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Abstract—OpenStreetMap is a platform where users con-
tribute geographic data. To serve multiple use cases,
these data are held in a very generic format. This
makes processing and indexing OpenStreetMap data a
challenge. Nominatim is an open source geocoding system
that consumes OpenStreetMap data. Nominatim processes
OpenStreetMap data well. It relies on predefined address
schemes to determine the meaning of various address
elements and to discover relevant results. Nominatim ranks
results by a global precomputed score. Elasticsearch is
a web service on top of Lucene – a general purpose
document store. Lucene searches for documents and ranks
results according to a term frequency – inversed document
frequency scoring scheme. In this article, Nominatim is
compared to two systems populated with exactly the same
data: An out-of-the-box instance of Elasticsearch, and a
specialized system that builds on top of Elasticsearch,
but implements a custom algorithm to aggregate house
numbers on every street segment, thereby vastly reducing
the index size. The three geocoding systems are throughly
benchmarked with three different data sets and geocoding
queries of increasing complexity. The analysis shows: Term
frequency – inversed document frequency based ranking
yields more accurate results, and is more robust removing
the need for predefined address schemes. Also, the reduced
index size of the specialized system comes at a cost, which,
depending on the application scenario, may be a viable
option.
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I. INTRODUCTION

This article is based on [1], which showed that generic
document stores as Elasticsearch make a good baseline
for geocoding services. A more detailed view on the
experiments is presented here, additional experiments are
introduced, as well as a new, more complex data set.
Also, a specialized approach to reduce the index size
of the document store is suggested in this article. It is
evaluated in the same way as the two systems that have

already been presented in [1].
OpenStreetMap [2] is a collaborative platform where

every registered user can contribute relevant and map-
pable data. These data can be of arbitrary type: Street
segments or bridges, their names, speed limits or surface
materials, position and outline of buildings, forests, lakes
or administrative areas, radio beacons and their operators,
train tracks, bicycle, hiking or bus routes, etc. That vari-
ety is possible, because OpenStreetMap data is stored in
a very generic data format without a specific application
in mind.

OpenStretMap data consist of the three entity types
node, way, and relation. Every entity type has an id
attribute for referencing and the attributes timestamp,
version, and changeset for versioning. There are also the
attributes uid and user specifying the user who created
or modified an entity.

Nodes have values for longitude and latitude in
WGS84 format [3]. Therefore, nodes model single points
on the globe. Because most things on a map have an areal
extent, a node alone can be used to specify the position of
an entry with yet unknown area. Also, for example, nodes
can specify mountain peaks, magnetic and geographic
poles, or other entities with no area. Most of the nodes,
however, are parts of ways and relations.

Ways compose lines through points by specifying
ordered lists of node references. A way can also specify
an area by referencing the same node at the begin and
at the end of the node list. Using ways it is possible
to model car lanes on a street, pedestrian zones, simple
outlines of structures, and the like.

Relations, in turn, may reference both ways and
nodes. Therefore, relations can model complex geo-
graphic features as polygons with holes as well as spec-
ify, e.g., a center point for displaying pins on the map.
Relations may also reference other relations assembling
abstract entities that span several ’real things’ such as
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groups of islands, or universities with multiple, wide-
spread buildings.

Finally, nodes, ways, and relationships can hold an
arbitrary number of tags. Tags are key-value pairs that
specify names, categories, address elements as city, dis-
trict or street name, house number ranges, data sources,
speed limits, and all other attributes of real-world features
that the entities model.

Clearly, this data format is flexible enough to ac-
commodate all kinds of data. For example, properly
tagged relationships could hold 3D models of buildings,
where different parts of buildings are different relations.
[4] describes in depth how 3D models are stored in
OpenStreetMap data. On one hand, that flexibility is con-
venient, but on the other hand it is also an obstacle: For
many use cases the data need to be preprocessed before
they can be utilized. In the case of geocoding, because
of the versatile structure of OpenStretMap data, address
elements are often spread across different entities. For
example, a node might only be tagged with a house
number, while the way that references this node only
holds the street name information. The way itself may be
contained in a postal code area represented by a relation.
Another relation could describe the area of the city.
However, the relations not necessarily reference the way
or each other. Therefore, to offer a geocoding service,
addresses need to be assembled out of OpenStreetMap
entities first.

