
339

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Framework for Ensuring Non-Duplication of Features in Software Product Lines

Amal Khtira1, Anissa Benlarabi2, Bouchra El Asri3
IMS Team, SIME Laboratory, ENSIAS, Mohammed V University

Rabat, Morocco
1amalkhtira@gmail.com, 2a.benlarabi@gmail.com, 3elasri@ensias.ma

Abstract—Since the emergence of Software Product Line
Engineering, the requirements evolution issue has been addressed
by many researchers and many approaches have been proposed.
However, most studies focused on evolution in domain engineering
while application engineering has not received the same attention.
During the evolution of a derived product, new features are
added or modified in the application model, which may cause
many model defects, such as inconsistency and duplication. These
defects are introduced to the existing models from the non-
verified specifications related to the SPL evolutions. Since these
specifications are most of the time expressed in natural language,
the task of detecting defects becomes more complicated and error-
prone. The aim of this paper is to present a framework that
transforms both the SPL feature models and the specification of
a new evolution into a more formal representation and provides
algorithms to determine the duplicated features between the
specification and the existing models. In addition, we describe
a support tool created based on the framework and we evaluate
the efficacy of our approach using an open source product line.

Keywords—Software Product Line Evolution; Domain Engi-
neering; Application Engineering; Feature Duplication; Natural
Language Processing.

I. INTRODUCTION

Feature duplication, as described in [1], occurs when two
or more features of the same semantics exist in a feature model
of a SPL. SPLs, contrarily to single software, have emerged
as a solution to develop different applications based on a core
platform. The adoption of SPLs by companies enables them
to reduce time to market, to reduce cost and to produce high
quality applications. Another major advantage of SPLs is the
reuse of core assets to generate specific applications according
to the need of customers.

The Software Product Line Engineering (SPLE) approach
consists of two processes, namely, domain engineering and
application engineering [2]. During these processes, a number
of artefacts are produced which encompass requirements, ar-
chitecture, components and tests. Domain engineering involves
identifying the common and distinct features of all the product
line members, creating the design of the system and imple-
menting the reusable components. During application engi-
neering, individual products are derived based on the artefacts
of the first process, using some techniques of derivation.

Many issues related to SPLE have been addressed both
by researchers and practitioners, such as reusability, product
derivation, variability management, etc. The focus of our study
will be on SPL evolution. Evolution is defined by Madhavji
et al. [3] as ”a process of progressive change and cyclic
adaptation over time in terms of the attributes, behavioral

properties and relational configuration of some material, ab-
stract, natural or artificial entity or system”. This definition
applies to different domains, including software engineering.

In the literature, several studies have dealt with evolution
in Software Product Lines (SPLs). Xue et al. [4] presented a
method to detect changes that occurred to product features
in a family of product variants. In order to support agile
SPL evolution, Urli et al. [5] introduces the Composite Fea-
ture Model (CFM), which consists of creating small Feature
Models (FMs) that corresponds each to a precise domain.
Other approaches, such as Ahmad et al.’s [6], focused on the
extraction of architecture knowledge in order to assess the
evolutionary capabilities of a system and to estimate the cost of
evolution. Some papers focused on the co-evolution of different
elements of SPLs [7].

Based on the literature, we have found that most of
the studies addressing software evolution focus on domain
engineering, while application engineering has not received
the same interest. However, the experience has proven in
many industrial contexts that systems continue to change even
after the product derivation. This change can be the source of
many problems in the product line such as inconsistency and
duplication. Indeed, the core assets of the product line and the
artefacts of derived products are most of the time maintained
by different teams. Moreover, developers under time pressure
can forget to refer to the domain model before starting to im-
plement the changes. For these reasons and others, duplication
in SPL can easily happen. Since the requirements related to
SPL evolutions are most of the time expressed in the form of
natural language specifications, the task of model verification
becomes difficult and error-prone. In order to simplify the
detection of defects, many studies have proposed methods to
transform natural language specifications into formal or semi-
formal specifications [8][9][10].

In this paper, we describe our framework that consists of
unifying the representation of the natural language specifica-
tions and the existing domain and application models, then
detecting duplicate features using a set of algorithms. We
extend the work presented in [1] by:

• Completing the background of our work by adding an
overview of the presentation of specifications related
to SPL evolutions.

• Presenting an improved version of the proposed frame-
work and describing its different processes in details.

• Enhancing the formalization of the framework con-
cepts.



340

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Providing the pseudo-code of the algorithm of dupli-
cation detection.

• Describing the architecture and main functionality of
a support tool created to evaluate the framework.

• Applying the proposed solution to an open source case
study.

The remainder of the paper is structured as follows. Section
II gives an overview of the background of our study and
describes the problem we are dealing with. In Section III, we
present the basic concepts and the overview of the proposed
framework. In Section IV, we provide a formalization of the
basic concepts before describing the algorithm of deduplica-
tion. Section V presents the architecture and the main features
of the automated tool created based on the framework. An
application of the framework on a case study is presented in
Section VI. Section VII positions our approach with related
works. The paper is concluded in Section VIII.

II. BACKGROUND AND OBJECTIVE

In this section, we introduce the background of our study.
First, we present the SPLE paradigm. Then, we highlight the
problem of duplication when evolving products in application
engineering, and finally, we give an insight of the presenta-
tion of specifications related to SPLs, before explaining the
objective of our work.

