
491

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Cloud Computing System Based on a DHT Structured Using an Hyperbolic Tree

Telesphore Tiendrebeogo

Polytechnic University of Bobo-Dioulasso
Email: tetiendreb@gmail.com

Oumarou Sié

University of Ouagadougou
Email: oumarou.sie@gmail.com

Abstract—During the last decade, Cloud Computing (CC) has
been quickly adopted worldwide, and several solutions have
emerged. Cloud computing is used to provide storage service,
computing power and flexibility to end-users, in order to access
data from anywhere at any time. Thus, Cloud Computing is
a subscription-based service where you can obtain networked
storage space and computer resources. The cloud makes it
possible for you to access your information from anywhere at any
time. Distributed Hash Table (DHT) plays an important role in
distributed systems and applications, particularly in environments
distributed on a large scale. In the model of normal Client/Server
(C/S model), as we centralize most of the resources on the server,
it becomes the most important part as well as the bottleneck and
the weak point of the system. On the contrary, distributed model
(a typical is Peer-to-Peer (P2P) model) distributes the resources
on the nodes in the system. In this paper, we propose a new
system of Cloud Computing based on our DHT structured using
an hyperbolic tree, which organizes the distributed services so
well that peers only need to know part of the system they can get
services efficiently. DHT provides two basic operations: retrieves
service from DHT and stores service into DHT, which is so simple
and graceful, but is suitable for a great variety of resources
(Applications, Infrastructures, Platforms), and provides good
robustness and high efficiency, especially in large-scale systems.
Resources as services are distributed by using virtual coordinates
taken in the hyperbolic plane. We use the Poincaré disk model
and we perform and evaluate our cloud structure performances.
First, we show that our solution is scalable, consistent, reliable.
Next, we compare the performances realized by the substitution
strategy, which we propose with the strategy of classic replication
in a dynamic context.

Keywords–Cloud Computing; DHT; Hyperbolic Tree; Consis-
tent; Reliable; Cloud Services; Storage; Discovery.

I. INTRODUCTION

For decades, extensive work has been done for Distributed
Hash Table (DHT) [1] [2] [3] [4]. In academia, researchers
have proposed several variants of DHT and improvements,
which manage the resources in many kinds of structures,
providing abundant choices for the construction of distributed
system. Cloud computing (CC) has recently emerged as a com-
pelling paradigm for managing and delivering services over the
internet. The rise of Cloud computing is rapidly changing the
landscape of information technology, and ultimately turning
the long-held promise of utility computing into a reality. The
latest emergence of Cloud computing is a significant step to-
wards realizing this utility computing model since it is heavily
driven by industry vendors. Thus, Cloud computing centre
provides on-line storage and retrieving functionalities, and the
services are distributed to tens of thousands of machines in a
distributed way.

Figure 1. Cloud computing model [5].

In Figure 1, it is important to notice that many devices can
interact between them by services exchanges. These services
can be as well diverse as varied, going of the monitoring to
the network via databases.

Therefore, a distributed storage system seems to be a good
choice to manage the gigantic storage. Many big players in the
software industry, such as Microsoft, as well as other Internet
technology heavyweights, including Google and Amazon, are
joining the development of cloud services [6] [7] [8] [9] [10]
[11]. Several businesses, also those not technically oriented,
want to explore the possibilities and benefits of CC [12].
However, there is a lack of standardization of Cloud computing
and Services (CCSs) [7] [8] [13], which makes interoperability
when working with multiple services or migrating to new
services difficult. Further, there is a big marketing hype around
CC, where on-line service providers re-brand their products to
be part of the cloud movement [14].

There are a certain number of characteristics associated to
the Cloud computing, as follow: variety of resources, Internet
centric, virtualization, scalability, automatic adaptation, re-
source optimization, service SLAs (Service-Level Agreements)
and infrastructure SLAs [15]. The Cloud computing corre-
sponds to a virtual computation resource with the possibility
to maintain and to manage by itself. From a structural point
of view, the resources may be (Figure 2):

492

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) IaaS (Infrastructure as a Service).
2) PaaS (Platform as a Service).
3) SaaS (Software as a Service).

In Figure 2, the red layers represent layers managed by
the providers of cloud resources and the green layers represent
those managed by the users of services. Thus, it presents the
services characteristics as shown by Chunye et al. [16]. Some
defining characteristics of SaaS include:

1) Web access to commercial software.
2) Software is managed from a central location.
3) Software delivered in a “one to many” model.
4) Users not required to handle software upgrades and

patches.
5) Application Programming Interfaces (APIs) allow for

integration between different pieces of software.

Figure 2. Cloud services model [17].

There are a number of different takes on what constitutes
PaaS, but some basic characteristics include:

1) Services to develop, test, deploy, host and maintain
applications in the same integrated development en-
vironment. All the varying services needed to fulfill
the application development process.

2) Web based user interface creation tools help to create,
modify, test and deploy different User Interface (UI)
scenarios.

3) Multi-tenant architecture where multiple concurrent
users utilize the same development application.

4) Built in scalability of deployed software, including
load balancing and failover.

5) Integration with web services and databases via com-
mon standards.

6) Support for development team collaboration - some
PaaS solutions include project planning and commu-
nication tools.

7) Tools to handle billing and subscription management.

As with the two previous (SaaS and PaaS), IaaS is a rapidly
developing field. That said, there are some core characteristics,
which describe what IaaS is. IaaS is generally accepted to
comply with the following:

1) Resources are distributed as a service.
2) Allows for dynamic scaling.

3) Has a variable cost, utility pricing model.
4) Generally includes multiple users on a single piece

of hardware.