Geocoding [5] is the process of resolving named
locations such as full addresses, named areas, and some-
times even landmarks into their location. A variety of
proprietary and open source geocoding services, e.g.,
[6], [7], or [8] offer that through their APIs. First, to
offer such a service, there need to be source data to be
made searchable. These data need to contain a mapping
from addresses or names to the geolocation of the entry,
which, most often, is represented as a pair of WGS84
coordinates. Because errors in data are exposed through
the service, the quality of data determines the quality
of the geocoding service. To some extent, errors in the
data can be covered when the data is being indexed: To
account for errors and ambiguities in queries indexing
algorithms need to store the data in a way that it is fuzzy
and robust at the same time – some of these techniques
can be applied to the source data at indexing time too.
Geocoding services use indexes to parse and split queries
into address elements, possibly determine their meaning
and compile a list of candidate results the query may
have referred to. In a last step, the service orders the

candidate list so that the most probable result is on top.
If possible, unlikely candidates at the bottom of that list
are cut off. Depending on the specific type of geocoder,
specialized approaches are used as described in [9], [10],
and [11].

Nominatim [7] is an open source system imple-
mented in several programming languages that uses
OpenStreetMap data to provide a geocoding service.
That means Nominatim preprocesses the OpenStreetMap
data assembling full addresses from address elements
spread in tags on various entities prior to building an
index for geocoding. Both these processes are very time
consuming, also because Nominatim precomputes global
ranks for all entries at indexing time already. The source
data, the geocoding index, and the ranks are all stored
in a PostGIS [12] enabled PostgreSQL [13] data base.
An apache server [14] invoking PHP to access the data
base serves search requests via HTTP. When a search
is performed, Nominatim first parses the query address
according to predefined schemes. These schemes specify
where various address elements as postal code, state, city,
district, street name, or house number may be located
in a query. Next, Nominatim queries the data base using
the derived address elements. It collects candidate results
ordered by the precomputed ranking score. In Nominatim
there is no stage where result lists are ordered or cut in
relation to a served query.

Term frequency – inverted document frequency
(TF-IDF) [15], [16] is a formula to rank documents
based on query terms and their distributions. For a given
query term and a document, the term frequency is the
number of occurrences of that term in that document.
A higher term frequency implies that a document is
more relevant to a query: The more often a query term
appears in a document, the more likely the document
corresponds to the query. At the same time, if a term
rarely occurs in a document, the term may have been
mentioned as a side note only, while the actual topic
of the document could be a different one. Some terms
are very common or have multiple meanings. Such terms
appear in many documents therefore. Other terms are rare
and specific. Clearly, rare and specific terms distinguish
the relevant documents stronger than the generic and am-
biguous ones. To incorporate that, a global term weight
is computed for each term: The document frequency of a
term is the number of documents that term occurs in. The
more documents a term occurs in, the less distinguishable
that term is. Thus, for each term a greater inverted
document frequency implies a greater importance of its
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term frequency value. The TF-IDF score for a term and a
document is therefore computed by multiplying the term
frequency and the inverted document frequency. For a
query with multiple terms, the overall TF-IDF score is
computed as the sum of scores of every query term for
each document. There are variants of TF-IDF that differ
in various details. Particularly, BM25f [17] is a variant
that supports documents with differently weighted fields.
Also, when computing the BM25f score, the document
length is taken into account.