A. Software Product Line Engineering

A SPL is defined by Clements and Northop [11] as ”a set of
intensive-software systems sharing a common, managed set of
features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common
set of core assets in a prescribed way”. The main goals of a
SPL are to reduce the cost of developing software products,
to enhance quality and to promote reusability.

The domain engineering phase of the SPLE framework is
responsible for defining the commonality and variability of
the applications of the product line. Capturing the common
features of all the applications increases the reusability of
the system, and determining the variant features allows the
production of a large number of specific applications that
satisfy different needs of customers. When the domain model
is ready, the next step consists of creating the design of
the system that contains the software components and their
relationships. Those components are then implemented and the
code of the product line is generated.

The process of creating a specific product based on a SPL
is referred to as product derivation or product instantiation.
Product derivation consists of taking a snapshot of the product
line by binding variability already defined in the domain
engineering and using it as a starting point to develop an
individual product. This process is applied during application
engineering phase and is responsible for instantiating all the
artefacts of the product line, i.e., model, design, components,
etc.

In order to document and model variability in SPL, many
approaches have been proposed. For instance, Pohl et al.
[2] proposed the orthogonal variability model to define the

variability in a dedicated model, while other papers preferred
to integrate the variability in the existing models, such as UML
models or FODA models [12]. Another approach proposed
by Salinesi et al. [13] used a constraint-based product line
language. In our approach, we will use the FODA method.

B. Duplication of Features during SPL Evolution

The goal of SPLE is to make an up-front investment to
create the platform. Indeed, during domain engineering, the
requirements of all the potential applications are captured, and
as far as possible, the scenarios of the possible changes have to
be predicted and anticipated. The evolution and maintenance of
the product line are conducted through several iterations until
the platform becomes as stable as possible. As new evolutions
arise, the domain artefacts are adapted and refined.

On the one hand, the team responsible for developing
and maintaining the product line studies the requirements of
each customer and derives specific applications that respond
to these requirements. On the other hand, a different team
takes in charge the maintenance of each application. Following
the logic of SPLE, the derived applications are not supposed
to change much, but the experience has shown that this
assumption is not always true. In fact, even after the derivation
of a specific product, new demands can be received from the
customer, either changes to existing features or addition of new
ones.

During the maintenance of a product, duplication of knowl-
edge can easily happen when evolving the model, the design
or the code. In [14], four categories of duplication are distin-
guished:

• Imposed duplication: Developers cannot avoid dupli-
cation because the technology or the environment
seems to impose it.

• Inadvertent duplication: This type of duplication
comes about as a result of mistakes in the design.
In this case, the developers are not aware of the
duplication.

• Impatient duplication: When the time is pressing and
deadlines are looming, developers get impatient and
tend to take shortcuts by implementing as quick as
possible the requirements of customers. In these con-
ditions, duplication is very likely to happen.

• Inter-developer duplication: Different people working
on one product can easily duplicate information.

In the context of SPLE, at least the three last categories
might occur. Indeed, when a derived application is shipped,
developers responsible for maintaining it do not have a clear
visibility of the domain model because another team conceived
it. Thus, developers of the application may add features which
are already satisfied in the domain model and have only to
be derived or configured. In addition, under time pressure,
developers do not refer to the application model and might
add features which are already implemented.

C. Specifications of SPL Evolutions

In software engineering projects, specifications are an im-
portant input of the requirements analysis. These specifications



341

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are most of the time written in natural language. Indeed, this
communication channel is obviously what customers often use
to express easily what they expect from the system and to
explain their perception of the problem. However, specifying
requirements in a natural language frequently makes them
prone to many defects. In [15], Meyer details seven prob-
lems with natural language specifications: noise, silence, over-
specification, contradictions, ambiguity, forward references
and wishful thinking. Lami et al. [16] focused on other defects,
namely the ambiguity, the inconsistency and the incomplete-
ness. In order to deal with these problems, several methods
have been proposed in the literature to transform natural
language specifications to formal or semi-formal specifications
[8][9][10].

In the case of software product lines, the domain model
of the entire product line and the application models of the
derived products can be expressed using feature models, while
the specifications of the new evolutions concerning a derived
product can be expressed using natural language. In order to
avoid the introduction of defects (Duplication in our case)
into the existing feature models, we need to formalize the
presentation of these specifications, which facilitates their
verification against the SPL models.

D. Objective

To the best of our knowledge, few attempts have dealt
with feature duplication when evolving derived products of
SPLs. Hence, the aim and contribution of this paper is to
provide a framework that helps developers avoid duplication
in a SPL when evolving a specific product. To this end, we
will first unify the presentation of the domain and application
feature models of the product line and the natural language
specifications of an evolution related to a derived product.
Then, an algorithm is proposed to detect the duplicated features
between these two inputs.

III. A FRAMEWORK TO AVOID DUPLICATION WHEN
EVOLVING DERIVED PRODUCTS

In this section, we first provide a short definition of the
basic concepts used in the framework, then we present the
overview of the framework.

A. Basic Concepts

Before going any further, we will give an insight of the
basic concepts used in the framework.

Requirement: According to [17], a Requirement is:

1) A condition or capability needed by a user to solve
a problem or achieve an objective.