Thus, for example, it may realize them for a lot of large-
scale server cluster structures, including computation servers,
storage servers, the bandwidth resources [18]. Cloud platform
permits to manage both a large number of computer resources
and to store a large number of data. Resource allocation is
made in Cloud platform such as user feel that he uses an
infinitive amount of resources. In this paper, we make the
following contributions:

1) We introduce a new structure of Cloud computing
using an hyperbolic tree, in which each node is as-
sociated with a resource server’s and takes of virtual
coordinates into hyperbolic space of the model of the
Poincaré disk.

2) We show how Cloud infrastructures can communicate
by greedy routing algorithm using [19].

3) We present naming and binding principle in our
solution.

4) We perform some simulations, furthermore:
• We show that this structure provides scalabil-

ity and consistence in database services like
data storage and retrieving.

• We present the results concerning the Floating
point precision.

• We propose a new strategy of resistance in the
phenomenon of churn, which we called sub-
stitution strategy and we show that it allows
to reach satisfactory results in terms of the
success rate of the storage and lookup queries
of services. Indeed, this strategy allows to
improve the availability of the resources on
the servers of services.

The remainder of this paper is organized as follows. Section
II gives a brief overview of the related previous work. Section
III highlights some properties of the hyperbolic plane when
represented by the Poincaré disk model. Section IV defines
the local addressing and greedy routing algorithms of cloud
computing system. Section V defines the binding algorithm
of our Cloud system. Section VI presents the results of
our practicability evaluation obtained by simulations and we
conclude in Section VII.

II. RELATED WORK

The main differences between the CCSs that are deployed
are related to the type of service offered, such as storage space
and computing power, platforms for own software deployment,
or online software applications, ranging from web-email to
business analysis tools. Cloud infrastructure services typically
offer virtualization platforms, which are an evolution of the
virtual private server offerings that are already known for years
[20]. The offers of Cloud platform services include the use of
the underlying infrastructure, such as servers, network, storage
or operating systems, over which the customers have no
control, as it is abstracted away below the platform [20] [21].
Cloud software offerings typically provide specific, already-
created applications running on a cloud infrastructure, such
as simple storage service [22]. A very well known SaaS is
the web-based e-mail. Most software CCSs are web-based

493

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

applications, which can be accessed from various client devices
through a thin client interface, such as a web browser. An
Internet-based storage system with strong persistence, high
availability, scalability and security is required. Obviously,
the centralized methods is not a good way because it lacks
of scalability and has the single point of failure problem. If
the centre fails, all the owners lose the capability to access
their data, which may cause inestimable losses. Besides, it
is impossible to store all the data on one machine, though
it is facility for management. Even in the cloud computing
centre, which provides on-line storage functionality, the data
is distributed to tens of thousands of machines in a distributed
way. Therefore, a distributed storage system seems to be a
good choice to manage the gigantic storage.

How to organize so many kinds of data efficiently is
the first hit. DHT with its wonderful structure is suitable to
the distributed environment. DHT provides a high efficient
data management scheme that each node in the system is
responsible to a part of the data. It supports exact and quick
routing algorithm to ensure users retrieving their data accu-
rately and timely. Furthermore, replication and backup, fault-
tolerant and data recovery, persistent access and update, which
are concerned in the storage area are not difficult to DHT.
Recently, many researches have proposed a lot of systems
such as Chord based Session Management Framework for
Software as a Service Cloud (CSMC) [23], MingCloud based
on Kademlia algorithm [24], Search on the Clou which is built
on Pastry [25]. These systems are based on the DHT structure
such as MSPastry [26], Tapestry [27], Kademlia [28], CAN,
and Chord [29].

Furthermore, an Efficient Multi-dimensional Index with
Node Cube for Cloud computing system [30] has been
proposed by Xiangyu Zhang et al., also the RT-CAN index
in their Cloud database management system in 2010 [31] has
been built by Jinbao Wang et al. Both these two schemes are
based respectively on k-d tree and R-tree.

Our work follows the framework proposed in [32]. How-
ever, to support multi-dimensional data, new routing algo-
rithms and storage and retrieve queries processing algorithms
are proposed. Furthermore, our indexing structure reduces the
amount of hops for transfer inside the Cloud and facilitates the
deployment of database back-end applications.

III. PRACTICAL USE OF THE HYPERBOLIC GEOMETRY

In this section, we present some properties concerning
hyperbolic geometry. Geometries Hyperbolic show similarity
with regard to the Euclidian geometry. Both have the same
concepts of distances and angles, and they have many com-
mon theorems. The two-dimensional hyperbolic plane is the
simplest hyperbolic space and has a constant negative curvature
equal to -1 as opposed to the Euclidean space, which is not
curved. The model that we use to represent the hyperbolic
plane is called the Poincaré disk model. In this model, each
point is referred by complex coordinates. Beardon, Kleinberg,
and Krioukov have detailed all the concepts necessary to
understand the hyperbolic plane [33]–[35].

Next, each line of H2 splits the plane in several areas
as in the Euclidean plane, but there are a certain number
of differences. In the Euclidean space, one of elementary
properties is the impossibility to create more than two half
planes without having them intersect. Our embedding is based

on the geometric property of the hyperbolic plane, which
allows to create distinct areas called half planes. As explained
by Miquel in [36], in the hyperbolic plane, we can create n half
spaces pair wise disjoint whatever n. Our embedded algorithm
is based on this property (red line in Figure 3).

Another essential property is that we can split the hyper-
bolic plane with polygons of any sizes, called p-gons. Each
tessellation is represented by a notation of the form {p, q}
where each polygon has p sides with q of them at each vertex.
This form is called a schläfli symbol. There exists a hyperbolic
tessellation {p, q} for every couple {p, q} that satisfy the
following relation: (p− 2) ∗ (q − 2) > 4.

In a splitting, p is the number of sides of the polygons of
the primal (the black edges and green vertices in Figure 3)
and q is the number of sides of the polygons of the dual (the
red triangles in Figure 3).

n1 [0.5;0]

n2 [-0.25;0.433]

n3 [-0.25;-0.433]

n0 [0;0]

n5

n4

n6

n7

n8

n9

Root

Figure 3. 3-regular tree in the hyperbolic plane.