In contrast to Nominatim, Lucene [18] is a generic
open source document indexing framework, that ranks
results at query time. Lucene supports various ranking
schemes for ordering results, including TF-IDF and
BM25f. In the context of geocoding, where addresses are
documents, one can easily agree that the token ’street’
is less distinctive than the token ’Springfield’, which –
given that there are many towns called like that – is
less distinctive than, let’s say ’Chicago’. Therefore, for
a query for ’Michigan Street Chicago’ the ’Michigan
Avenue in Chicago, Illinois’ is scored higher than the
’Michigan Street in Springfield, Massachusetts’. The
match on the rare token ’Chicago’ outweighs the match
on the common token ’Street’.

Elasticsearch [19] is a RESTful [20] wrapper around
Lucene. That means, besides many other features it offers
a simple HTTP based interface to create, read, update,
and delete single documents as well as whole document
collections. Internally a separate Lucene index is main-
tained per document collection, allowing Elasticsearch to
expose a search interface as well. Thus, if populated with
documents that contain addresses and their coordinates,
Elasticsearch becomes an HTTP based geocoding service
that uses BM25f to compute, which results match to
given queries best.

A number of efforts was made to index
OpenStreetMap data in Elasticsearch. The elasticsearch-
osmosis-plugin [21] extends Osmosis [22], a tool for
processing OpenStreetMap data, allowing it to index this
data in Elasticsearch. Thereby, the entities are indexed
as they are, the plug-in does not transform the data in
any way. Instead it enables Elasticsearch to be used as
a tool to browse original OpenStreetMap entities from
the indexed source data set. Pelias [23] is a collection
of modular tools that plug into each other. There are
modules for reading data from OpenStreetMaps as
well as other data formats, a module for indexing the
data in Elasticsearch, and a module to offer a set of
APIs and provide a geocoding service on top. Similar

to the elasticsearch-osmosis-plugin, Pelias does not
process the data in any way similar to Nominatim. Both
systems do not harvest addresses that are spread across
OpenStreetMap entities, but rather index the raw data
in its generic format. Gazetteer [24] consists of two
modules: One to parse OpenStreetMap data and derive
points of interest, addresses, streets, street networks, and
administrative boundaries. The other to index this data
in Elasticsearch and thereby offer a geocoding service.
Unlike the osmosis-elasticsearch-plugin or Pelias, the
Gazetteer tool tries to assemble full addresses based
on entities that contain one another, or are located
nearby. Nominatim, as discussed earlier, is a geocoding
service that does not rely on Elasticsearch, Lucene, or
a dynamic ranking scheme. Instead, Nominatim tries
to split queries into address elements in accordance
to given schemes and ranks candidates by a globally
precomputed score. As the Gazetteer, Nominatim is
collecting address elements from various nodes as it is
necessary with the generic OpenStreetMap data format.

For all the systems above, no qualitative analysis on
their performance is available. These systems are best-
effort solutions. In this article, a set of experiments is
performed, which allows a qualitative comparison of
geocoding systems based on BM25f as used in generic
document stores and Nominatim, which relies on address
schemes to split queries into address elements and derive
their meaning. Existing solutions are using different
data than Nominatim: They either do not preprocess
OpenStreetMap data at all, or, like the Gazetteer solution,
use own processing. Therefore, for this article, the data
indexed in Elasticsearch is extracted directly from a
Nominatim data base. This ensures that there are no
data differences between the measured systems. Only
differences between the various indexing algorithms are
evaluated. In addition to Nominatim and Elasticsearch,
an approach to reduce the index size is suggested in this
article: Instead of indexing every house number address
as a separate document, house numbers on the same
street segment are aggregated into one document. Instead
of WGS84 coordinates each document in this system
contains a mapping table declaring the coordinates for
every house number on that street segment. This solu-
tion requires a thin layer around Elasticsearch, which
takes care of identifying and, if available, extracting the
response for a requested house number. Elasticsearch
is still used to retrieve street segments that match to
queries. These three solutions are evaluated using the
same benchmarks allowing to derive the strengths and
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Figure 1. Schemes of indices in Nominatim (left, simplified), Elasticsearch (middle), and EAHN (right)

weaknesses of every system. All in all, BM25f strives
to bring the document to the top of the result lists
that, according to term hits and their respective weights,
matches to a given query the best. Also, [25] shows,
that address schemes often contradict each other, e.g.,
by some schemes assuming the house number before
the street name while other schemes assume it behind
the street name, which results in ambiguous parsing of
address elements. Therefore, it is fair to assume that the
Elasticsearch based solutions are more solid geocoding
services than Nominatim.