2) A condition or capability that must or possessed by a
system or system component to satisfy a contract,
standard, specification, or other formally imposed
document.

3) A documented representation of a condition or capa-
bility as in (1) or (2).

Domain Model: A domain is a family of related products,
and the domain model is the representation of all the different
and common features of these products. There are many types

of domain models, but the most interesting are the feature
model [12] and the variability model [2].

Application Model: The model corresponding to an indi-
vidual application. It is generated by binding the variability of
the domain model in a way that satisfies the needs of a specific
customer [2].

Feature: A feature is the abstraction of functional or
non-functional requirements that help characterize the system
and must be implemented, tested, delivered, and maintained
[18][19].

Feature Model: It is the description of all the possible fea-
tures of a software product line and the relationships between
them. The most common representation of feature models is by
using the FODA feature diagram proposed by [12]. The feature
diagram is a tree-like structure where a feature is represented
by a node and sub-features by children nodes. In basic feature
models, there are four kinds of relationships between features:

• Mandatory: The relationship between a child feature
and a parent feature is mandatory when the child is
included in all the products in which its parent exists.

• Optional: The relationship between a child feature
and a parent feature is optional when the child feature
may or may not be present in a product when its parent
feature is selected.

• Alternative: The relationship between a set of child
features and a parent feature is alternative when only
one feature of the children can be included in a product
where its parent is present.

• Or: The relationship between a set of child features
and a parent feature is an or-relationship when one or
more of them can be selected in the products in which
its parent feature exists.

Variation Point: Variation points are places in a design or
implementation that identify the locations at which variation
occurs [20].

Variant: It is a single option of a variation point and is
related to the latter using a variability dependency [21].

Specification: Requirements specification is a description
of the intended behavior of a software product. It contains the
details of all the features that have to be implemented during
an evolution of the system.

B. The Framework in a Nutshell

With the large number of features in the SPLs, the manual
checking of duplication becomes a complicated and an error-
prone task. In order to deal efficiently with the problem
of duplication during the evolution of derived products, we
proposed the framework depicted in Figure 1 as an attempt
to set an automated deduplication tool. As stated in [22],
the objective of this framework is to transform the new
specifications and the existing feature models into a formal
representation, which facilitates the detection of duplication
between these two inputs.



342

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. The Overview of the Framework.

1) Models Transformation: Feature-oriented software de-
velopment (FOSD) [23] is a development paradigm based on
the FODA method. This paradigm can be used to develop
product lines and to do domain engineering. When other
methods lack clean mapping between features, architecture and
implementation artefacts, FOSD aims at generating automat-
ically the software products. Hence, tools like GUIDSL [24]
and FeatureIDE [25] have been proposed. These tools present
features in an interactive form and allow a flexible selection
of the features of a derived product.

During this step of the framework, we use the FeatureIDE
tool in order to provide a formal presentation of the domain
model of the product line and the application model of the
derived product. FeatureIDE [25] is an open source framework
for software product line engineering based on FOSD. This
framework supports the entire life-cycle of a product line,
especially domain analysis and feature modeling. Indeed, the
framework provides the possibility of presenting graphically
the feature model tree and generates automatically the corre-
sponding XML source.

2) Specification Transformation: This process of the frame-
work is responsible for transforming the natural language
specifications of a derived product to an XML document. For
this, we use the OpenNLP library [26], which is a machine
learning based toolkit for the processing of natural language
text. The remainder of this subsection details the different steps
and artefacts involved in this process. In [27], we described the
different steps of parsing:

Initial Specification: The main input of this process is
the specification of a new evolution related to a derived
product. The specification contains the features that have to
be implemented in this specific product, expressed in natural
language. In the context of our framework, we consider that a
feature is the association of a variation point and a variant.

Sentence Detector: The first step of the process consists
of detecting the punctuation characters that indicate the end
of sentences. After the detection of all sentence boundaries,
each sentence is written in a separated line. The output of this

operation is a new specification that contains a sentence per
line.

Tokenizer: This step consists of dividing the resulted
sentences of the previous step into tokens. A token can be a
word, a punctuation, a number, etc. At the end of this action, all
the tokens of the specification are separated using whitespace
characters, such as a space or line break, or by punctuation
characters.

Parser: The parser analyses the sentences of the specifica-
tion in order to determine the roles of the different tokens
based on the rules of the language grammar (e.g., noun,
verb, adjective, adverb). In our case, the language used in
the specifications is English. A parser marks all the words
of a sentence using a POS tagger (Part-Of-Speach tagger) and
converts the sentence into a tree that represents the syntactic
structure of the sentence. Figure 2 illustrates an example of
parsing for a natural language requirement related to the case
study presented in Figure 5.

Figure 2. An Example of Syntax Parsing

This action allows us to have an exact understanding of
the sentence. For example, it enables us to confirm whether
the action of a verb is affirmative or negative, and whether a
requirement is mandatory or optional.

Entity Detector: During this step, we detect semantic



343

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

entities in the specification. In our study, we are interested
in the parts of the sentences considered as variation points
and variants. To carry out this task, we use the repository and
especially the model where all the domain specifications are
tagged.

The example given in Figure 3 represents a sentence
processed by the entity detector. The output is a sentence with
markup for the detected variant.