Our method is to partition the plane and address each node
uniquely. We set p to infinity, thus transforming the primal
into a regular tree of degree q. The dual is then tessellated
with an infinite number of q-gons. This particular tiling splits
the hyperbolic plane in distinct spaces and constructs our
embedded tree. Figure 3 is an example of a hyperbolic tree
with q = 3 associated with the Poincaré disk model, in which
the hyperbolic plane is represented by an open unit disk of
radius 1. Thus, in this model:

• Points are represented by Euclidean points within this
unit disk.

• Lines are arcs of circles intersecting the disk and
meeting its boundaries at right angles.

• Distances between any two points z and w in the
hyperbolic plane (dH) are given by curves minimizing
the distance between these two points and are called
geodesics of the hyperbolic plane.

494

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To compute hyperbolic distance means to use the Poincaré
metric, which is an isometric invariant:

dH(z, w) = argcosh(1 + 2∆) (1)

with:

∆ =
|z − w|2

(1− |z|2)(1− |w|2)
(2)

because:
sinh2

1

2
dH(z, w) = ∆

and

cosh2
1

2
dH(z, w) =

|1− zw̄|2

(1− |z|2)(1− |w|2)

For more details on the Poincaré metric we refer the reader to
the proof in [33]. The hyperbolic distance dH(z, w) is additive
along geodesics and is a Riemann’s metric. The authors of [33]
do the sketch of an important property for greedy routing:
the strict inequality in the triangle inequality. The following
relation permits to compute this metric:

tanh
1

2
dH(z, w) =

|z − w|
|1− zw̄|

(3)

where w̄ is the complex conjugate of w.

In theoretical perspective, the hyperbolic plane is unlimited.
However, to carry out measurements, it is necessary to use a
modelled representation of this plane and to define a precision
threshold for the calculations.

IV. GREEDY ROUTING IN THE HYPERBOLIC PLANE

In this section, we present how we create the hyperbolic
addressing tree for cloud services storage and how we localize
these latters in our cloud. We propose here a dynamic, scalable,
and reliable hyperbolic greedy routing algorithm [37]. The
first step in the creation of our cloud computing based on
hyperbolic-tree of services nodes is to start the first services
nodes and to define the degree of the addressing tree.

We recall that the hyperbolic coordinates (i.e., a complex
number) of a services’ servers of the addressing tree are used
as the corresponding address to the services’ servers in the
cloud. A node of services of the tree can provide the addresses
corresponding to its children in the hyperbolic-tree. The degree
of this latter determines how many addresses each services’
servers will be able to attribute for news servers of services
connexions. The degree of the hyperbolic-tree is chosen at
the beginning for all the lifetime of the cloud. Our cloud
architecture is then built incrementally, with each new services’
server joining one or more existing servers of services. Over
time, the servers of services will leave the overlay until there
are no more services’ servers in the cloud. So, for every service
that must be stored in the system, a Service’s IDentifier (SID)
is associated with it and map then in key-value pair. The key
will allow to determine in which servers of services will be
stored (like in the Section V). Furthermore, when a service is
deleted, the system must be able to update this operation in all
the system by forwarding query through the latter. This method
is scalable and reliable because unlike [38], we do not have
to make a two-pass algorithm over the whole cloud to find its

highest degree. Also, in our system, a server can connect to
any other server at any time in order to obtain an address.

The first step is thus to define the degree of the tree because
it allows building the dual, namely the regular q − gon. We
nail the root of the tree at the origin of the primal and we
begin the tiling at the origin of the disk in function of q. Each
splitting of the space in order to create disjoint subspaces is
ensured once the half spaces are tangent; hence, the primal
is an infinite q-regular tree. We use the theoretical infinite
q-regular tree to construct the greedy embedding of our q-
regular tree. So, the regular degree of the tree is the number
of sides of the polygon used to build the dual (see Figure 3).
In other words, the space is allocated for q child servers of
services. Each services’ server repeats the computation for its
own half space. In half space, the space is again allocated for
q − 1 children. Each child can distribute its addresses in its
half space. Algorithm 1 shows how to compute the addresses
that can be given to the children of a services’ server. The first
services’ server takes the hyperbolic address (0;0) and is the
root of the tree. The root can assign q addresses.

Algorithm 1 Computing the coordinates of a services’ servers
children.

1: procedure CALCCHILDRENCOORDS(server, q)
2: step← argcosh(1/sin(π/q))
3: angle← 2π/q
4: childCoords← server.Coords
5: for i← 1, q do
6: ChildCoords.rotationLeft(angle)
7: ChildCoords.translation(step)
8: ChildCoords.rotationRight(π)
9: if ChildCoords 6= server.ParentCoords then

10: STORECHILDCOORDS(ChildCoords)
11: end if
12: end for
13: end procedure

Algorithm 2 Query’s greedy routing algorithm in the cloud.

1: function GETNEXTHOP(services S, query) return ser-
vices S

2: w = query.destServCoords
3: m = services S.Coords
4: dmin = argcosh

(
1 + 2 |m−w|2

(1−|m|2)(1−|w|2)

)
5: pmin = services S
6: for all server N ∈ services S.Neighbors do
7: n = server N.Coords
8: d = argcosh

(
1 + 2 |n−w|2

(1−|n|2)(1−|w|2)

)
9: if d < dmin then

10: dmin = d
11: pmin = server N
12: end if
13: end for
14: return pmin

15: end function

This distributed algorithm ensures that each services’ server
is contained in distinct spaces and has unique coordinates.