II. EXPERIMENT

Three geocoding systems: Nominatim, Elasticsearch,
and Elasticsearch with Aggregated House Numbers
(EAHN) have been set up with the same data in
their indexes. First, Nominatim has been set up with
OpenStreetMap data for Europe. This long-running pro-
cess is fully automated and results in a PostgreSQL data
base that holds the data and the indexes for Nominatim.
The entries served by Nominatim are stored in a single
table, which is the output of processing OpenStreetMap
data and assembling address elements spread across
entities. Besides a name, e.g., the name of a street or
the house number, rows of this table store their areal
extent in PostGIS geometries, their IDs, types, ranks,
and some additional meta-data. Additionally, each row
references the rows containing the data of the next-
higher administrative area: A row with a house number
references the row with the street name the house number
belongs to, which in turn references the row with the city
district that street segment is in, and so forth. This allows
entries to be normalized, not storing the names of higher
level administrative areas that make up a full address. The
full address hierarchy is assembled by a stored procedure,
which is called by Nominatim for each result at query
time.

This same stored procedure and a PostGIS procedure
to derive the centroid latitude and longitude of PostGIS
geometries were applied to every row of Nominatim’s
result table generating documents to be indexed in
Elasticsearch. Documents derived this way contain the
full address of an entry (which, in the case of higher level
administrative areas, may not contain the most specific
address parts), the entries’ ID in the Nominatim data
base, and WGS84 latitude and longitude coordinates. An
Elasticsearch instance was set up next to Nominatim and
populated with the documents extracted.

One drawback of indexing every address in
Elasticsearch is the vast amount of denormalized data:
Street names, districts, cities, postal codes, etc. do not
differ for many addresses, but are all stored and indexed
as parts of separate documents for every house number
address. This requires additional space and makes the
process of picking the right document harder: The BM25f
scores of different documents are less spread apart if
the documents scored contain redundant data. EAHN
tries to approach this problem, by only creating separate
documents for separate street segments. Thus, in EAHN
BM25f is only used to find the right street segment.
All house numbers of that street segment are stored
within that document. They are, however, not indexed
in Elastcisearch and extracted using string matching in a
second step.

To set up EAHN with the same data, the same
data base table was used. First, as for documents in
Elasticsearch, for every row the full address for its entry
as well as the entries’ ID and WGS84 coordinates have
been assembled. Entries representing a house number
address were separated from non house number entries
using a flag Nominatim stores in the data base as part
of each row’s meta data. House number entries were
grouped by the ID of their parent, which, according to
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Nominatim’s data base structure, would be the street seg-
ment the house numbers would be in. Non house number
entries were used to generate documents to be indexed in
EAHN. In a final step, documents of entries referenced
by house number entries were extended to contain a
mapping from each house number to the respective house
number address, its ID and its WGS84 coordinates. These
documents with aggregated house numbers as well as all
documents that were not referenced by a house number
entry were indexed in an Elasticsearch instance. Note
that by default Elasticsearch would index every part of
the document. To achieve the reduction in index size,
the instance used for EAHN was explicitly configured to
index the address text of street segments only, ignoring
house number mappings and their addresses.

Figure 1 presents the simplified schemes of the three
systems. While Nominatim uses a normalized table with
entries referencing their parents, Elasticsearch contains
a denormalized document per entry. EAHN aggregates
documents representing house numbers in their parent
document, containing a denormalized document for each
entry that is not a house number. Looking at the schemas
in Figure 1 makes it obvious that Elasticsearch is a
geocoding system already: A response to a search request
contains addresses with their WGS84 coordinates that
match to a given query. That is not the case for EAHN:
It requires an additional step between its Elasticsearch
instance and a client that unwraps documents represent-
ing house numbers if appropriate. This layer has been
implemented as follows:

1) Forward every query to Elasticsearch, request it
to highlight those parts of the query that have
matched to parts of the document.