Figure 3. An Example of Detecting Entities

In order to measure the precision of entity recognition,
we use the evaluation tool of OpenNLP that calculates the
accuracy of the used model.

3) Repository: The repository contains two components:

• The model: It is initially created based on the domain
model of the SPL and contains the different features
classified by categories, especially <variation point>
and <variant>.

• The dictionary: It contains the set of synonyms and
alternatives for all the concepts used in the system.

The repository is initially populated based on the domain
model of the product line. So that the repository follows the
evolution of the product line and its derived products, the new
concepts detected in the specification are added to the initial
repository.

4) Deduplication Tool: This tool contains a set of algo-
rithms of features verification. In this paper, we focus on the
algorithm of deduplication between the feature models and
the specifications of new evolutions. The other algorithms
are responsible for the verification of non duplication in
specifications [27] and in feature models. Before describing
the algorithm, we need to define some predicates.

Equivalence: We consider that a variation point (resp. a
variant) is equivalent to another variation point (resp. variant) if
they both implement the same functionality, which means that
they have the same semantics. The equivalents of the different
variation points and variants of the system are stored in the
repository.

Example: The variant ”On-line Sales” associated to the
variation point ”Sales” is equivalent to the new variant ”e-
sales”.

Duplication: We consider that a feature of the specification
is duplicated if the associated variation point and variant have
equivalents in the application model or the domain model.

The aim of the algorithm is thus to verify the non-
duplication of all the features of the initial specification in
order to generate a new correct specification. Indeed, for

each feature of the initial specification, the algorithm verifies
whether the associated variation point and variant have equiv-
alents in the domain model and the application model. The
detection of equivalence is carried out based on the Repository
content.

5) Output: The output of the framework is a duplication-
free specification that contains distinct features, and the list
of the duplicate features. The two outputs are sent to the user
in order to verify his initial requirements and change them in
case of need.

IV. AN ALGORITHM FOR DUPLICATION-FREE SPL

In this section, we provide the formalization of the basic
concepts used in the framework, then we describe the dedu-
plication algorithm. The inputs of the algorithm, as depicted
in Figure 1, are the XML trees of the domain model, the
application model and the specification.

A. Formalizing the Basic Concepts

Prior to explaining the algorithm, a certain number of
predicates must be defined. We denote by D the domain model.
PD is the set of variation points of D, and VD is the set of
variants of D.

PD = {pd1, pd2, . . . , pdm}

∀pdi ∈ PD ∃V Di where V Di = {vdij | j ∈ N}

Thus:

V D =

m⋃
i=1

V Di

Similarly, we denote by A the application model of a derived
application. PA is the set of variation points of A, and VA is
the set of variants of A.

PA = {pa1, pa2, . . . , pam}

∀pai ∈ PA ∃V Ai where V Ai = {vaij | j ∈ N}

Thus:

V A =

m⋃
i=1

V Ai

As a reminder:

PA ⊆ PD and V A ⊆ V D

Finally, we denote by S the specification of a new evolution. P
is the set of variation points of S, and V is the set of variants
of S.

P = {p1, p2, . . . , pn}

∀pi ∈ P ∃Vi where Vi = {vij | j ∈ N}

Thus:

V =

n⋃
i=1

Vi

It has to be noted that P and V are not subsets of PA and
VA.



344

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. The Algorithms of Duplication Detection

In order to verify whether a feature is duplicated when
implementing a new specification, we propose two algorithms
[22]. The first algorithm (Algorithm 1) carries out a compar-
ison between the specification and the domain model. In the
second algorithm (Algorithm 2), the comparison is between the
specification and the application model of a derived product.

Algorithm 1 Detecting duplication between S and D

Principal Lookup :
for each pi ∈ P do

for each pdk ∈ PD do
if Equiv(pi, pdk) then

Secondary Lookup :
for each vij ∈ Vi do

for each vdkl ∈ V Dk do
if Equiv(vij , vdkl) then

NoticeDuplication(pi, vij , pdk, vdkl)
Continue Secondary Lookup

end if
end for

end for
Continue Principal Lookup

end if
end for

end for

Algorithm 2 Detecting duplication between S and A

Principal Lookup :
for each pi ∈ P do

for each pak ∈ PA do
if Equiv(pi, pak) then

Secondary Lookup :
for each vij ∈ Vi do

for each vakl ∈ V Ak do
if Equiv(vij , vakl) then

NoticeDuplication(pi, vij , pak, vakl)
Continue Secondary Lookup

end if
end for

end for
Continue Principal Lookup

end if
end for

end for

The first loop of these algorithms consists of comparing
each variation point of the specification with the variation
points of the feature model. When an equivalent is found,
the algorithms start another comparison between the variants
corresponding to the variation point of the specification and the
variants related to the equivalent variation point of the feature
model. If a variant is detected, the feature corresponding to
the pair (variation point, variant) is considered as duplication.

Although the two algorithms are similar, but it is necessary
to implement them both because the decision when detecting a
duplication will be different. Indeed, if the new feature exists
already in the application model, nothing has to be done.
However, if the new feature exists in the domain model but
not in the application model, a derivation of this feature is
necessary.

Result:

For each algorithm, the duplicate features are stored in a
log file that will be sent to the customer in order to inform him

of the duplication and its location. When the customer confirms
the duplication, the duplicate features are removed from the
initial specification and a new duplication-free specification is
generated.