All the steps of the presented algorithm are suitable for
distributed and asynchronous computation. This algorithm

495

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

allows the assignment of addresses as coordinates in dynamic
topologies. As the global knowledge of the cloud is not
necessary, a new services’ server can obtain coordinates simply
by asking an existing services’ server to be its parent and
to give it an address for itself. If the asked services’ server
has already given all its addresses, the new server must ask
an address to another existing database server. Besides, when
a new services’ server obtains an address, it computes the
addresses (i.e., hyperbolic coordinates) of its future children.
The addressing hyperbolic-tree is thus incrementally built at
the same time than the cloud.

When, a new services’ server has connected to servers
already inside the cloud and has obtained an address from
one of those servers, it can start sending requests to store or
lookup service in the cloud. The routing process is done on
each services’ server on the path (starting from the sender)
by using the greedy Algorithm 2 based on the hyperbolic
distances between the servers. When, a query is received by a
services’ server, this latter computes the distance from each of
its neighbours to the destination and forwards the query to its
neighbour, which is the closest to the destination (destination
services’ servers computing is given in Section V). If no
neighbour is closer than the server itself, the query has reached
a local minima and is dropped.

In a real network environment, link and services’ servers
failures can occur often. If the addressing hyperbolic-tree is
broken by the failure of a services’ server or link, we flush the
addresses attributed to the servers beyond the failed server or
link and reassign new addresses to those servers (some servers
may have first to reconnect to other servers in order to restore
connectivity). But, in this paper, we have not detailed this
solution.

V. NAMING AND BINDING IN THE HYPERBOLIC PLANE

In this section, we explain how our cloud system stores and
retrieves the resources by using these latters names, which is
mapped to its address (virtual coordinates where it is possible
to find servers of services). Our solution uses a structured
DHT system associated to the virtual addressing mechanism
of servers of services and to the greedy routing algorithms
presented in Section IV. At startup, each new resource server
uses a name that identifies the service (Application, Platform,
Infrastructure) that is shared in the system. This name will be
kept by the resource server containing the service during all
the lifetime of the cloud. When the new resource server obtains
an address, it stores the names of these services on different
others resources servers. This storage uses the structured DHT
of our cloud to store a fragment of key obtain by hashing of
service name (explain in the follow). If the same sub-key is
already stored in the cloud, an error message is sent back to
the resource server containing concerned service in order to
change this service name. Thus, the DHT structure used in
our cloud itself ensures that services names are unique.

A (name, address) pair, with the name mapping as a key
is called a binding. Figure 4 shows how and where a given
binding is stored in the cloud.

A binder is any resource server that stores these pairs. The
depth of a peer in the hyperbolic addressing tree can be defined
as the number of parent peers to go through for reaching the
root of the tree (including the root itself). When the cloud
system is created, a maximum depth for the potential binders

Figure 4. Hyperbolic cloud system.

Algorithm 3 Lookup algorithm in general context for inserting,
deleting and updating of service

1: function LOOKUPPROCESS(PrimeResourceServer,
Query) return Service

2: SID ← Tg.GetQuerySID()
3: Key ← Hash(QuerySID)
4: for A doll r ∈ RCirculare

5: d← PMax

6: i← 1
7: while i ≤

⌊
1
2 ×

log(N)
log(q)

⌋
& & d ≥ 0 do

8: TgServAd[r][d]← GetV alue(Key)
9: Service← GetV alue(TgServAd[r][d], SID)

10: if Service ! = null then
11: if Query == delete then
12: delete(SID)
13: end if
14: if (Query == update) then
15: update(SID)
16: end if
17: if Query == select then
18: return Service
19: break
20: end if
21: i+ +
22: end if
23: d−−
24: end while
25: end for
26: return 0
27: end function

is chosen. This depth permits to define the maximum number
of servers of services that can connect and share different
services. Also, the depth d is chosen such it minimizes the

496

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Inequality (4):

p× (
(1− (p− 1)d)

2− p
+ 1 ≥ N (4)

with p the degree of our hyperbolic tree. Thus, this value is
defined as the binding tree depth.

When a new resource server joins the cloud by connecting
to other resources servers, it obtains an address from one of
these resources servers. So, each service name of the resource
server is mapped into key by hashing its name with the SHA-2
algorithm (SHA-2 gives 512-bit key). Next, the new resource
server divides the 512-bit key into 16 equally sized 32-bit sub-
keys (for redundancy storage). The resource server selects the
first sub-key and maps it to an angle by a linear transformation.
The angle is given by:

α = 2π × 32-bit sub-key

0xFFFFFFFF
(5)

The resource server then computes a virtual point v on the unit
circle by using this angle:

v(x, y) with

{
x = cos(α)

y = sin(α)
(6)

Next, the resource server determines the coordinates of
the closest binder to the computed virtual point above by
using the given binding tree depth. In Figure 4, we set the
binding tree depth to three to avoid cluttering the figure. It is
important to note that this closest service (name of the binder)
may not really exist. If no resource server is currently owning
this address, this latter, then sends a stored query (containing
service name and address) to this closest resource server. This
query is routed inside the cloud by using the greedy algorithm
of Section IV. If the query fails because the binder does not
exist or because of node/link failures, it is redirected to the next
closest binder, which is the father of the computed binder. This
process continues until the query reaches to the root resource
server having the address (0;0) (which is the farthest binder)
or the number of resources servers is given by the following
relation (radial strategy):

S ≤
⌊

1

2
× log(N)

log(q)

⌋
(7)

with N equal to number of servers of services, q to degree of
hyperbolic-tree.