2) For every candidate in the returned list, for every
query token that has not been highlighted as
matched, if the token is a key in the house
number mapping, return the text, the ID, and
the WGS84 coordinates the key maps to.

3) Fall back to returning the text, the ID, and the
WGS84 coordinates of the first candidate on the
result list if no suitable house number result has
been found.

For EAHN, ideally, a street segment would be the
entire part of a street referenced by the same address,
i.e., the segment has the same city, the same district, the
same postal code, etc. However, OpenStreetMaps defines
street segments on a finer-grained level: Multiple equally
addressed street segments exist next to each other. These
segments represent different sides or multiple chunks

of a lengthy street, or parts of a street that vary in
other attributes as speed limits. Some house numbers
would be attached to one street segment, while others
would be attached to another. For this article, the street
segments, as they are defined in OpenStreetMaps were
used. Therefore, it is not sufficient for EAHN to only
look at the house numbers attached to the first candidate
returned by Elasticsearch. Without house numbers being
part of the scoring scheme BM25f cannot differentiate
between otherwise equal documents in a meaningful way.
Thus, it is inevitable to look at all equally named street
segments. For experiments in this article, EAHN was
configured to query Elastcsearch for 250 candidates to
look at – a number small enough to be processed and
big enough to cover almost all of the cases with mul-
tiple equally named street segments. On the downside,
requesting many candidates for a street that does not
have many segments exposes the risk to match a house
number on a segment of a different street than the one the
query referred to. To account for that, a house number
match has only be returned as stated in (2) if the number
of query tokens matching the candidate was equal or
greater than the number of matched tokens in the first
candidate. Thereby, every matched token was counted
only once, even if the indexed document contained that
token multiple times. That was required to deal with doc-
uments that stated address elements multiple times. Such
documents appeared as artifacts of Nominatim collecting
address elements from incorrectly tagged OpenStreetMap
entities. For example, entities for city districts often list
the postal codes contained in those districts repeatedly.
Another caveat of EAHN are house number ranges. Since
there is no standardized way to specify them, various
separators are used between the leading and the tailing
number in OpenStreetMap data as well as in the data
sets used for experiments. Because house number ranges
were not normalized by EAHN, some times, a requested
house number range would not be retrieved, even though
it was available in the data. Similarly, letters added to
house numbers were not normalized and not found if the
index had a different capitalization or whitespace variant
of the same house number. Generally, because house
numbers have not been indexed in the documents, they
did not contribute to the BM25f score of the document
leaving a greater chance of false documents appearing
on top of the result list.

Given all these downsides of EAHN, its main feature
only becomes obvious after it has been populated with
data: Because instead of every house number address
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TABLE I. Index sizes

system row or document count index size on disk

Nominatim 61 198 211 (366 GB)

Elasticsearch 61 198 211 15.7 GB

EAHN 33 678 783 6.2 GB

being a separate document house numbers are aggregated
into the document of their street segment, the number of
indexed documents is drastically reduced. Also, house
numbers themselves are not indexed in EAHN at all.
Therefore, while all of the data is still available the
index size is much smaller too. Table I shows the index
sizes of the three systems benchmarked in this article
after they have been populated with OpenStreetMap data
for Europe. Nominatim collected and indexed 61.2M
addresses from OpenStreetMap data. Every single entry
in Nominatim is indexed as a separate document in
Elasticsearch. Aggregating the house numbers on the
same street segment into one document nearly cuts the
number of documents to be indexed in EAHN in half. Be-
cause the house number tokens are not indexed any more,
and because overall there are less documents to reference,
the index size of EAHN shrinks by more than 50%. Note
that the index size of Nominatim is not comparable with
the sizes of the other two indexes. The given size of the
PostgreSQL data base after Nominatim’s processing of
OpenStreetMap data also includes the source entities as
well as preliminary results of the processing. To operate
Nominatim as a geocoder, many of these tables are not
required. Also, Nominatim contained and indexed the
full set of address translations, which have not been
exported or indexed. This feature has not been evaluated
on Elastcisearch and EAHN, though it is fair to assume
that address translations can be handled in the same way
as addresses in their local languages.

