
387

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Conditions Necessary for Visibility and Sensors Placement

in Urban Environments Using Genetic Algorithms

Oren Gal, Yerach Doytsher

Mapping and Geo-information Engineering

Technion - Israel Institute of Technology

Haifa, Israel

e-mail: {orengal,doytsher}@technion.ac.il

Abstract—Optimized coverage using multi-sensors is a

challenging task, which is becoming more and more

complicated in dense and occluded environments such as

urban environments. In this paper, we propose a multi-

sensors placement solution for optimized coverage in dense

urban environments. Our main contribution is based on two

main efforts: 1. Defining conditions necessary for visibility,

taking into account detection and false alarm rate

probabilities, representing the sensor's stochastic character as

part of our visibility analysis. 2. Unique concept facing

partially visible objects, such as trees, in an urban scene,

extending our previous work and proposing fast and exact 3D

visible volumes analysis in urban scenes based on an analytic

solution. We consider several 3D models for 3D visibility

analysis and present an optimized solution using genetic

algorithm, suited to our problem's constraints. We

demonstrate the results through simulations with a 3D

neighborhood model, taking trees into account. We

demonstrate formulation of the conditions necessary for

visibility related to detection and false alarm rate

probabilities.

Keywords- Visibility; 3D; Urban environment; Spatial

analysis; Genetic algorithm; Sensor coverage.

I. INTRODUCTION AND RELATED WORK

Modern cities and urban environments are becoming

denser more heavily populated and are still rapidly growing,

including new infrastructures, markets, banks, transportation,

etc.

At the same time, security needs are becoming more and

more demanding in our present era, in the face of terror

attacks, crimes, and the need for improving law enforcement

capabilities, as part of the increasing global social demand

for efficient and immediate homeland and personal security

in modern cities.

In the last two decades, more and more cities and mega-

cities have started using multi-camera networks in order to

face this challenge, mounting cameras for security

monitoring needs [1]; however, this is still not enough [30].

Due to the complexity of working with 3D and the dynamic

constraints of urban terrain, sensors were placed in busy and

populated viewpoints, to observe the occurrences at these

major points of interest.

These current multi-sensors placement solutions ignore

some key factors, such as: visibility analysis in 3D models,

which also consist of unique objects such as trees; changing

the visibility analysis aspect from visible or invisible states

to semi-visible cases, such as trees, and above all

optimization solutions which take these factors into account.

Multi-sensor placement in 3D urban environments is not a

simple task. The optimization problem of the optimal

configuration of multi sensors for maximal coverage is a

well-known Non-deterministic Polynomial-time hard (NP-

hard) one [5], even without considering the added

complexity of urban environments.

An extensive theoretical research effort has been made

over the last four decades, addressing a much simpler

problem in 2D known as the art gallery problem, with

unrealistic assumptions such as unlimited visibility for each

agent, while the 3D problem has not received special

attention [8][28][35].

The coupling between sensors' performances and their

environment's constraints is, in general, a complex

optimization problem. In this paper, we study the multi-

sensors placement optimization problem in 3D urban

environments for optimized coverage based on genetic

algorithms using novel visibility analysis.

 Our optimization solution for this problem relates to

maximal coverage from a number of viewpoints, where each

3D position (x, y, z coordinates) of the viewpoint is set as

part of the optimized solution. The search space contains

local minima and is highly non-linear. The Genetic

Algorithms are global search methods, which are well-suited

for such tasks. The optimization process is based on

randomly generating an initial population of possible

solutions (called chromosomes) and, by improving these

solutions over a series of generations, it is able to achieve an

optimal solution [36].

Multi-sensor placements are scene- and application-

dependent, and for this reason generic rules are not very

efficient at meeting these challenges. Our approach is based

on a flexible and efficient analysis that can handle this

complexity.

 The total number of sensors is a crucial parameter, due to

the real-time outcome data that should be monitored and

tracked, where too many sensors are not an efficient solution.

388

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We address the sensor numbers that should be set as a

tradeoff of coverage area and logical data sources that can be

monitored and tracked.

 As part of our high-dimension optimization problem, we

present several 3D models, such as B-ref, sweeping and

wireframe models, Polyhedral Terrain Models (PTM) and

Constructive Solid Geometry (CSG) for an efficient 3D

visibility analysis method, integrating trees as part of our fast

and efficient visibility computation, thus extending our

previous work [25] to 3D visible volumes.

Accurate visibility computation in 3D environments is a

very complicated process demanding a high computational

effort, which cannot be easily carried out in a very short time

using traditional well-known visibility methods [41]. The

exact visibility methods are highly complex, and cannot be

used for fast applications due to their long computation time.

As mentioned above, previous research in visibility

computation has been devoted to open environments using

Digital Elevation Model (DEM) models, representing raster

data in 2.5D (Polyhedral model), which do not address, or

suggest solutions for, densely built-up areas.

One of the most efficient methods for DEM visibility

computation is based on shadow-casting routine. The routine

casts shadowed volumes in the DEM, like a light bubble

[42]. Other methods related to urban design environment and

open space impact treat abstract visibility analysis in urban

environments using DEM, focusing on local areas and

approximate openness [20]. Extensive research treated

Digital Terrain Models (DTM) in open terrains, mainly

Triangulated Irregular Network (TIN) and Regular Square

Grid (RSG) structures. Visibility analysis on terrain was

classified into point, line and region visibility, and several

algorithms were introduced based on horizon computation

describing visibility boundaries [11][12].

A vast number of algorithms have been suggested for

speeding up the process and reducing computation time [38].

Franklin [21] evaluates and approximates visibility for each

cell in a DEM model based on greedy algorithms. An

application for siting multiple observers on terrain for

optimal visibility cover was introduced in [23]. Wang et al.