This strategy permits to not saturate the closest servers
of root’s server of the hyperbolic tree. Indeed, when the
replication of service go down towards the hyperbolic tree
root’s, the different paths from edge of unit circle towards
root tighten and provoke a saturation of the servers of services.
Inequality (7) permits to reduce this risk, and gives a better
load balancing of services storage in our cloud. Thus, we
search with this method, to increase the number of copies
across a path of the hyperbolic tree. So, this strategy has a
double interest:

• Allows to make the services available.
• Limits the saturation of the servers as a result of large

number of services query and the same reduces the
time of response to the servers.

n0 n1

n4

n10

Binder

Closest Binder

Failed Binder

Sub-key K1

Figure 5. Radial replication in the cloud.

n0

n1

n4

n10

Point on the edge

Point on the edge

Binder

Binder

Binder

Binder

Root
Node

Binder

Point on the edgePoint on the edge
Sub-key K5 Sub-key K4

Sub-key K3

Sub-key K2

Point on the edge

Sub-key K1

Figure 6. Circular replication in the cloud.

To reduce the impact of the dynamic (the leave or the
join of the services server’s also the adding or the deleting
of the service) of the cloud, uses a redundancy mechanism
that consists to increase the number of copies. The number
of stored copies of a pair along the binding radius may be an
arbitrary value (chosen to the cloud creating) set at the overlay
creation. Similarly, the division of the key in 16 sub-keys is
arbitrary and could be increased or reduced depending on the
redundancy (circular strategy) needed.

To conclude, we can define two redundancy mechanisms
(represented by Figure 5 and Figure 6) for storing copies of a
given binding:

497

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) radial strategy of replication.
2) circular strategy of replication.

Algorithm 4 Services storage’s processing in the general context

1: function STOREPROCESS(PrimeServServer Query)
return 0

2: SID ← Query.GetSID()
3: Key ← Hash(SID)
4: for A doll red ∈ RCircular

5: depth← PMax

6: i← 1
7: while i ≤

⌊
1
2 ×

log(N)
log(q)

⌋
& & depth ≥ 0 do

8: d← depth
9: r ← red

10: S Key[r][d]← CompS key(Key)[r][d]
11: TgServAd[r][d]← CompAd(S Key[r][d])
12: TgServ ← GetTg(TgServAd[r][d])
13: if route(Query, TgServ) then
14: i+ +
15: put(SID,Query)
16: end if
17: d−−
18: end while
19: end for
20: return 0
21: end function

These mechanisms enable our cloud system to cope with
a non-uniform growth of the system and they ensure that a
service will be stored in a redundant way that will maximize
the success rate of its retrieval. Our solution has the property
of consistent hashing: if one resource server (or a service of
the resource server) fails, only its keys are lost, but the other
binders are not impacted and the whole cloud system remains
coherent. As in many existing systems, pairs will be stored by
following a hybrid soft and the hard state strategy.

A pair (service name, address) will have to be stored by
its creator every x period of time, otherwise it will be flushed
by the binders that store it. A delete message may be sent
by the creator to remove the pair before the end of the period.
Algorithm 4 describes services storage’s process on the servers
y using Service IDentifier.

When a user wants to use a service, it is connected to any
resource server on the cloud and chosen the service name’s.
Next, current service server’s, by using previous mechanism
hashes name and finds associated service by sending retrieving
query in the cloud. Retrieving query is processed and different
servers where is stored the service are located. Then, it is
possible to execute one of following operation (Algorithm 3):

• Deleting: deleting operation allows to make unavail-
able all the occurrences of a service through replica-
tion in the system,

• Updating: it allows to bring changes in a service
through all these replications,

• Inserting: this allows to add a new service to the
the cloud system (i.e., in all resources servers of
replication).

Altogether, the mechanisms of storage and lookup that we
propose are (on one hand) reliable, in the sense that we always

manage to store or to find any service in our system of cloud.
On the other hand, this system is strong because it assures an
availability of the services in a strongly dynamic environment.

VI. SIMULATIONS

In this section, we present the results of the simulations that
we have performed and we have assessed the practicability, and
in some cases the scalability, of our addressing. Our cloud
system is considered as dynamic (the phenomenon of churn
is applied). We use the Peersim [39] simulator for cloud
computing system simulation and it allows to service name
following the uniform distribution. Our simulation involves
the following parameters of the DHT used in our cloud
(Excepted, the study on the floating point precision issue).
These parameters are valid for all the DHTs that we compare:

• Number of servers of services connected and used to
store different services is equal to 10000 in the starting
up, maximum number of services by server equal to
2000.

• We consider that our cloud system is dynamic and the
rate of churn varying from 10% to 60%.

• We consider a simulation performed during 2 hours.
• The leaving and joining of the servers of services

follow an exponential distribution as well as the in-
serting and the deleting of the services of the clouds
associated.

• We suppose that the system receives 6 millions of
queries following an exponential distribution with a
median equal to 10 minutes.

A. Characteristics of our hyperbolic tree
1) Analysis of the angular gap in the Poincaré disk: In

this part, we try to analyse the average gap between points
computed on the unity’s circle.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

10 20 30 40 50 60 70 80 90 100 110 120

A
ve

ra
g

e
an

g
u

la
r

g
ap

 (
ra

d
ia

n
)

Times (minutes)

16 replications
15 replications
14 replications
13 replications

Figure 7. Angular gap from 13 to 16 circular replications.

This study will allow us to see the level of efficiency of
our strategy of circular replication. Indeed, according to the
number of chosen circular replications, in our case 16, there
is a threshold for which the probability two primary binders
is confused.

Except, if two binders at least are confused, it means
reducing of number of replication actually made by the system

498

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and of the same cost to reduce the rate of the storage and
lookup queries.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

10 20 30 40 50 60 70 80 90 100 110 120

A
ve

ra
g

e
an

g
u

la
r

g
ap

 (
ra

d
ia

n
)

Times (minutes)

12 replications
11 replications
10 replications

9 replications

Figure 8. Angular gap from 9 to 12 circular replications.

Figures 7-10 show in the context of our simulation the
average gaps between points calculated of the circle unity as
well as their standard deviations.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

10 20 30 40 50 60 70 80 90 100 110 120

A
ve

ra
g

e
an

g
u

la
r

g
ap

 (
ra

d
ia

n
)

Times (minutes)

8 replications
7 replications
6 replications
5 replications

Figure 9. Angular gap from 5 to 8 circular replications.