As a final difference between Nominatim and the
other two systems, abbreviations are to be mentioned.
Nominatim implements a defined set of operations to,
e.g., normalize STREET to ST in both the indexed data
and a served query. These operations have not been
ported to Elasticsearch or EAHN. Because Nominatim
returned addresses are not abbreviated, the documents
indexed in Elasticsearch and EAHN did not contain any
abbreviations implicitly. To mimic the feature, test sets
were manually processed to spell out every abbreviated
address element.

At the end of the set up process three geocoding
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Figure 2. Percentages of successfully geocoded addresses with
increasingly less address tokens for addresses extracted from

Nominatim with address tokens in order (top) and shuffled (bottom)

systems with the same addresses indexed were running
next to each other: Nominatim with precomputed rank
scores as well as BM25f based Elasticsearch and EAHN.
To compare these three systems three benchmarks have
been designed to gradually increase the complexity of
requests issued. The benchmarks allow to observe how
the percentage of successfully served requests decreases
for the three systems. Three data sets have been generated
for the three systems:

1) A data set of 2000 addresses randomly sampled
from the Nominatim data base.

2) A data set of 1500 addresses of pharmacies in
big German cities.

3) A data set of 2000 addresses randomly sampled
out of addresses sourced from a German on-line
portal for real estate.

In accordance to the set up, set (1) of addresses
extracted from Nominatim (and, therefore, indexed in
each system) contain samples from various European
countries. The addresses were extracted with their IDs so
that right or wrong responses from the geocoding systems
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Figure 3. Percentages of buckets of geocoding responses to requests
with formally correct postal addresses and increasingly less

address tokens with address tokens in their original order (top) and
shuffled (bottom)

were identified by simple ID comparison. The addresses
were extracted exactly as Nominatim presents them to
clients. This presentation is usually verbose: It names
additional address elements as district or county names
that are not usually part of a postal address. In contrast
to that, set (2) contains formally correct postal addresses
of pharmacies. Note that for some of the pharmacies
OpenStreetMap data (and, therefore, the three geocoding
systems) contain the addresses as well as the pharmacies
them selves as separate entries. This does not interfere
with the approach used to evaluate if a request with
this address has been successfull or not: The addresses
have been geocoded with the Google’s geocoding system
as reference first. Because Google’s geocoding system
uses different data than Nominatim, Elasticsearch, and
EAHN, results were not expected have equal coordinates.
Instead results were grouped into buckets depending on
the distance to the reference. The buckets within 100m,
100m-1000m, further than 1000m, and no result have
been used. Because of these distance based buckets, it
did not matter if a geocoding system returned the result
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Figure 4. Percentages of buckets of geocoding responses to requests
with user input addresses and increasingly less address tokens with

address tokens in their original order (top) and shuffled (bottom)

for an address or the pharmacy itself: The positions of
both entries are close enough so that their distance to
the reference position would up in the same bucket for
either of the two cases. For a general purpose geocoder
(and, therefore, in this article) only results from the first
bucket are close enough to be considered as successfully
served ones. Set (3) contains yet again a different type
of addresses: The on-line portal is asking agents to input
addresses of the real estate they are offering. Thus, as
actual real estate is offered, all the addresses are most
likely to exist and be comprehensible for human beings.
More importantly, however, these addresses are not nec-
essarily formally correct, as addresses in (2). Instead,
addresses are spelled out as humans refer to them when
communicating with each other. The on-line portal is also
asking their users to specify geocoordinates of addresses
by clicking on a map. As these WGS84 coordinates are
part of the data set, relying on a reference geocoding
system is not necessary. As for pharmacies, results of
the real estate addresses were grouped into the same
four buckets, depending on their distance to the user
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specified coordinates. Again, only results in the within
100m bucket can be considered correct.