[52] introduced a Grid-based DEM method using viewshed

horizon, saving computation time based on relations between

surfaces and Line Of Sight (LOS), using a similar concept of

Dead-Zones visibility [4]. Later on, an extended method for

viewshed computation was presented, using reference planes

rather than sightlines [53].

Most of these published papers have focused on

approximate visibility computation, enabling fast results

using interpolations of visibility values between points,

calculating point visibility with the Line of Sight (LOS)

method [13]. Other fast algorithms are based on the

conservative Potentially Visible Set (PVS) [16]. These

methods are not always completely accurate, as they may

render hidden objects' parts as visible due to various

simplifications and heuristics.

Only a few works have treated visibility analysis in urban

environments. A mathematical model of an urban scene,

calculating probabilistic visibility for a given object from a

specific viewcell in the scene, has been presented by [37].

This is a very interesting concept, which extends the

traditional deterministic visibility concept. Nevertheless, the

buildings are modeled as cylinders, and the main challenges

of spatial analysis and model building were not tackled.

Other methods have been developed, subject to computer

graphics and fields of vision, dealing with exact visibility in

3D scenes, without considering environmental constraints.

Concerning this issue, Plantinga and Dyer [41] used the

aspect graph – a graph with all the different views of an

object. Shadow boundaries computation is a very popular

method, studied by [14][47][48]. All of these works are not

applicable to a large scene, due to computational complexity.

As mentioned, online visibility analysis is a very

complicated task. Recently, off-line visibility analysis, based

on preprocessing, was introduced. Cohen-Or et al. [4] used a

ray-shooting sample to identify occluded parts. Schaufler et

al. [44] use blocker extensions to handle occlusion.

Since visibility analysis in 3D urban environments is a

very complicated task, it is therefore our main optimization

function, known as Fitness. We introduce an extended

visibility aspect for the common method of Boolean

visibility values, "1" for objects seen and "0" for objects

unseen from a specific viewpoint, and treat trees as semi-

visibility values (such as partially seen, "0.5" value), thereby

including in our analysis the real environmental phenomena,

which are commonly omitted.

We extend our previous work and propose fast and exact

3D visible volumes analysis in urban scenes based on an

analytic solution, integrating trees into our 3D model, and it

is demonstrated with a real urban scene model from Neve-

Sha'anan neighborhood (within the city of Haifa).

In the following sections, we first introduce an overview

of 3D models and our demands from these models. In the

next section, we extended the 3D visible volumes analysis,

which for the first time, takes trees into account. Later on, we

present the simulation using the Neve-Sha'anan

neighborhood (within the city of Haifa) 3D model. We

present our genetic algorithm optimization stages and

simulation based on our 3D visible volumes analysis, taking

trees into account. Eventually, we extend our current

visibility aspect and include conditions necessary for

visibility based on the sensor's stochastic character and

present the effect of these limitations on our visibility

analysis.

II. 3D MODELS FOR VISIBILITY ANALYSIS – OVERVIEW

In this section, we present a comprehensive overview of

3D models for urban scenes, from visibility analysis aspects.

We divide the different models into polyhedral, parametric

classes, which are available today using existing data sets,

and examine the advantages and disadvantages of each. We

389

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

focus on visibility computation capabilities using these

models.

A. Polyhedral models

Wireframe - In this model, 3D objects are represented as

a set of vertices and lines, but not as faces. The model's

assumption is that buildings consist of straight lines and that

very dense scenes can be modeled. However, building types

are very limited and, above all, the model is missing

topological relations. Therefore, wireframe models are rarely

used for visibility analysis applications.

B-rep - Boundary models offer a very flexible tool for

modeling manmade objects. They are based on a surface-

oriented view of solid objects: an object is considered as

completely represented by its bounding faces. In order to

represent the object correctly, boundary models consist of

edges and vertices, as well as the topological relations of all

features. The faces, edges, and vertices are the (labeled)

nodes of a graph, and the direct neighborhood relations are

described by a graph of edges, as shown in Figure 1.

Figure 1. Boundary model of a solid object: a graph with nodes of type f

(faces), e (edges) and v (vertices) and their topological relations (source:

[34])

Boundary models are well-suited for visualization tasks

because they readily include all data required for that

purpose, which is why they are very often used for 3D solid

modeling systems. On the other hand, simple operators

demand a very complex computation effort, which is

sometimes critical for efficient visibility analysis, with

limited representation capabilities. Therefore, B-ref are very

common for visualization but not for efficient visibility

analysis.

B. Parametric models

Sweep methods: Sweep-representations of a 3D object

are created by moving a planar (2D) shape, which is usually

defined as a closed polygon, according to a pre-defined rule

[43][46]. Depending on the rule by which the 2D shape is

moved, two types of sweep representations can be

distinguished, as seen in Figure 2:

Translational sweep: The shape is translated along a pre-

defined translational vector.

Rotational sweep: The shape is rotated around a pre-defined

rotational axis.

The concept of translational sweeps can be extended by

sweeping two shapes along each other [34]. Sweep

representations are widely-used in computer vision, using

symmetry for rendering techniques. However, topological

relations and Boolean set operations between objects used in

visibility methods such as union, intersection and difference

are not supported. Moreover, the generation of arbitrary

objects becomes rather difficult using this technique [46].

