsuk, “Towards a volunteer cloud
system,” Futur. Gener. Comput. Syst., vol. 29, no. 6, pp. 1442–
1451, Mar. 2013.

[11] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, “The
characteristics of cloud computing,” in Proceedings of the
International Conference on Parallel Processing Workshops,
2010, pp. 275–279.

[12] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud Computing and
Grid Computing 360-degree compared,” in Grid Computing
Environments Workshop, GCE 2008, 2008, pp. 1–10.

[13] S. Choi, H. Kim, E. Byun, M. Baik, S. Kim, C. Park, and C.
Hwang, “Characterizing and classifying desktop grid,” in
Proceedings - Seventh IEEE International Symposium on Cluster
Computing and the Grid, CCGrid 2007, 2007, pp. 743–748.

[14] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and
simulation of scalable Cloud computing environments and the
CloudSim toolkit: Challenges and opportunities,” High Perform.
Comput. Simulation, 2009. HPCS’09, pp. 1–11, Jun. 2009.

[15] R. Buyya and M. Murshed, “Gridsim: A toolkit for the modeling
and simulation of distributed resource management and
scheduling for grid computing,” Concurr. Comput. Pract.and
Exp, vol. 14, no. 13–15, pp. 1175–1220, Nov. 2003.

[16] F. Howell and R. McNab, “SimJava: A discrete event simulation
library for java,” Simul. Ser., 1998.

[17] H. Casanova, “Simgrid: a toolkit for the simulation of application
scheduling,” Proc. First IEEE/ACM Int. Symp. Clust. Comput.
Grid, pp. 430–437, 2001.

[18] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer,
“GroudSim: an event-based simulation framework for

408

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

computational grids and clouds,” Euro-Par 2010 Parallel
Processing Workshop, no. 261585, pp. 305–313, 2011.

[19] M. Bux and U. Leser, “DynamicCloudSim: simulating
heterogeneity in computational clouds,” SWEET ’13 Proc. 2nd
ACM SIGMOD Work. Scalable Work. Exec. Engines Technol.,
2013.

[20] W. Chen and M. Rey, “WorkflowSim  : A Toolkit for Simulating
Scientific Workflows in Distributed Environments,” 2012.

[21] B. Donassolo, H. Casanova, A. Legrand, and P. Velho, “Fast and
scalable simulation of volunteer computing systems using
SimGrid,” in Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing -
HPDC ’10, 2010, p. 605.

[22] S. H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das,
“MDCSim: A multi-tier data center simulation platform,” in
Cluster Computing and Workshops, 2009. CLUSTER ’09. IEEE
International Conference on, 2009.

[23] D. Kliazovich, P. Bouvry, Y. Audzevich, and S. U. Khan,
“GreenCloud: A Packet-Level Simulator of Energy-Aware Cloud
Computing Data Centers,” in 2010 IEEE Global
Telecommunications Conference GLOBECOM 2010, 2010, vol.
62, no. 3, pp. 1–5.

[24] S. McCanne, S. Floyd, K. Fall, and K. Varadhan, “Network
simulator ns-2.” 1997.

[25] G. Sakellari and G. Loukas, “A survey of mathematical models,
simulation approaches and testbeds used for research in cloud
computing,” Simul. Model. Pract. Theory, vol. 39, pp. 92–103,
Dec. 2013.

[26] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé,
J. Carretero, and I. M. Llorente, “ICanCloud: A Flexible and
Scalable Cloud Infrastructure Simulator,” J. Grid Comput., vol.
10, no. 1, pp. 185–209, Apr. 2012.

[27] A. Núñez, J. Fernández, J. D. Garcia, L. Prada, and J. Carretero,
“SIMCAN  : A SIMulator Framework for Computer Architectures
and Storage Networks,” in Simutools ’08 Proceedings of the 1st
international conference on Simulation tools and techniques for
communications, networks and systems & workshops, 2008.

[28] S. K. Garg and R. Buyya, “NetworkCloudSim: Modelling
parallel applications in cloud simulations,” in Proceedings - 2011
4th IEEE International Conference on Utility and Cloud
Computing, UCC 2011, 2011, no. Vm, pp. 105–113.

[29] A. Kohne, M. Spohr, L. Nagel, and O. Spinczyk,
“FederatedCloudSim: a SLA-aware federated cloud simulation
framework,” in Proceedings of the 2nd International Workshop
on CrossCloud Systems - CCB ’14, 2014, pp. 1–5.