For every data set multiple experiments have been
conducted: First, full addresses as they are in the data sets
have been issued as geocoding requests to each system.
Next, in steps of 10% more and more randomly picked
address tokens have been removed from requests, up
until requests contained only 10% of all address tokens.
The consequence of dropping tokens from the query are
less precise and more ambiguous requests. This behavior
mimicked users that query for incomplete addresses.
Finally, the whole iteration of increasingly ambiguous
queries has been repeated with randomly shuffled address
tokens. This behavior mimicked users that do not adhere
to a formal address standard. In total for each of the
5500 addresses 10 queries with different token counts
were issued with tokens in their original and in shuffled
order to each of the three systems under test. Note that
all queries were composed from house number addresses.
A benchmark examining a production geocoding system
would incorporate a contingent of queries for named
areas that is proportional to the number of queries for
named areas the system has to serve. In this article,
however, no productive system specifies the portion of
queries for named addresses. Also, it is fair to assume
that geocoding house number addresses is a more com-
plex scenario.

III. RESULTS

Measurement results for all three systems and all
three data sets are presented in Figures 2, 3, and 4.
Every chart has three blocks of bars – one for the
reference geocoding system Nominatim, one for the
document store Elasticsearch, and one for Elasticsearch
with aggregated house numbers. The leftmost bar of
each block shows the success rate for issuing geocoding
requests with all address tokens. Every next bar shows
results for requests with additional 10% address tokens
dropped. Each block consists of exactly ten bars with
the rightmost bar showing the success rate for geocoding
requests with only 10% of address tokens. In each figure
the upper chart is showing the results of stating requests
with address tokens in their original order, while the
bottom chart is showing the results of geocoding queries
with shuffled address tokens. Note that for ordered and
shuffled queries, different query tokens were dropped at
random: A query for an address with address tokens
in their original order would therefore contain different
tokens than a shuffled query for the same address. This
statistical noise explains, e.g., why in Figure 2 EAHN

seems to perform slightly better with 60% of address
tokens shuffled, rather than in their original order. An
insight in some specific numbers is given by Table II. It
lists the percentages of successful requests for all systems
and data sets with requests containing 100% and 50% of
address tokens. Every value pair gives the success rate for
requests with address tokens in their original order first,
followed by the success rate for requests with shuffled
address tokens.

Results for geocoding addresses extracted from the in-
dex are presented in Figure 2. The upper chart shows that
Elasticsearch and EAHN are outperforming Nominatim
with full addresses already. With less and less address
tokens in the queries and, therefore, with less distinc-
tive queries, the performance of all the three systems
decreases linearly, keeping Nominatim below the two
BM25f based systems constantly. Another picture is
shown by the lower chart: While Elasticsearch and
EAHN are almost not affected by shuffling of address
tokens at all, Nominatim’s success rate drops to below
5% for full addresses. With increasingly less tokens,
Elasticsearch and EAHN behave as if the address tokens
were in order. In contrast, Nominatim seems to become
better at first, reaching its maximum at requests com-
posed with 60% of address tokens. Even at this maximum
Nominatim still stays below its own performance with
address tokens in order. Interestingly, EAHN performs
better than Elasticsearch for full addresses only. For
addresses with missing tokens, Elasticsearch takes the
lead.

Figure 3 shows response buckets of requests with
formally correct postal addresses of pharmacies. The
bars for the various buckets are shaded differently and
stacked adding up to 100% of requests. The general
trend on this figure is similar to that shown on Fig-
ure 2: Nominatim does not handle shuffled address
tokens well; Elasticsearch and EAHN constantly outper-
form Nominatim. A closer look, however, reveals that
Nominatim is more successful in dealing with formally
correct postal addresses than with queries for addresses
extracted from the index. Table II highlights that for
the two BM25f based systems the opposite is true: On
indexed addresses these systems perform best. Another
thing to note on Figure 3 is that Nominatim often returns
no results, while the other two systems return some
responses for most of the queries. That behavior can be
good or bad, depending on the use case scenario.