Constructive Solid Geometry (CSG): It is the aim of

CSG to provide solid 3D primitives describing a set of

parameters that reflect the object's dimensions. CSG

primitives are simple objects such as cubes, boxes,

tetrahedrons or quadratic pyramids. The CSG method can be

easily adapted by using Boolean set operations (union,

intersection and difference) in order to represent more

complex objects consisting of more than one primitive, as

shown in Figure 3. Therefore, CSG is the most useful and

convenient method for visibility analysis, since the

generation history of the solid itself, corresponding to the

CSG tree upper node, is stored in the tree, as can be seen in

Figure 4. As Boolean set operations are an integral part of a

CSG tree, these operations are closed for CSG trees, e.g.,

the union of two CSG trees will again be a valid CSG tree

[34].

Figure 2. Sweeping a planar rectangular shape. (Top) a translational

sweep creates a vertical prism. (Bottom) a rotational sweep creates a
cylindrical object (source: [34])

Figure 3. Boolean set operations (union, difference and intersection)

(source: [34])

Figure 4. CSG - The CSG model (left) is represented by the CSG tree

(right) consisting of three primitives connected by a Boolean union
operation, (source: [34])

390

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Discussion

Visibility analyses commonly use tree presentations,

which allow fast Boolean operations and modeling many

types of objects, where computational effort is a major

issue. The existing models possess rules which eliminate

them from representing the whole building's structure

envisioned by the designing architect. Table I summarizes

the different capabilities of each model for our demands,

where CSG seems to be the most relevant model for

visibility computation.

TABLE I. COMPARISONS OF 3D MODELS FOR VISIBILITY

COMPUTATION

Presentation

Accuracy

Fast Visibility

Computation

Presentation

friability
Model

Low Limited Limited Wireframe

High Limited Flexible B-rep

Medium Limited Limited Sweep

High Flexible Constraint free CSG

III. ANALYTIC 3D VISIBLE VOLUMES ANALYSIS

In this section, we present fast 3D visible volumes

analysis in urban environments, based on an analytic solution

that plays a major role in our proposed method of estimating

the number of clusters. We briefly present our analysis

presented in [27], extending our previous work [25] for

surfaces' visibility analysis, and present an efficient solution

for visible volumes analysis in 3D.

We analyze each building, computing visible surfaces

and defining visible pyramids using analytic computation for

visibility boundaries [25]. For each object we define Visible

Boundary Points and (VBP) and Visible Pyramid (VP).

A simple case demonstrating analytic solution from a

visibility point to a building can be seen in Figure 5(a). The

visibility point is marked in black, the visible parts colored in

red, and the invisible parts colored in blue where VBP are

marked with yellow circles.

 (a) (b)

Figure 5. (a) Visibility Volume Computed with the Analytic Solution. (b)

Visible Pyramid from a Viewpoint (marked as a Black Dot) to VBP of a

Specific Surface (source: [27]).

In this section, we briefly introduce our concept for

visible volumes inside bounding volume by decreasing

visible pyramids and projected pyramids to the bounding

volume boundary. First, we define the relevant pyramids and

volumes.

The Visible Pyramid (VP): we define VPi
j=1..Nsurf

(x0, y0,

z0) of object i as a 3D pyramid generated by connecting

VBP of specific surface j to a viewpoint V(x0, y0, z0).

In the case of a box, the maximum number of Nsurf for a

single object is three. VP boundary, colored with green

arrows, can be seen in Figure 5(b).

For each VP, we calculate Projected Visible Pyramid

(PVP), projecting VBP to the boundaries of the bounding

volume S.

Projected Visible Pyramid (PVP) - we define

 of object i as 3D projected points to

the bounding volume S, VBP of specific surface j through

viewpoint V(x0, y0, z0). PVP boundary, colored with purple

arrows, can be seen in Figure 6.

Figure 6. Invisible Projected Visible Pyramid Boundaries colored with

purple arrows from a Viewpoint (marked as a Black Dot) to the boundary
surface ABCD of Bounding Volume S (source: [27]).

The 3D Visible Volumes inside bounding volume S, ,

computed as the total bounding volume S, minus the

Invisible Volumes . In a case of no overlap between

buildings, is computed by decreasing the visible volume

from the projected visible volume,

 (1)

By decreasing the invisible volumes from the total

bounding volume, only the visible volumes are computed, as

seen in Figure 7. Volumes of PVP and VP can be simply

computed based on a simple pyramid volume geometric

formula.

Invisible Hidden Volume (IHV) - We define Invisible

Hidden Volume (IHV), as the Invisible Surface (IS) between

visible pyramids projected to bounding box S.

The PVP of the object close to the viewpoint is marked in

black, colored with pink circles denoted as boundary set

points and the far object's PVP is colored with

orange circles, denoted as boundary set points .
It can be seen that IHV is included in each of these invisible

391

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Invisible Volume

 Colored in Gray Arrows.

Decreasing Projected Visible Pyramid boundary surface ABCD of

Bounding Volume S from Visible Pyramid (source: [27]).

volumes, where
and , as can be seen in Figure 8.

Therefore, we add IHV between each overlapping pair of

objects to the total visible volume. In the case of overlapping

between objects' visible pyramids, 3D visible volume is

formulated as:

 (2)

The same analysis holds true for multiple overlapping

objects, adding the IHV between each two consecutive

objects.

Figure 8. Invisible Volume

 colored in purple and

green arrows for each building. PVP of the object close to viewpoint
colored in black, the far object PVP colored with orange circle (source:

[27]).

Extended formulation for two buildings with or without

overlap can be seen in [27].

A. Partial Visibility Concept - Trees

In this research, we analyze trees as constant objects in

the scene, and formulate a partial visibility concept. In our

previous work, we tested trees as dynamic objects and their

effect on visibility analysis [26]. Still, the analysis focused

on trees' branches over time, setting visible and invisible

values for each state, taking into account probabilistic

modeling in time.