[30] R. Buyya, R. Ranjan, and R. N. Calheiros, “InterCloud: Utility-
oriented federation of cloud computing environments for scaling
of application services,” in Algorithms and architectures for
parallel processing, 2010, vol. 6081 LNCS, no. PART 1, pp. 13–
31.

[31] Í. Goiri, J. Guitart, and J. Torres, “Characterizing cloud
federation for enhancing providers’ profit,” in Proceedings -
2010 IEEE 3rd International Conference on Cloud Computing,
CLOUD 2010, 2010, pp. 123–130.

[32] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, and D. Zagorodnov, “The eucalyptus open-source
cloud-computing system,” in 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, CCGRID 2009,
2009, pp. 124–131.

[33] J. Fontán, T. Vázquez, L. Gonzalez, R. S. Montero, and I. M.
Llorente, “OpenNEbula: The open source virtual machine
manager for cluster computing,” in Open Source Grid and
Cluster Software Conference – Book of Abstracts.

[34] B. Sotomayor, R. R. S. Montero, I. M. Llorente, and I. Foster,
“Virtual infrastructure management in private and hybrid
clouds,” IEEE Internet Comput., vol. 13, no. 5, pp. 14–22, Sep.
2009.

[35] A. Beloglazov and R. Buyya, “Optimal online deterministic
algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in Cloud data
centers,” Concurr. Comput. Pract. Exp., vol. 24, no. 13, pp.
1397–1420, Sep. 2012.

[36] B. Javadi, D. Kondo, A. Iosup, and D. Epema, “The Failure
Trace Archive: Enabling the comparison of failure measurements
and models of distributed systems,” J. Parallel Distrib. Comput.,
vol. 73, no. 8, pp. 1208–1223, Aug. 2013.

[37] B. Rood and M. J. Lewis, “Multi-state grid resource availability
characterization,” 2007 8th IEEE/ACM Int. Conf. Grid Comput.,
pp. 42–49, Sep. 2007.

[38] B. Javadi, D. Kondo, J.-M. Vincent, and D. P. Anderson,
“Mining for statistical models of availability in large-scale
distributed systems: An empirical study of SETI@home,” 2009
IEEE Int. Symp. Model. Anal. Simul. Comput. Telecommun. Syst.,
pp. 1 – 10, 2009.

[39] L. Peterson, S. Muir, T. Roscoe, and A. Klingaman, “PlanetLab
Architecture  : An Overview,” no. May, 2006.

[40] K. Park and V. S. Pai, “CoMon,” ACM SIGOPS Oper. Syst. Rev.,
vol. 40, no. 1, p. 65, Jan. 2006.

[41] A. Field, Discovering statistics using SPSS, Third. SAGE
Publications Ltd, 2009.

[42] L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines, vol. 4,
no. 1. 2009.

[43] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware
consolidation for cloud computing,” in HotPower’08:
Proceedings of the 2008 conference on Power aware computing
and systems, 2008.

[44] P. Graubner, M. Schmidt, and B. Freisleben, “Energy-efficient
management of virtual machines in Eucalyptus,” in 2011 IEEE
4th International Conference on Cloud Computing, 2011, pp.
243–250.

[45] A. Verma, P. Ahuja, and A. Neogi, “pMapper: power and
migration cost aware application placement in virtualized
systems,” in Middleware ’08 Proceedings of the 9th
ACM/IFIP/USENIX International Conference on Middleware,
2008, pp. 243–264.

[46] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware
resource allocation heuristics for efficient management of data
centers for Cloud computing,” Futur. Gener. Comput. Syst., vol.
28, no. 5, pp. 755–768, May 2012.

[47] X. Meng, C. Isci, J. O. Kephart, L. Zhang, E. Bouillet, and D.
Pendarakis, “Efficient resource provisioning in compute clouds
via VM multiplexing,” Proceeding 7th Int. Conf. Auton. Comput.
- ICAC’10, p. 11, 2010.

[48] A. Beloglazov and R. Buyya, “Energy efficient resource
management in virtualized cloud data centers,” in 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, 2010, pp. 826–831.

409

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[49] R. Buyya, A. Beloglazov, and J. Abawajy, “Energy-Efficient
Management of Data Center Resources for Cloud Computing  : A
Vision, Architectural Elements, and Open Challenges,” arXiv
Prepr. arXiv1006.0308, no. Vm, pp. 1–12, 2010.

[50] V. Vazirani, Approximation algorithms, Second. New York, New
York, USA: Springer, 2003.