V. AUTOMATED TOOL

At the aim of automatizing the proposed framework, a
support tool is currently under development [28]. In this
section, we describe the implementation of this tool. Then,
we present some of the features it provides.

A. Tool Implementation

The tool is a thick-client java-based application built
around Eclipse IDE. A major factor of this choice is the
adaptability of Eclipse and its large community of plugins
compared to its competitors. Figure 4 presents the architecture
of the proposed tool.

Figure 4. The Tool Architecture.

The tool is composed of four layers:

• Presentation Layer: This layer enables the communi-
cation between the user and the application. The tool
interface is created using SWT [29], which is an open
source widget toolkit for Java designed to provide
efficient, portable access to the user-interface facilities
of the operating systems on which it is implemented.
In our case, the application is built on Windows.
So, SWT will use Windows facilities to create the
interface. Another aspect managed in this layer is
the visualization of the processed specifications as the
form of a graph. For this, we use Prefuse [30], which



345

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. The Domain Feature Model of FeatureAMP.

is an open source toolkit that provides a visualization
framework for the Java programming language.

• Business Layer: This layer is responsible for the
definition of business operations. In our tool, we
process textual specifications and we transform them
to a tree-like document using OpenNLP. In addition,
we implement the algorithms of duplication detection
using Java code.

• Data Access Layer: This layer provides data to the
Business Layer and updates the Data Layer with new
information. For this, we use ActiveJDBC [31].

• Data Layer: In order to store the content of the
repository, we use PostgreSQL [32], which is an
open source object-relational database system. In the
repository are stored all the domain features, their
categories, and their synonyms.

B. Tool Features

The final goal of the automated tool is to detect duplication
between new specifications and feature models during SPL
evolution. Thus, the main features of the tool are as follows:

• The upload of a textual specification and an XML
feature model.

• The transformation of a specification into a tree.

• The detection of duplicate features in a specification.

• The detection of duplicate features in a feature model.

• The comparison of features between a feature model
and a specification to detect duplication between them.

• The creation and update of the repository.

The tool provides also some auxiliary features that help
achieve the target goal:

• The visualization of the processed specification as a
graph.

• The distinction of duplicate features with a different
color in the graph.

• The binding of new variants with the corresponding
variation points in the repository.

• The manual and automatic update of the repository
based on a new specification or a new feature model.

• The re-processing of the specification after a modifi-
cation of the repository.

• The generation of a log with information about the
detected duplicate features.

• The sending of the log to the user via email.

VI. CASE STUDY

In a previous work [28], we evaluated our framework using
a CRM SPL. In the feature model of this tool, the features
are expressed in the form of sentences. In this paper, we will
apply the framework on a different case study which is the
FeatureAMP tool [33]. FeatureAMP is an open source audio
player product line. The features of this tool are expressed us-
ing one word, which makes our task more difficult, because we
have to transform the word into a sentence before comparing
it to the new requirements.

A. The Feature Models

Figure 5 depicts the domain feature model of FeatureAMP.
This tool supports two formats, MP3 and WAV, and provides
many functionality such as the play-list management and the
volume control.

The main interface of our tool presented in Figure 6
contains two main entries (File) and (Repository). The first
entry enables the import of the specification and the feature
model. The second entry is used to display the content of the
repository.

In order to upload the XML source of the domain model,
we use the option ”Open Feature Model”. The interface
presented in Figure 7 displays the uploaded feature model and



346

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. The Main Interface of the Automated Tool.

gives the possibility to load it into the repository. Initially, the
creation of the repository was done manually, but its update
can be automatic to load the new features from specifications
or application feature models.

Figure 7. The Feature Model Loading.

B. The Specification

We consider the specification of a new evolution of the
product line. The specification is displayed in Figure 8. It
contains new features to be introduced in the application, but
we added intentionally other duplicate features that already
exist in the domain model.

When we press the button ”Process”, the specification is
processed and transformed into an XML document. In Figure
9 is presented the graphic form of the generated XML. This
presentation facilitates the visualization of the different new
features introduced by the specification. In addition, the graph
distinguishes the new variants added by the specification by
relating them to the node ”unbound variants”. The user will

Figure 8. The Specification of the new evolution.

be able to bind these variants with a variation point from the
repository.

Figure 9. The graph corresponding to the specification.

This interface provides other features such as the display
of the generated XML, the re-processing of the specification
after a modification of the repository, the comparison between
the specification and the feature model to detect duplication
between them, the refreshment of the repository after the
binding of new features, and the generation of the log.

C. The Duplication Detection

The graph generated for the specification facilitates the
distinction of duplicate features inside the specification by pre-
senting them in a different color. For our test, the specification
does not contain duplications as displayed in the top left corner
of the interface.

If we want to search duplications between the specification
and the feature model, we use the button ”Compare to feature
models”. The result of this operation is illustrated in Figure
10. Two duplications are detected in the domain model, which
represents 20% of the features in the specification. The per-
centages calculated in this interface will allow us to estimate
the gain in the development cost. To visualize the details of
the detected duplications, we can generate the log.