We model trees as two boxes [40], as seen in Figure 9.

The lower box, bounded between models the tree's

trunk, leads to invisible volume and is analyzed as presented

previously for a box modeling building's structures. On the

other hand, the upper box bounded between is

defined as partially visible, since a tree's leaves and the

wind's effect are hard to predict and continuously change

over time. Due to these inaccuracies, we set the projected

surfaces and the Projected Visible Pyramid of this box as

half visible volume.

Figure 9. Modeling a Tree Using Two Bounding Boxes.

According to that, a tree's effect on our visibility analysis

is divided into regular boxes included in the total number of

objects, (identical to the building case), and the upper

boxes modeling the tree's leaves, denoted as The

total 3D visible volumes can be formulated as:

(3)

B. Simulations

In this section, we demonstrate our 3D visible volumes

analysis in urban scenes integrated with trees, presented in

the previous section. We have implemented the presented

algorithm and tested some urban environments on a 1.8GHz

Intel Core CPU with Matlab. Neve-Sha'anan Street in the

city of Haifa was chosen as a case study, presented in Figure

10.

We modeled the urban environment into structures using

AutoCAD model, as seen in Figure 11, with bounding box S.

By using the Matlab©MathWorks software we automated

the transformation of data from AutoCAD structure to our

model’s internal data structure.

Our simulations focused on two cases: (1) small-scale

housing in dense environments; (2) Multi-story buildings in

an open area. These two different cases do not take the same

objects into account. The first viewpoint is marked with

black dot and the second one marked in purple, as seen in

Figure 12. Since trees are not a part of our urban scene

0

h1

h2

392

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model, trees are simulated based on similar urban terrain in

Neve-Sha'anan. We simulated fifty trees' locations using

standard Gauss normal distribution, where the trees'

parameters are defined randomly
 , as seen in Figure 12.

Figure 10. Views of Neve-Sha'anan Street, Haifa, Israel from Google Maps

source: [20]

Figure 11. AutoCAD model of Neve-Sha'anan Street, Haifa, Israel.

Figure 12. Tested Scenes with Trees marked with green points, Viewpoint

1 Colored in Black, Viewpoint 2 Colored in Purple : (a) Small-scale

housing in dense environments; (b) Multi-story buildings in an open area.

We set two different viewpoints, and calculated the

visible volumes based on our analysis presented in the

previous sub-section. Visible volumes with time computation

for different cases of bounding boxes' test scenes are

presented in Table II and Table III.

One can notice that the visible volumes become smaller

in the dense environments described in Table II, as we

enlarge the bounding box. Since we take into account more

buildings and trees, less volumes are visible and the total

visible volumes from the same viewpoint are smaller.

Pseudo-code of our visible volumes analysis can be seen in

Section II.C.

TABLE II. VISIBLE VOLUMES AND COMPUTATION TIME FOR SMALL-
SCALE HOUSING CASE

Bounding

Box
Viewpoint

Visible

Volumes

[

Computation

Time

[sec]

[100 m *100

m * 100 m]

Viewpoint 1 321.7
19.6

Viewpoint 2 486.8

[200 m * 200

m * 200 m]

Viewpoint 1 547.4
20.8

Viewpoint 2 584.2

TABLE III. VISIBLE VOLUMES FOR SMALL MULTI-STORY BUILDINGS

CASE

Bounding Box

[100 m *100 m * 100

m]

Visible Volumes

[
Computation Time

[sec]

Viewpoint 1 3453
22.9

Viewpoint 2 3528

C. 3D Visible Volumes - Pseudo Code

Given viewpoint V(x0, y0, z0)
1. Calculate bounding volume
2. For i=1:1:Nobj building models

 2.1. Calculate Azimuth
i and Distance

iD from viewpoint to object

2.2. Set and Sort Buildings Azimuth Array []i

2.3. IF Azimuth Objects (i, 1..i-1) Intersect
 2.3.1. Sort Intersected Objects j=1:1:Ninsect by Distance

 2.3.2. Compute VBP for each intersected building,
int sec

1..

1..
boundN

j NVBP
.

 2.3.3. Generate VP for each intersected building,
int sec

1..

1..
surfN

j NVP

 2.3.4. Set

 and

 volumes for objects, Nobj

 2.3.5. Set

 and

 volumes for Trees, NTrees

Else

 2.3.6. Compute VBP for each object,
int sec

1..

1..
boundN

j NVBP
.

 2.3.7. Generate VP for each building,
int sec

1..

1..
surfN

j NVP

 2.3.8. Set

 volumes for objects, Nobj

 2.3.9. Set

 volumes for Trees, NTrees

 End
2.4. Calculate Visible Volumes
End

D. Complexity Analysis

We analyze our algorithm complexity based on the
pseudo code presented in the previous section, where n
represents the number of buildings and trees. In the worst
case, n objects hide each other. Visibility complexity consists
of generating VBP and VP for n objects, complexity.
Projection and intersection are also complexity. The
complexity of our algorithm, without considering data
structure managing for urban environments, is .

IV. OPTIMIZED COVERAGE USING GENETIC ALGORITHMS

The Genetic Algorithm (GA) presented by Holland [31] is

one of the most common algorithms from the evolutionary

393

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

algorithms class used for complex optimization problems in

different fields, such as: pharmaceutical design [33],

financial forecasting [50], tracking and coverage

[18][39][45], and bridge design [24]. These kinds of

algorithms, inspired by natural selection and genetics, are

sometimes criticized for their lack of theoretical background

due to the fact that in some cases the outcome is

unpredictable or difficult to verify.