Results of the experiment using user input addresses
in Figure 4 confirm the previous observations. Again,
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TABLE II. Select rates of successfully served geocoding requests (ordered - shuffled)

indexed addresses formally correct postal addresses user input addresses
100% address tokens in query

Nominatim 66.7% - 3.8% 71.6% - 16.2% 35.8% - 6.4%

Elasticsearch 92.3% - 92.1% 75.9% - 75.6% 59.2% - 58.6%
EHN 94.5% - 94.5% 70.5% - 70.5% 51.5% - 51.5%

50% address tokens in query

Nominatim 18.4% - 4.7% 17.2% - 12.3% 17.35% - 8.5%

Elasticsearch 30.8% - 28.7% 23.7% - 21.9% 22.8% - 22.3%
EHN 26.0% - 23.2% 20.3% - 18.9% 20.9% - 19.6%

Nominatim is constantly outperformed by the other two
systems. Again, only Nominatim is impacted negatively
if address tokens are shuffled. Clearly, the user input data
set was the hardest to geocode: All three systems are least
successful with geocoding these data.

IV. CONCLUSION

The experiments show that Nominatim requires
queries to adhere to the implemented addressing schemes
to function well: It performs best on the data set of for-
mally correct postal addresses. However, if query tokens
are in arbitrary order, Nominatim is likely to not find the
right result. This is a strong limitation, given that there
is not one universal, but many different and some times
contradicting address schemes in use. Because there are
less ways to shuffle less address tokens, Nominatims
performance at first increases when less tokens are used
to issue a query. Addresses with missing tokens are less
distinctive, which is why Nominatim does not reach the
same performance as with query tokens left in their order.
For the same reason the performance of the BM25f based
systems decreases linearly proportional to the number
of address tokens dropped. The experiments prove that
BM25f is an approach suitable to select proper geocoding
results. It is independent of the token order and generally
performs better than precomputing global ranks. The
vast superiority of the two BM25f systems on indexed
addresses is somewhat artificial: Querying a system that
matches documents to queries using queries generated
from documents indexed is very likely to produce a high
success rate. The only reason why Elasticsearch does
not achieve full 100% hits is data: As discussed, some
entries are repeated in the OpenStreetMaps data set, thus
a duplicate to the right result has a different ID and is
therefore not recognized as a correct response. This is

also the reason why EAHN outperforms Elasticsearch
for full addresses: By design EAHN looks into multiple
candidates for a house number match, which makes
it more likely to derive the correct result. Obviously,
the actual performance of a geocoding system highly
depends on the actual queries it faces. When developing
geocoding systems, however, Elasticsearch makes a good
base line to compete with.

EAHN has proven to be a valuable approach to offer
geocoding services too. As expected, it yields slightly
less accurate results than Elasticsearch, because less parts
of the address are indexed. Still, the observed impact
has shown to be a tolerable cost, especially taking into
account the gains EAHN offers: Smaller index size
and less indexed documents promote responsiveness and
scalability of a system. Also, a smaller index is easier
to update. Future work could assess how to incorporate
house numbers into the indexing and scoring methods
to close the performance gap to Elasticsearch. Also,
aggregating equally named street segments would lead to
further reduction of the index size. Ideally, an approach
can be found that utilizes the hierarchical structure of
addresses on other levels as well. For example, by aggre-
gating districts of a city in the same way house numbers
of a street have been aggregated for EAHN would allow
to store index data in a more compact and efficient
way. Finally, to further improve EAHN, normalization
logic for house number ranges could be developed. For
example, house number ranges to be indexed could be
unfolded at indexing time mapping every house number
in the range to the entire range it is part of. At query
time it would suffice to use only the starting or only the
ending house number of a range to retrieve the entire
range address.
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