In this test, we detected the duplication between the
specification and the domain model, but the same test can
be performed between the specification and the application



347

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. The result of duplication detection.

model. Besides, it has to be noted that in this paper, we
focused on the evaluation of the efficacy of the proposed
framework, which means, whether the framework allows the
detection of duplication or not. Ongoing work consists of
testing the effectiveness of the solution by applying it to a
complex product line and carrying out a quantitative evaluation
to estimate the effort gained by using the proposed approach.

VII. RELATED WORK

In this section, we provide an overview of the studies most
relevant to our work by categorizing them according to the
issues addressed in this paper.

A. Evolution of Feature and Variability Models

A plethora of studies have dealt with evolution of fea-
ture and variability models. For instance, in order to reduce
complexity and improve the maintenance of variability in
large-scale product lines, Dhungana et al. [34] proposed a
method to organize product lines as a set of interrelated model
fragments that define the variability of particular parts of the
system, and presented a support to semi-automatically merge
the different fragments into a complete variability model. The
same approach was proposed by Pleuss et al. [35] for feature
models.

White et al. [36] presents a new approach for handling
feature model drift, which represents the problem of introduc-
ing one or more changes in a feature model’s constraints. For
this, they propose a technique called MUSCLES that consists
of transforming multi-step feature configuration problems into
Constraint Satisfaction Problems (CSPs), then uses a constraint
solver to generate a series of configurations that meet the multi-
step constraints.

Cordy et al. [37] defined two particular types of features,
regulative features and conservative features, and explained
how the addition of these features to the SPL can reduce the
overhead of model-checking.

The common denominator of the cited studies is that
they all consider evolution in domain engineering, while our
approach deals with evolution in application engineering.

B. Model Defects in SPL

Several papers in the literature have addressed model
defects caused by SPL Evolution. For example, Guo and Wang
[38] proposed to limit the consistency maintenance to the part
of the feature model that is affected by the requested change
instead of the whole feature model.

Romero et al. [39] introduced SPLEmma, a generic evolu-
tion framework that enables the validation of controlled SPL
evolution by following a Model Driven Engineering approach.
This study focused on three main challenges: SPL consistency

during evolution, the impact on the family of products and
SPL heterogeneity.

In [40], Mazo provides a classification of different verifi-
cation criteria of the product line model that he categorizes
into four families: expressiveness criteria, consistency criteria,
error-prone criteria and redundancy-free criteria. Redundancy
can easily be confused with Duplication, but it is completely
different, because Mazo focuses on redundancy of dependen-
cies and not redundancy of features. The same study defines
also different conformance checking criteria, among which two
features should not have the same name in the same model.
This is also different from our approach, which is based on
equivalence and not only equality of features.

In order to locate inconsistency in the domain feature
model of a SPL, Yu [41] provides a new method to construct
traceability between requirements and features. It consists of
creating individual application Feature Tree Models (AFTMs)
and establishing traceability between each AFTM and its
corresponding requirements. It finally merges all the AFTMs
to extract the Domain Feature Tree Model (DFTM), which
enables to figure out the traceability between domain re-
quirements and DFTM. Using this method helps constructing
automatically the domain feature model from requirements. It
also helps locate affected requirements while features change
or vice versa, which makes it easier to detect inconsistencies.
However, this approach is different from our own one, because
we suppose that the domain and application models exist, our
objective is hence to construct a more formal presentation
of them to facilitate the search of the new features in these
models.

Kamalrudin et al. [42] use the automated tracing tool
Marama that gives the possibility to users to capture their
requirements and automatically generate the Essential Use
Cases (EUC). This tool supports the inconsistency checking
between the textual requirements, the abstract interactions and
the EUCs. Unlike our approach, this one focuses on use cases
instead of feature models.

Another approach proposed by Barreiros and Moreira [43]
consists of including soft constraints in a feature model, which
brings additional semantics that allow improved consistency
and sanity checks. Hence, a framework is provided that injects
soft constraints into publicly available feature models and
recreates typical patterns of use. These features are then
subjected to automated analysis to assess the prevalence of the
proposed method. While this approach deals with constraint
inconsistency, our own one focuses on feature duplication.

C. Evolution in Application Engineering

In the literature, the evolution in domain engineering have
been discussed in many papers, while few studies focuses on
application engineering. Among these studies, Carbon et al.
[44] presented an empirical study, which consists of adapting
the planning game to the product line context in order to
introduce a lightweight feedback process from application to
family engineering at Testo, but it does not provide a general
approach that is applicable to all SPLs.

Hallsteinsen et al. [45] introduced the concept of Dynamic
Software Product Lines (DSPL), which provides mechanisms



348

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for binding variation points at runtime in order to keep up with
fluctuations in user needs. This approach does not explain in
details how the variability is managed between application and
domain engineering.

Thao [46] proposed a versioning system to support the
evolution of product lines and change propagation between
core assets and derived products. However, this study also
does not provide a method to manage features in application
engineering.

A novel approach proposed by [47] analyses the co-
evolution of domain and application feature models. It is based
on cladistics classification used in biology to construct the
evolutionary trees of the different models, then compares the
trees using mathematical analysis and provides an algorithm
to restore the perfect co-evolution of the software product line
and its products.

Our approach is different from the cited approaches be-
cause it provides a feature-oriented approach to manage the
evolution of derived products in a way that ensures non-
duplication in the SPL feature models.