The main idea behind GA is based on repeated evaluation

of individuals (which are part of a candidate solution) using

an objective function over a series of generations. These

series are improved over generations in order to achieve an

optimal solution. In the next paragraphs, we present the

genetic algorithms' main stages, adapted to our specific

problem.

The major stages in the GA process (evaluation, selection,

and reproduction) are repeated either for a fixed number of

generations, or until no further improvement is noted. The

common range is about 50-200 generations, where fitness

function values improve monotonically [31]. A block

diagram of GA is depicted in Figure 13.

Figure 13. GA Block Diagram, source: [31].

Population Initialization: The initialization stage creates

the first generation of candidate solutions, also called

chromosomes. A population of candidate solutions is

generated by a random possible solution from the solution

space. The number of individuals in the population is

dependent on the size of the problem and also on

computational capabilities and limitations. In our case, it is

defined as 500 chromosomes, due to the fact that 3D visible

volumes must be computed for each candidate.

For our case, the initialized population of viewpoints

configuration is set randomly, and would probably be a poor

solution due to its random nature, as can be estimated. The

chromosome is a 3xN-dimensional vector for N sensor's

locations, i.e., viewpoints, where position and translation is a

3-dimensional (x,y,z) vector for each viewpoint location, as

seen in Figure 14. The population is depicted in Figure 15.

Evaluation: The key factor of genetic algorithm relates

to individual evaluation, which is based on a score for each

chromosome, known as Fitness function. This stage is the

most time-consuming in our optimization, since we evaluate

all individuals in each generation. It should be noticed that

each chromosome score leads to 3D visible volume

computation N times. As a tradeoff between the covered area

and computational effort, we set N to eight. In the worst

case, one generation evaluation demands visibility analysis

for four thousand different viewpoints. In such a case, one

can easily understand the major drawback of the GA method

in relation to computational effort. Nevertheless, parallel

computation has made a significant breakthrough over the

last two decades; GA and other optimization methods based

on independent evaluation of each chromosome can nearly

be computed in linear time.

Figure 14. An individual in the GA search is also called "Chromosome". In

our case it represents one possible sensor's location for N viewpoints

computing 3D visible volumes analysis with trees.

Figure 15. Population of GA search with N chromosomes.

Fitness Function: The fitness function evaluates each

chromosome using optimization function, finding a global

minimum value, which allows us to compare chromosomes

in relation to each other.

 In our case, we evaluate each chromosome's quality

using 3D visible volumes normalized to the bounding box S

around a viewpoint:

 (4)

Selection: Once the population is sorted by fitness,

chromosomes' population with greater values will have a

better chance of being selected for the next reproduction

stage. Over the last years, many selection operators have

been proposed, such as the Stochastic Universal Sampling

and Tournament Selection. We used the most common

Tournament, where k individuals are chosen randomly, and

the best performance from this group is selected. The

selection operator is repeated until a sufficient number of

parents are chosen to form a child generation.

Reproduction: In this stage, the parent individuals

chosen in the previous step are combined to create the next

generation. Many types of reproduction have been presented

over the years, such as crossover, mutation and elitism.

Crossover takes parts from two parents and splices them

to form two offspring, as seen in Figure 16(a). Mutation

modifies the parameters of a randomly selected chromosome

from within a single parent, as seen in Figure 16(b). Elitism

takes the fittest parents from the previous generation and

replicates them into the new generation. Finally, individuals

not selected as parents are replaced with new, random

394

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

offspring. Further analysis and operators can be found in

[29][36]. The major steps of these operators can be seen in

Figure 16.

 (a) (b)

Figure 16. Reproduction operators of GA (a) Crossover (b) Mutation

 source: [17].

A. Simulations

In this section, we report on simulation runs with our 3D

visible volumes analysis in urban scenes integrated with

trees, using genetic algorithms. The genetic algorithms were

tested on a 1.8GHz Intel Core CPU with Matlab. We used

Fallvile Island Sketchup Google Model [19] for simulating a

dense urban scene with trees, as seen in Figure 17.

The stages of Crossover and Elitism operators are

described as follows, with a probability of

(otherwise parents are copied without change):

1. Choose a random point on the two parents.

2. Split parents at this crossover point.

3. Create next generation chromosomes by exchanging tails.

Where the Mutation operator modifies each gene

independently with a probability
In order to process the huge amount of data, we bounded

a specific region, which includes trees and buildings, as seen

in Figure 18. We imported the chosen region to Matlab and

modeled the objects by boxes, neglecting roofs' profiles.

Time computation for one generation was one hour long on

average. As we could expect, the evaluation stage took up

94% of the total simulation time. We set the bounding box S

as [500 m* 200 m* 50 m]. Population initialization included

500 chromosomes, each of which is a 24-dimensional vector

consisting of position and translation, where all of them were

generated randomly.

Based on the Fitness function described previously and

the different GA stages and 3D visible volumes analysis, the

location of eight viewpoints for sensor placement was

optimized. Viewpoints must be bounded in S and should not

penetrate buildings and trees. Stop criteria was set to 50

generations and Fitness function gradient.

Optimal coverage of viewpoints and visible volumes

during ten runnings' simulations is seen in Figure 19,

bounded in polygons marked with arrows. During these ten

runnings simulations, we initialized the population randomly

at different areas inside bounding box S.

These interesting results show that trees' effect inside a

dense urban environment was minor, and trees around the

buildings in open spaces set the viewpoint's location. As seen

in Figure 19, polygon A and polygon B are both outside the

areas blocked by buildings. But they are still located near

trees, which affect the visible volumes, and we can predict

that the same affect will occur in our real world. On the other

hand, polygon C, which is closer to the area blocked by

buildings, takes into account the trees in this region, but the

major factor are still the buildings.