[51] E. Feller, C. Rohr, D. Margery, and C. Morin, “Energy
management in IaaS clouds: A holistic approach,” in Proceedings
- 2012 IEEE 5th International Conference on Cloud Computing,
CLOUD 2012, 2012, pp. 204–212.

[52] X. Liao, H. Jin, and H. Liu, “Towards a green cluster through
dynamic remapping of virtual machines,” Futur. Gener. Comput.
Syst., vol. 28, no. 2, pp. 469–477, Feb. 2012.

[53] H. N. Van, F. D. Tran, and J. M. Menaud, “SLA-aware virtual
resource management for cloud infrastructures,” in Proceedings -
IEEE 9th International Conference on Computer and Information
Technology, CIT 2009, 2009, vol. 1, pp. 357–362.

[54] K. Tsakalozos, M. Roussopoulos, and A. Delis, “VM placement
in non-homogeneous IaaS-clouds,” in Service-Oriented
Computing, vol. 7084 LNCS, G. Kappel, Z. Maamar, and H. R.
Motahari-Nezhad, Eds. Springer Berlin Heidelberg, 2011, pp.
172–187.

[55] W. Shi and B. Hong, “Towards Profitable Virtual Machine
Placement in the Data Center,” 2011 Fourth IEEE Int. Conf. Util.
Cloud Comput., pp. 138–145, Dec. 2011.

[56] N. M. Calcavecchia, O. Biran, E. Hadad, and Y. Moatti, “VM
placement strategies for cloud scenarios,” in Proceedings - 2012
IEEE 5th International Conference on Cloud Computing,
CLOUD 2012, 2012, pp. 852–859.

[57] J. T. Piao and J. Yan, “A Network-aware Virtual Machine
Placement and Migration Approach in Cloud Computing,” 2010
Ninth Int. Conf. Grid Cloud Comput., pp. 87–92, Nov. 2010.

[58] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine
placement,” in Proceedings - IEEE INFOCOM, 2010.

[59] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: Locality-
aware resource allocation for MapReduce in a cloud,” 2011 Int.
Conf. High Perform. Comput. Networking, Storage Anal., pp. 1–
11, 2011.

[60] J. Dean and S. Ghemawat, “MapReduce: Simplied Data
Processing on Large Clusters,” in Proceedings of 6th Symposium
on Operating Systems Design and Implementation, 2004, vol.
103, no. 34, pp. 137–149.

[61] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz,
and E. Silvera, “A stable network-aware VM placement for cloud
systems,” in Proceedings - 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGrid
2012, 2012, pp. 498–506.

[62] F. P. Tso, G. Hamilton, K. Oikonomou, and D. P. Pezaros,
“Implementing scalable, network-aware virtual machine
migration for cloud data centers,” in IEEE International
Conference on Cloud Computing, CLOUD, 2013, pp. 557–564.

[63] A. Litke, D. Skoutas, K. Tserpes, and T. Varvarigou, “Efficient
task replication and management for adaptive fault tolerance in
Mobile Grid environments,” Futur. Gener. Comput. Syst., vol.
23, no. 2, pp. 163–178, 2007.

[64] H. L. H. Lee, D. P. D. Park, M. H. M. Hong, S.-S. Y. S.-S. Yeo,
S. K. S. Kim, and S. K. S. Kim, “A Resource Management
System for Fault Tolerance in Grid Computing,” 2009 Int. Conf.
Comput. Sci. Eng., vol. 2, pp. 609–614, 2009.

[65] F. Machida, M. Kawato, and Y. Maeno, “Redundant virtual
machine placement for fault-tolerant consolidated server
clusters,” in Proceedings of the 2010 IEEE/IFIP Network
Operations and Management Symposium, NOMS 2010, 2010, pp.
32–39.

[66] Y. Zhang, Z. Zheng, and M. R. Lyu, “BFTCloud: A Byzantine
Fault Tolerance Framework for Voluntary-Resource Cloud
Computing,” 2011 IEEE 4th Int. Conf. Cloud Comput., pp. 444–
451, Jul. 2011.

[67] B. Javadi, D. Kondo, J. Vincent, and D. P. Anderson,
“Discovering Statistical Models of Availability in Large
Distributed Systems: An Empirical Study of SETI@home,” IEEE
Trans. Parallel Distrib. Syst., vol. 22, no. 11, pp. 1896–1903,
2011.

[68] B. Javadi, J. Abawajy, and R. Buyya, “Failure-aware resource
provisioning for hybrid Cloud infrastructure,” J. Parallel Distrib.
Comput., vol. 72, no. 10, pp. 1318–1331, Oct. 2012.