In a general way for all the figures, we notice a growth
of the average value of the angular gaps, which is inversely
proportional at the level of used replication. Indeed, we have a
variation of 0.29 for 15 replications in approximately 1.4 out
of 2 replications.

This indicates that our system behaves well because even
for a large number of circular replications, the angular gap
is enough important so that we obtain (in most of the time)
different primary binders. Furthermore, for example, we can
notice that in Figure 7, which concerns the average angular
gaps in levels of replication between 16 and 13, the values
remain constant during all the period of simulation.

So, we have gaps between 0.29 and 0.35 with standard
deviations about 30% of the average. This indicates that
approximately 78% of the calculated points have an angular
gap between 0.20 and 0.40 for 16 replications and between
0.24 and 0.46 for 13 replications. So, in Figures 7-10 the
averages seem to be significant because, in each case, we

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

10 20 30 40 50 60 70 80 90 100 110 120

A
ve

ra
g

e
an

g
u

la
r

g
ap

 (
ra

d
ia

n
)

Times (minutes)

4 replications
3 replications
2 replications

Figure 10. Angular gap from 2 to 4 circular replications.

observe a standard deviation at the most equal to 30% of
average.

These results tend to confirm that our strategy of circular
replication is reliable in the measure or at a given level of repli-
cation, we can associate various primary binders, so avoiding
that a departure of stacker not in the loss of information of a
large number of nodes.

2) Analysis of the number of sub-keys: Figure 11 presents
the evolution of the number of primary binders according to
the number of sub-keys chooses for the simulation.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
o

m
b

re
 A

ve
ra

g
e

n
u

m
b

er
 o

f
p

ri
m

ar
y

b
in

d
er

s
b

y
n

o
d

e

Number of sub-keys

Simulated plot
Ideal plot

Figure 11. Variation of binder number depending of the number of sub-keys

This curve shows a continuous growth of the number of
binders according to the number of money keys. Furthermore,
we can observe that this curve is below the ideal case or the
number of binders always corresponds among key money. The
feigned curve is very close to the ideal curve, which shows that
we have a satisfactory situation for all the levels of replication.

B. Load balancing in the cloud
Figure 12 shows an experimental distribution of points

corresponding to the scatter plot of the distribution of servers

499

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of services in our cloud. Thus, we can mark that hyperbolic-
tree of our cloud system is balanced. Indeed, we can noticed by
part and others around the unit circle, which we have servers
of services.

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

Y
Ax

is

X Axis

Unit circle
Scatter plot

Figure 12. Scatter plot corresponding to the distributed database servers.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

-0.4 -0.32 -0.24 -0.16 -0.08 0 0.08 0.16 0.24 0.32 0.4

Y
Ax

is

X Axis

Unit circle
Scatter plot

Figure 13. Distribution of nodes in the neighbourhood of the edge of the
unit circle.

This has an almost uniform distribution around the root,
which implies that our system builds a well-balanced tree what
will more easily allow to reach a load balancing of storage.

Figure 13 shows correspondingly Poincaré disk model that
no address of resource server belongs on the edge of the unit
circle. Indeed, the addresses of resource server were obtained
by projection of the tree of the hyperbolic plane in a circle of
the Euclidean plane of radius 1 and of centre with coordinates
(0;0).

C. Floating point precision issue
One property of the Poincaré model is misleading: the

distances are not preserved. If we observe the Poincaré model
from an outside point of view, the distance are smaller than
the reality (i.e., inside the plane). Because of the model is
a representation of the hyperbolic plane in Euclidean plane.
Indeed, closer to the boundary of the circle are the points, the
farther they are in reality. This phenomenon is illustrated in
Figure 13 obtained by simulation.

The hyperbolic plane has a boundary circle at infinity
represented in the Poincaré unit disk model (i.e., the open

unit disk) by a circle of radius 1 and centred on the origin
O (Section III). The open unit disk around O is the set of
points whose the complex modulus is less than 1: |w| < 1
with |w| =

√
(wRe)2 + (wIm)2.

 1e+10

 1e+20

 1e+30

 1e+40

 1e+50

10e-1210e-1110e+1010e-0910e-0810e-0710e-06

A
dd

re
ss

in
g

ca
pa

ci
ty

The maximum precision of the floating type

practical
theoretical

Figure 14. Addressing capacity as a function of the
floating point precision threshold.

In practice, an embedding of such a mathematical space is
constrained by the precision of the floating type used, typically
a double. It is a problem of arithmetic precision, we reach the
maximal accuracy allowed by the computing in floating point.
Indeed, the calculations obey with the IEEE 754 standard,
which determines the binary floating point representation. The
floating point arithmetic can be implemented with variable
length significant that are sized depending on the needs. This
is called Arbitrary Precision Arithmetic (APA). To compute
with extended precision we have found three computational
solutions: computation with rounding (e.g., IEEE 754), interval
arithmetic and the Real Ram model.

But we should use a specific library such as the MultiPreci-
sion Complex MPC library. As the complexity of using APA
is important and as we have enough addressing capacity by
using standard floating point numbers, we keep on using the
double type representation. Thus, two points cannot be closer
that the minimum non zero double. Hence, the minimal half
space is the space that can contain one distinct point.

To address this issue we should answer at the question
of Paul Zimmermann: Can we compute on the computer? In
order to assess the impact of overlay parameters such as the
degree and the depth, we carry out significant simulations, we
try to find the best tree parameters to maximize the addressing
capacity. This brings us to some practical concerns:

• How to determine the maximum number of subspaces
that we can create to assign a coordinate to a node?

• What is the maximal node density in a subspace?