(a)

(b)

Figure 17. Fallvile Island Sketchup Google Model Simulating Dense

Urban Scene with Trees, [19]: (a) Topview; (b) Isometric view.

Figure 18. Bounded Area inside Bounding Box S marked in Black, inside

Fallvile Island Sketchup Google Model.

Figure 19. Bounded Polygons of Optimized Cover Viewpoints Using GA

marked with Arrows.

A

395

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. VISIBILITY ANALYSIS CONSIDERING SENSOR'S

STOCHASTIC CHARACTER

In this section, we extend our visibility model by

exploring and including sensors' sensing capabilities and

physical constraints. Our visibility analysis is based on the

fact that sensors are located at specific visibility points.

Sensors are commonly treated as deterministic detectors,

where a target can only be detected or undetected. These

simplistic sensing models are based on the disc model

[6][49].

We study sensors' visibility-based placement effected by

taking into account the stochastic character of target

detection. We present a single sensor model, including noisy

measurement, and define the necessary condition for

visibility analysis with false alarm and detection probabilities

for each visibility point's candidate.

A. Single Visibility Sensing Model

Most of the physical signals are based on energy vs.

distance from single source model. Different kind of sensors

such as: radars, lasers, acoustics, etc., are based on this signal

character. Like other signal models presented in the literature

[15][32][51] we use signal decay model as follows:

 (5)

where is the original energy emitted by the target, k is the

decaying factor (typical values from 2 to 5), and is a

constant determined by the size of the target and the sensor.

We model the sensor's noise located at visibility point

 , using zero-mean normal distribution,
 .

Sensor signal energy including noise effect, , can be

formulated as:

 (6)

In practice, parameters are set by empiric datasets.

B. Visibility Using Sensors Network

Nowadays, detection systems use more and more data

fusion methods [9][10]. In order to use multi sensors

benefits, fusion and local decision-making using several

sensors' data is a very common capability. As with other

distributed data fusion methods, we assume that each sensor

sends the energy measurement to a Local Decision Making

Module (LDMM). Similar to other well known fusion

methods [51], the LDMM integrates and compares the

average sensors' measurements n against detection threshold

 .

Detection probability, denoted by , is the probability

that a target is correctly detected. Supposing that n sensors

take part in the data fusion applied in the LDMM, detection

probability is given by:

 (7)

 =

Where and denote the distribution

function. In the same way, false alarm rate probability is the

probability of making a positive detection decision when no

target is present. False alarm rate probability, denoted by ,

is given by:

 (8)

Conditions Necessary for Visibility: Given two real

numbers, and . Visibility Point

 can be defined as visible point if and only if

 and .

The conditions necessary for visibility plays a major role

in the GA process. In order to include stochastic sensor

character as part of our visibility analysis and sensor

placement, we suggest an updated GA search block diagram.

As described above, the population stage creates the first

generation of candidate solutions, also called chromosomes.

These chromosomes should be tested and pass the necessary

condition, as can be seen in Figure 20. If a specific

chromosome fails, other chromosomes are generated

randomly as part of the population initialization stage.

Figure 20. GA Block Diagram Including Conditions Necessary for

Visibility.

C. Simulations

In this section, we report on simulation runs including

conditions necessary for visibility as part of our genetic

algorithms search, according to the block diagram presented

in Figure 20. In the same manner, similar to the simulation

environment presented in Section IV.A, we used 1.8GHz

Intel Core CPU with Matlab using Fallvile Island Sketchup

Google Model [14], simulating a dense urban scene with

trees, as seen in Figure 17.

396

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In order to compare our current running results with the

case of not using conditions necessary for visibility, which

are detailed in Section IV.A., we used, in our case, the exact

same running parameters of the genetic algorithm search in

the different stages (population, evaluation, selection,

reproduction, fitness function and stopping criteria).

Sensing model of detection and false alarm rate

probabilities set the sensor's detection performances, and

have a great influence on which objects are included in the

bounding box. Our parameters of the visibility sensing model

were set as follows: =1, =35, k=2, .

As expected, simulation results applying the conditions

necessary for visibility generated results similar to the case

of not using this condition, as the detection probability is set

to higher values with lower values of false alarm rate

probability. On the same way, viewpoints' locations were

bounded in the A, B, C polygons described in Figure 19.

Results can be seen in Table IV.

TABLE IV. VIEWPOINTS LOCATIONS DIFFRENCES USING CONDITIONS

NECESSARY FOR VISIBILITY USING GA SEARCH

Detection
Probability

False Alarm Rate
Probability

Detected
Objects in

Bounding Box

 [Percents]

Viewpoints
Located Outside

A, B, C

Polygons
0.9 0.01 87% 3

0.95 0.005 94% 2

0.98 0.002 96% 1

0.99 0.001 97% 1

VI. CONCLUSIONS

In this paper, we presented an optimized solution for the

problem of computing maximal coverage from a number of

viewpoints, using genetic algorithms method. In addition, we

propose conditions necessary for visibility based on sensors'

model analysis, taking into account stochastic character. As

far as we know, for the first time we integrated trees as

partially visible objects participating in a 3D visible volumes

analytic analysis and conditions necessary for visibility with

sensors' noises effects. As part of our research we tested

several 3D models of 3D urban environments from the

visibility viewpoint, choosing the best model from the

computational effort and the analytic formulation aspects.

We tested our 3D visible volumes method on real a 3D

model from an urban street in the city of Haifa, with time

computation and visible volumes parameters.

In the second part of the paper, we introduced a genetic

algorithm formulation to calculate an optimized solution for

the visibility problem. We used several reproduction

operators, which made our optimization robust. We tested

our algorithm on the Fallvile Island Sketchup Google Model

combined with trees, and analyzed the viewpoint's polygons

results, and also compared using versus not using the

conditions necessary for visibility.