VIII. CONCLUSION AND FUTURE WORK

In the literature, many studies have addressed the evolution
in SPLs, but the majority of them focused on the domain
engineering phase, while application engineering has not been
thoroughly discussed. Based on industrial experience, products
are also likely to evolve even after their derivation, and this
evolution can cause many problems especially duplication in
the different artefacts of the product line. In most software
engineering projects, evolutions are written in the form of
natural language specifications because it is the simplest way
for customers to express their requirements. At the aim of
avoiding duplication when introducing the new features of
these specifications into the existing SPL feature models, we
proposed in this paper a framework with two main objectives.
The first objective is to transform the feature models and
the specifications to a more formal representation, and the
second objective is to apply an algorithm that compares the
new features proposed in the specifications with the features
of the existing models in order to detect feature duplication.
At the aim of instantiate the framework, we have started
the development of an automated tool whose architecture
was described in this paper. The evaluation of this tool was
performed using the FeatureAMP product line.

In a future work, we intend to apply the framework on a
large scale product line, which will enable us to carry out
a quantitative evaluation to prove the effectiveness of our
solution.

REFERENCES

[1] A. Khtira, A. Benlarabi, and B. El Asri, ”Towards Duplication-Free
Feature Models when Evolving Software Product Lines,” Proc. 9th In-
ternational Conference on Software Engineering Advances (ICSEA’14),
Oct. 2014, pp. 107-113.

[2] K. Pohl, G. Böckle, and F. Van Der Linden, Software Product Line
Engineering Foundations, Principles, and Techniques, Berlin, Germany:
Springer-Verlag, 2005.

[3] N. H. Madhavji, J. Fernandez-Ramil, and D. Perry, Software Evolution
and Feedback: Theory and Practice, John Wiley & Sons, 2006, ISBN
978-0-470-87180-5.

[4] Y. Xue, Z. Xing, and S. Jarzabek, ”Understanding feature evolution in a
family of product variants,” Proc. 17th Working Conference on Reverse
Engineering (WCRE’10), IEEE, Oct. 2010, pp. 109-118.

[5] S. Urli, M. Blay-Fornarino, P. Collet, and S. Mosser, ”Using composite
feature models to support agile software product line evolution,” Proc.
6th International Workshop on Models and Evolution, ACM, Oct. 2012,
pp. 21-26.

[6] A. Ahmad, P. Jamshidi, and C. Pahl, ”A Framework for Acquisition
and Application of Software Architecture Evolution Knowledge,” ACM
SIGSOFT Software Engineering Notes, vol. 38, no. 5, Sept. 2013, pp.
65-71.

[7] C. Seidl, F. Heidenreich, and U. Assmann, ”Co-evolution of models and
feature mapping in Software Product Lines,” Proc. SPLC’12, ACM, New
York, USA, 2012, Vol. 1, pp. 76-85.

[8] J. Holtmann, J. Meyer, and M. von Detten, ”Automatic validation and
correction of formalized, textual requirements,” In 4th International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW’11), IEEE, Mar. 2011, pp. 486-495.

[9] A. Fatwanto, ”Software requirements specification analysis using natural
language processing technique,” In 2013 International Conference on QiR
(Quality in Research), IEEE, June 2013, pp. 105-110.

[10] M. G. Ilieva and O. Ormandjieva, ”Automatic transition of natural
language software requirements specification into formal presentation,”
In Natural Language Processing and Information Systems, Springer
Berlin Heidelberg, 2005, pp. 392-397.

[11] P. Clements and L. Northop, Software Product Lines - Practices and
Patterns, Boston: Addison-Wesley, 2002.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, ”Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Technical Report
CMU/SEI-90-TR-21, Carnegie Mellon University, Software Engineering
Institute, Nov. 1990.

[13] C. Salinesi, R. Mazo, O. Djebbi, D. Diaz, and A. Lora-Michiels,
”Constraints: the Core of Product Line Engineering,” Proc. RCIS’11,
IEEE, Guadeloupe-French West Indies, France, May 19-21, 2011, pp.
1-10.

[14] A. Hunt and D. Thomas, The pragmatic programmer: from journeyman
to master, Addison-Wesley Professional, 2000.

[15] B. Meyer, ”On formalism in specifications,” IEEE Software, vol. 2, no.
1, pp. 6-26, 1985.

[16] G. Lami, S. Gnesi, F. Fabbrini, M. Fusani, and G. Trentanni, ”An au-
tomatic tool for the analysis of natural language requirements,” Informe
tcnico, CNR Information Science and Technology Institute, Pisa, Italia,
Sept. 2004.

[17] IEEE, IEEE Standard Glossary of Software Engineering Terminology
(IEEE Std 610.12-1990), IEEE Computer Society, 1990.

[18] K. C. Kang et al., ”FORM: A feature-oriented reuse method with
domain-specific reference architectures,” Annals of Software Engineer-
ing, vol. 5, no. 1, 1998, pp. 143-168.

[19] J. Bosch, Design and use of software architectures: adopting and
evolving a product-line approach, New York, USA: ACM Press/Addison-
Wesley, 2000.

[20] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse. Architecture,
Process and Organization for Business Success, Addison-Wesley, ISBN:
0-201-92476-5, 1997.

[21] S. Creff, ”Une modélisation de la variabilité multidimensionnelle pour
une évolution incrémentale des lignes de produits,” Doctoral dissertation,
University of Rennes 1, 2003.