To carry out our practical analysis, we proceed as follows.
We embed a tree with a degree of 32 and a depth equal to
32. Then, we assign an address to each node. We show in
Figure 14 the gap between the number of addresses in theory
and in practice. We set the maximum precision to a given
value and compute the addresses. We then vary the maximum
precision with the significant digits evolving from 6 to 12 (i.e.,
10e-6 to 10e-12). With these characteristics, the theoretical
addressing capacity is the same whatever the precision, namely

500

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

maximum (as expected). The addressing capacity increases
strongly between an accuracy of 6 to 9 digits compared to
the transition of 9 to 12 digits because more disjoint points
appear.

1) Influence of the degree of hyperbolic tree: Finally, for
a degree different of 32, the addressing capacity stays closer
to 2.246E+08.

 1e+10

 1e+20

 1e+30

 1e+40

 1e+50

 1e+60

 1e+70

 4 8 16 32 64 128 256

A
dd

re
ss

in
g

ca
pa

ci
ty

Degree

practical
theoretical

Figure 15. Influence of the degree on the number of theoretical addresses.

To analyse the influence of the degree on the addressing
capacity, we use a precision of 12 digits and a tree depth of 32
hops. The tree degree evolves from 4 to 256. Figure 15 shows
that the theoretical addressing capacity increases linearly in
function of the degree, unlike the “practical” plot that seems
constant. In fact, we show in Figure 16 that with a degree
higher than 32 the gain is weak compared to the order of
magnitude observed in Figure 15.

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 4 8 16 32 64 128 256

A
dd

re
ss

in
g

ca
pa

ci
ty

Degree

practical

Figure 16. Influence of the degree on the number of practical addresses.

2) Influence of the depth: In the same way, we analyse the
influence of the depth on the addressing capacity. The precision
is the same as the previous one and the tree degree is set to
32. The tree depth evolves from 4 to 32. In Figure 17, the
increase of the theoretical addressing capacity is exponential
when the depth increases. As expected, this matches with the
normal characteristics of H2. On the other side, in practice,
the addressing capacity achieves the threshold at 2.246E+08.

The threshold is reached with only a depth of 8. Indeed,
the boundary of the disk is quickly reached. We recall that the

 1e+10

 1e+20

 1e+30

 1e+40

 1e+50

 4 8 16 32

A
dd

re
ss

in
g

ca
pa

ci
ty

Depth

practical
theoretical

Figure 17. Influence of the depth on the number
of addresses.

tiling is built with regular q − gon, q is the number of sides
of the q − gon. In H2, whatever q, there exists a distance d
from which the created subspaces are pair wise disjoints (i.e.,
the sides of the q-gon are tangent as the red line in Figure 3).
This property is more explained in Section IV. Because of this
distance and the precision of the floating type (12 digits), the
leaves of the tree can reach the boundary of the disk after only
7 hops (i.e., a depth of 7).

A fine tuning of the degree parameter can improve the
addressing capacity, namely we can set q to the degree of the
tree that we find the most suitable. This is possible because
we create an overlay network, we can have some freedom in
setting the overlay links and thus we can restrain the degree
of the addressing tree.

D. Performances analysis

1) Evaluation of the substitution strategy: Figure 18
shows us the impact of the substitution strategy on the average
number of binders reached by every node during the process
of storage. Indeed, we compare two situations.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
ve

ra
g

e
n

u
m

b
er

 o
f

b
in

d
er

s
b

y
n

o
d

e

Number of sub-keys

Replication with substitution
Replication without substitution

Figure 18. Evaluation of the performances of the substitution strategy

501

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

At first, the case where the new resources servers join in
a random way the system via the first resource server having
free address. Then, the case or the new resources servers try
to substitute themselves for binders having left the network to
continue to assume this role.

In Figure 18, we notice that according to the number of
sub-keys used, average numbers of binders reached in the case
of the substitution are much greater than in the case of a
connection of new nodes to the first random address. This
established fact shows that the substitution strategy returns us
a stronger system in the sense that the couples keys-values of
the various nodes are distributed on a large number of binders
so returning the available information even in case of departure
of binders. So, for example, by using 8 sub-keys, we have
approximately 7 binders on average during all the simulation
in the strategy of circular replication and simple radial road
against about 14 binders when we use the substitution method
besides the classic replication. Furthermore, for 16 sub-keys,
we have approximately 12 binders against about 18 on average
in the case of the substitution.

2) Success rate with the substitution strategy: Figure 19
presents two plots illustrating respectively the evolution of the
rate of success of the storage queries in the case of a classic
replication (circular and radial) then in the case of a classic
replication with which we associated the substitution strategy.

We can easily note that the level of classic replication,
the success rate offered by the substitution strategy is better.
Indeed, in a replication, we note a rate of average success about
62% of successes for the classic replication against about 75%
of the method of substitution.

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ra
te

 o
f

av
er

ag
e

su
cc

es
s

o
f

th
e

st
o

ra
g

e
q

u
er

ie
s

Number of replication

Replication without substitution
Replication with substitution

Figure 19. Evaluation of the success rate in storage context

In 7 replications, we note 78% of successes in the case
without substitution against 89% in the case using this strategy.

With 15 replications, we observe 85% of success rates in
without substitution against 97% of successes in the case of the
substitution. Generally, we can notice on average an earnings
of about 10% in the success of the storage queries.

These results show the interest in using the strategy of
replication, which constitutes an additional factor in the im-

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
at

e
o

f
av

er
ag

e
su

cc
es

s
o

f
lo

o
ku

p
 q

u
er

ie
s

Number of replication

Replication without substitution
Replication with substitution

Figure 20. Evaluation of the success rate in lookup context

provement of the success of the storage queries of services
(Figure 19). The same strategy impacts positively services
lookup, as shown in Figure 20.

In the case of queries for a lookup, the situation is almost
similar because, as we can observe in Figure 20, a better rate
success when we use the substitution strategy. Indeed, also in
it an earnings of an average 9% of successes on queries for a
lookup. Whether it is for the storage or for the lookup, we can
say that our strategy is reliable because it allows us to increase
considerably the success rates.