Our future work is related to validation between our

simulated solution and projected volumes from sensors

mounted in these viewpoints for optimal coverage.

VII. REFERENCES

[1] O. Gal and Y. Doytsher, "Sensors Placement in Urban
Environments Using Genetic Algorithms," The Senventh
International Conference on Advanced Geographic
Information Systems, Applications, and Services, pp. 82-87,
2015.

[2] N. Abu-Akel, "Automatic Building Extraction Using LiDAR
Data," PhD Dissertation, Technion, Israel, 2010.

[3] D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario,
"Conservative Visibility and Strong Occlusion for Viewspace
Partitioning of Densely Occluded Scenes," In
EUROGRAPHICS’98.

[4] D. Cohen-Or and A. Shaked, "Visibility and Dead- Zones in
Digital Terrain Maps," Eurographics, vol. 14, no. 3, pp.171-
180, 1995.

[5] R. Cole and M. Sharir, "Visibility Problems for Polyhedral
Terrain," Journal of Symbolic Computation, vol. 7, pp.11-30,
1989.

[6] K. Chakrabarty, S. Iyengar, H. Qi, and E. Cho, "Grid
Coverage for Surveillance and Target Location in Distributed
Sensor Networks," IEEE Trans. Comput, vol. 51, no. 12,
2002.

[7] Y. Chrysanthou, "Shadow Computation for 3D Interactive
and Animation," Ph.D. Dissertation, Department of Computer
Science, College University of London, UK, 1996.

[8] R. Church and C. ReVelle, "The Maximal Covering Location
Problem," Papers of the Regional Science Association, vol.
32, pp.101-118, 1974.

[9] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan, and K.K.
Saluja, "Sensor deployment strategy for target detection," In
WSNA, 2002.

[10] T. Clouqueur, K.K. Saluja, and P. Ramanathan, "Fault
tolerance in collaborative sensor networks for target
detection," IEEE Trans. Comput, vol. 53, no. 3, 2004.

[11] L. De Floriani and P. Magillo, "Visibility Algorithms on
Triangulated Terrain Models," International Journal of
Geographic Information Systems, vol. 8, no. 1, pp.13-41,
1994.

[12] L. De Floriani and P. Magillo, "Intervisibility on Terrains," In
P.A. Longley, M.F. Goodchild, D.J. Maguire & D.W. Rhind
(Eds.), Geographic Information Systems: Principles,
Techniques, Management and Applications, pp. 543-556.
John Wiley & Sons, 1999.

[13] Y. Doytsher and B. Shmutter, "Digital Elevation Model of
Dead Ground," Symposium on Mapping and Geographic
Information Systems (ISPRS Commission IV), Athens,
Georgia, USA, 1994.

[14] G. Drettakis and E. Fiume, "A Fast Shadow Algorithm for
Area Light Sources Using Backprojection," In Computer
Graphics (Proceedings of SIGGRAPH ’94), pp. 223–230,
1994.

[15] M.F. Duarte and Y.H. Hu, "Vehicle classification in
distributed sensor networks," Journal of Parallel and
Distributed Computing, vol. 64, no. 7, 2004.

[16] F. Durand, "3D Visibility: Analytical Study and
Applications," PhD thesis, Universite Joseph Fourier,
Grenoble, France, 1994.

[17] A.E. Eiben and J.E. Smith, "Introduction to Evolutionary
Computing Genetic Algorithms," Lecture Notes, 1999.

[18] U.M. Erdem and S. Sclaroff, "Automated camera layout to
satisfy task- specific and floor plan-specific coverage
requirements,” Computer Vision and Image Understanding,
vol. 103, no. 3, pp. 156–169, 2006.

[19] Fallvile, (2010)
http://sketchup.google.com/3dwarehouse/details?mid=2265cc
05839f0e5925ddf6e8265c857c&prevstart=0

397

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[20] D. Fisher-Gewirtzman, A. Shashkov, and Y. Doytsher,
"Voxel Based Volumetric Visibility Analysis of Urban
Environments," Survey Review, DOI:
10.1179/1752270613Y.0000000059, 2013.

[21] W.R. Franklin, "Siting Observers on Terrain," in D.
Richardson and P. van Oosterom, eds, Advances in Spatial
Data Handling: 10th International Symposium on Spatial Data
Handling. Springer-Verlag, pp. 109-120, 2002.

[22] W.R. Franklin and C. Ray, "Higher isn’t Necessarily Better:
Visibility Algorithms and Experiments," In T. C. Waugh & R.
G. Healey (Eds.), Advances in GIS Research: Sixth
International Symposium on Spatial Data Handling, pp. 751-
770. Taylor & Francis, Edinburgh, 1994.

[23] W.R. Franklin and C. Vogt, "Multiple Observer Siting on
Terrain with Intervisibility or Lores Data," in XXth Congress,
International Society for Photogrammetry and Remote
Sensing. Istanbul, 2004.

[24] H. Furuta, K. Maeda, and E. Watanabe, "Application of
Genetic Algorithm to Aesthetic Design of Bridge Structures,"
Computer-Aided Civil and Infrastructure Engineering, vol.
10, no. 6, pp.415–421, 1995.

[25] O. Gal and Y. Doytsher, "Analyzing 3D Complex Urban
Environments Using a Unified Visibility Algorithm,"
International Journal On Advances in Software, ISSN 1942-
2628, vol. 5 no.3&4, pp:401-413, 2012.