[22] A. Khtira, A. Benlarabi, and B. El Asri, ”Duplication Detection When
Evolving Feature Models of Software Product Lines,” Information, vol.
6, no. 4, pp. 592-612, Oct. 2015.

[23] S. Apel and C. Kästner, ”An Overview of Feature-Oriented Software
Development,” Journal of Object Technology (JOT), vol. 8, pp. 49-84,
2009.

[24] D. Batory, ”Feature Models, Grammars, and Propositional Formulas,”
Proc. The International Software Product Line Conference (SPLC),
Springer-Verlag, vol. 3714 of Lecture Notes in Computer Science, pp.
7-20, 2005.

[25] C. Kastner et al., ”FeatureIDE: A Tool Framework for Feature-Oriented



349

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Software Development,” Proc. 31st International Conference on Software
Engineering, 2009, pp. 611-614.

[26] The Apache Software Foundation, ”OpenNLP,” opennlp.apache.org.
[27] A. Khtira, A. Benlarabi, and B. El Asri, ”Detecting Feature Duplication

in Natural Language Specifications when Evolving Software Product
Lines,” Proc. The 10th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE’15), Apr. 2015.

[28] A. Khtira, A. Benlarabi, and B. El Asri, ”A Tool Support for Automatic
Detection of Duplicate Features during Software Product Lines Evolu-
tion,” In IJCSI International Journal of Computer Science Issues, vol.
12, no. 4, pp. 1-10, July 2015.

[29] The Eclipse Foundation, ”SWT: The Standard Widget Toolkit”,
eclipse.org/swt/ [retrieved: July, 2015].

[30] The prefuse visualization toolkit, prefuse.org/ [retrieved: July, 2015].
[31] JavaLite, ”ActiveJDBC”, javalite.io/activejdbc/ [retrieved: August,

2015].
[32] The PostgreSQL Global Development Group, ”About PostgreSQL”,

postgresql.org/about/ [retrieved: July, 2015].
[33] SPL2go, ”FeatureAMP”, spl2go.cs.ovgu.de/projects/59 [retrieved: Au-

gust, 2015].
[34] D. Dhungana, P. Grünbacher, R. Rabiser, and T. Neumayer, ”Structuring

the modeling space and supporting evolution in software product line
engineering,” Journal of Systems and Software, vol. 83, no. 7, 2010, pp.
1108-1122.

[35] A. Pleuss, G. Botterweck, D. Dhungana, A. Polzer, and S. Kowalewski,
”Model-driven support for product line evolution on feature level,”
Journal of Systems and Software, vol. 85, no. 10, 2012, pp. 2261-2274.

[36] J. White et al., ”Evolving feature model configurations in software
product lines,” Journal of Systems and Software, vol. 87, pp.119-136,
2014.

[37] M. Cordy, A. Classen, P. Y. Schobbens, P. Heymans, and A. Legay,
”Managing evolution in software product lines: A model-checking per-
spective,” Proc. 6th International Workshop on Variability Modeling of
Software-Intensive Systems, ACM, Jan. 2012, pp. 183-191.

[38] J. Guo and Y. Wang, ”Towards consistent evolution of feature models,”
In. Software Product Lines: Going Beyond, Springer Berlin Heidelberg,
2010, pp. 451-455.

[39] D. Romero et al., ”SPLEMMA: a generic framework for controlled-
evolution of software product lines,” Proc. 17th International Software
Product Line Conference co-located workshops, ACM, 2013, pp. 59-66.

[40] R. Mazo, ”A generic approach for automated verification of product
line models,” Ph.D. thesis, Pantheon-Sorbonne University, 2011.

[41] D. Yu, P. Geng, and W. Wu, ”Constructing traceability between features
and requirements for software product line engineering,” In 19th Asia-
Pacific Software Engineering Conference (APSEC’12), IEEE, vol. 2, pp.
27-34, Dec. 2012.

[42] M. Kamalrudin, J. Grundy, and J. Hosking, ”Managing consistency
between textual requirements, abstract interactions and Essential Use
Cases,” In Computer Software and Applications Conference (COMP-
SAC), 2010 IEEE 34th Annual, IEEE, July 2010, pp. 327-336.

[43] J. Barreiros and A. Moreira, ”Soft Constraints in Feature Models:
An Experimental Assessment,” International Journal On Advances in
Software, vol. 5, no. 3 and 4, 2012, pp. 252-262.

[44] R. Carbon, J. Knodel, D. Muthig, and G. Meier, ”Providing feedback
from application to family engineering-the product line planning game at
the testo ag,” Proc. 12th International Software Product Line Conference
(SPLC’08), IEEE, Sept. 2008, pp. 180-189.

[45] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, ”Dynamic
software product lines,” Computer, vol. 41, no. 4, 2008, pp. 93-95.

[46] C. Thao, ”Managing evolution of software product line,” Proc. 34th
International Conference on Software Engineering (ICSE’12), IEEE, Jun.
2012, pp. 1619-1621.

[47] A. Benlarabi, A. Khtira, and B. El Asri, ”An Analysis of Domain
and Application Engineering Co-evolution for Software Product Lines
based on Cladistics: A Case Study,” Proc. 9th International Conference
on Software Engineering Advances (ICSEA’14), Oct. 2014, pp. 495-501.