[26] O. Gal and Y. Doytsher, "Dynamic Objects Effect on
Visibility Analysis in 3D Urban Environments," Lecture
Notes in Computer Science (LNCS), vol. 7820, pp.147-163,
DOI 10.1007/978-3-642-37087-8_11, Springer, 2013.

[27] O. Gal and Y. Doytsher, "Spatial Visibility Clustering
Analysis In Urban Environments Based on Pedestrians'
Mobility Datasets," The Sixth International Conference on
Advanced Geographic Information Systems, Applications,
and Services, pp. 38-44, 2014.

[28] H. Gon ale -Ban os and J.C. Latombe, "A randomized art-
gallery algorithm for sensor placement,” in ACM Symposium
on Computational Geometry, pp. 232–240, 2001.

[29] D.E. Goldberg and J.H. Holland, "Genetic Algorithms and
Machine Learning," Machine Learning, vol. 3, pp.95-99,
1998.

[30] Holden (2013),
http://slog.thestranger.com/slog/archives/2013/04/21/after-
the-boston-bombings-do-american-cities-need-more-
surveillance-cameras

[31] J. Holland, "Adaptation in Natural and Artificial Systems,"
University of Michigan Press, 1975.

[32] D. Li and Y.H. Hu, "Energy based collaborative source
localization using acoustic micro-sensor array," EUROSIP J.
Applied Signal Processing, vol. 4, 2003.

[33] D. Maddalena and G. Snowdon, "Applications of Genetic
Algorithms to Drug Design," In Expert Opinion on
Therapeutic Patents, pp. 247-254, 1997.

[34] M. Mäntylä M, "An Introduction to Solid Modeling,"
Computer Science Press Rockville, Maryland, 1988.

[35] M. Marengoni, B.A. Draper, A. Hanson, and R. Sitaraman,
"A System to Place Observers on a Polyhedral Terrain in
Polynomial Time," Image and Vision Computing, vol. 18,
pp.773-780, 2000.

[36] M. Mitchell, "An Introduction to Genetic Algorithms
(Complex Adaptive Systems)," MIT Press, 1998.

[37] B. Nadler, G. Fibich, S. Lev-Yehudi D., and Cohen-Or, "A
Qualitative and Quantitative Visibility Analysis in Urban
Scenes," Computers & Graphics, vol. 5, pp.655-666, 1999.

[38] G. Nagy, "Terrain Visibility, Technical report,"
Computational Geometry Lab, ECSE Dept., Rensselaer
Polytechnic Institute, 1994.

[39] K.J. Obermeyer, "Path Planning for a UAV Performing
Reconnaissance of Static Ground Targets in Terrain," in
Proceedings of the AIAA Guidance, Navigation, and Control
Conference, PP.1-11, 2009.

[40] K. Omasa, F. Hosoi, T.M. Uenishi, Y. Shimizu, and Y.
Akiyama, "Three-Dimensional Modeling of an Urban Park
and Trees by Combined Airborne and Portable On-Ground
Scanning LIDAR Remote Sensing," Environ Model Assess
vol. 13, pp.473–481, DOI 10.1007/s10666-007-9115-5, 2008.

[41] H. Plantinga and R. Dyer, "Visibility, Occlusion, and Aspect
Graph," The International Journal of Computer Vision, vol. 5,
pp.137-160, 1990.

[42] C. Ratti, "The Lineage of Line: Space Syntax Parameters
from the Analysis of Urban DEMs," Environment and
Planning B: Planning and Design, vol. 32, pp.547-566, 2005.

[43] H. Samet, "Hierarchical Spatial Data Structures," Symposium
on Large Spatial Databases (SSD), pp. 193-212, 1989.

[44] G. Schaufler, J. Dorsey, X. Decoret, and F.X. Sillion,
"Conservative Volumetric Visibility with Occluder Fusion,"
In Computer Graphics, Proceedings of SIGGRAPH, pp. 229-
238, 2000.

[45] V. Shaferman and T. Shima, "Coevolution genetic algorithm
for UAV distributed tracking in urban environments," in
ASME Conference on Engineering Systems
Design and Analysis, 2008.

[46] A. Streilein, "Digitale Photogrammetrie und CAAD," Ph.D
Thesis, Swiss Federal Institute of Technology (ETH) Zürich,
Diss. ETH Nr. 12897, Published in Mitteilungen Nr. 68 of the
Institute of Geodesy and Photogrammetry, 1999.

[47] J. Stewart and S. Ghali, "Fast Computation of Shadow
Boundaries Using Spatial Coherence and Backprojections," In
Computer Graphics, Proceedings of SIGGRAPH, pp. 231-
238, 1994.

[48] S.J. Teller, "Computing the Antipenumbra of an Area Light
Source," Computer Graphics, vol. 26, no.2, pp.139-148, 1992.

[49] D. Tian and N.D. Georganas, "A coverage-preserved node
scheduling scheme for large wireless sensor networks," In
WSNA, 2002.

[50] E.P.K. Tsang and J. Li, "Combining Ordinal Financial
Predictions with Genetic Programming," In Proceedings of
the Second International Conference on Intelligent Data
Engineering and Automated Learning, pp. 532–537, 2000.

[51] P. Varshney, "Distributed Detection and Data Fusion,"
Spinger-Verlag, 1996.

[52] J. Wang, G.J. Robinson, and K. White, "A Fast Solution to
Local Viewshed Computation Using Grid-based Digital
Elevation Models," Photogrammetric Engineering & Remote
Sensing, vol. 62, pp.1157-1164, 1996.

[53] J. Wang, G.J. Robinson, and K. White K, "Generating
Viewsheds without Using Sightlines," Photogrammetric
Engineering & Remote Sensing, vol. 66, pp. 87-90, 2000.