VII. CONCLUSION

In this paper, we have proposed a new Cloud platform,
providing scalable, reliable and robutess distribution of ser-
vices. Indeed, these properties are an essential requirement for
this kind of system. There were few research reports proposed
for multi-dimensional indexing schemes for Cloud platform to
manage the huge and variety services to address the complex
queries efficiently (because most of these proposed systems
do not have properties given behind). In this study, we have
showed that our solution using hyperbolic-tree with virtual
coordinates is consistent, reliable, scalable, and hardy, because
it supports enough well churn phenomenon. Furthermore,
through the study of floating point precision issue, we showed
the limits of the capacity of addressing of our hyperbolic tree
depending to the degree and to the depth. Thus, our theoretical
analysis of the Poincaré disk model has shown that even though
we lose a huge number of potential addresses because of the
floating point accuracy limits, we can still handle a vast amount
of servers of services (i.e., 100M order of magnitude) before
reaching those limits of the model. Our system has properties,
which allow to guarantee the availability of the Cloud services.
Furthermore, it gives very good results when we apply the
substitution strategy in churn context. In the future work, we
would like to investigate the impact of churn phenomenon
issue and thus to develop a new multi-dimensional index
structure, which ensures a best result in dynamic context in
the aim to supply a variety of cloud services.

502

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] T. Tiendrebeogo, “A new spatial database management system using
an hyperbolic tree,” in DBKDA 2015 : The Seventh International Con-
ference on Advances in Databases, Knowledge, and Data Applications,
May 2015, pp. 43–50.

[2] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions.” New York, NY, USA: ACM, 2001, pp. 149–160.

[3] M. Castro, M. Costa, and A. I. T. Rowstron, “Performance and depend-
ability of structured peer-to-peer overlays,” in International Conference
on Dependable Systems and Networks (DSN), 28 June - 1 July 2004,
Florence, Italy, Proceedings, 2004, pp. 9–18.

[4] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric.” London, UK, UK: Springer-
Verlag, 2002, pp. 53–65.

[5] “Cloud computing model,” August, 2015, https://upload.wikimedia.org/
wikipedia/commons/thumb/9/93/Nuage33.png/400px-Nuage33.png.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A berkeley view of cloud computing,” EECS
Department, University of California, Berkeley, Tech. Rep., Feb 2009.

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, Apr. 2010.

[8] C. Baun, M. Kunze, J. Nimis, and S. Tai, Cloud Computing: Web-
Based Dynamic IT Services, 1st ed. Springer Publishing Company,
Incorporated, 2011.

[9] P. Murray, “Enterprise grade cloud computing,” in Proceedings of the
Third Workshop on Dependable Distributed Data Management, ser.
WDDM ’09. New York, NY, USA: ACM, 2009, pp. 1–1.

[10] A. Weiss, “Computing in the clouds,” netWorker, vol. 11, no. 4, Dec.
2007.

[11] D. Hilley, “Cloud computing: A taxonomy of platform and
infrastructure-level offerings,” Georgia Institute of Technology, Tech.
Rep., 2009.

[12] T. Jowitt, “Four out of five enterprises giving cloud a try.”
Computerworld UK (visited: 2010, May 7), 2009. [Online].
Available: Available:http://www.computerworlduk.com/management/it-
business/services-sourcing/news/index.cfm?newsId=16355

[13] R. L. Grossman, “The case for cloud computing,” IT Professional,
vol. 11, no. 2, Mar. 2009.

[14] A. Plesser, “Four out of five enterprises giv-
ing cloud a try,” Tech. Rep., 2008. [Online].
Available: Available:http://www.computerworlduk.com/management/it-
business/services-sourcing/news/index.cfm?newsId=16355

[15] B. Huang and Y. Peng, “An efficient two-level bitmap index for cloud
data management,” in Proceedings of the 3rd IEEE International Con-
ference on Communication Software and Networks (ICCSN). IEEE,
2011, pp. 509–513.

[16] C. Gong, J. Liu, Q. Zhang, H. Chen, and Z. Gong, “The characteristics
of cloud computing,” in Parallel Processing Workshops (ICPPW), 2010
39th International Conference on, Sept 2010, pp. 275–279.

[17] “Cloud services model,” August, 2015, https://www.simple-
talk.com/cloud/development/a-comprehensive-introduction-to-cloud-
computing/.

[18] S. Zhang, S. Zhang, X. Chen, and S. Wu, “Analysis and research
of cloud computing system instance,” in Proceedings of the 2010
Second International Conference on Future Networks, ser. ICFN ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 88–92.
[Online]. Available: http://dx.doi.org/10.1109/ICFN.2010.60

[19] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in Proceedings of
the 9th Annual International Conference on Mobile Computing and
Networking, ser. MobiCom ’03. New York, NY, USA: ACM, 2003, pp.
96–108. [Online]. Available: http://doi.acm.org/10.1145/938985.938996

[20] D. Hilley, “Cloud computing: A taxonomy of platform and
infrastructure-level offerings,” Tech. Rep., 2009.

[21] P. M. Mell and T. Grance, “Sp 800-145. the nist definition of cloud
computing,” Gaithersburg, MD, United States, Tech. Rep., 2011.

[22] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
s3 for science grids: A viable solution?” in Proceedings of the 2008
International Workshop on Data-aware Distributed Computing, ser.
DADC ’08. New York, NY, USA: ACM, 2008, pp. 55–64. [Online].
Available: http://doi.acm.org/10.1145/1383519.1383526

[23] Z. Pervez, A. M. Khattak, S. Lee, and Y.-K. Lee, “Csmc: Chord
based session management framework for software as a service cloud,”
in Proceedings of the 5th International Conference on Ubiquitous
Information Management and Communication, ser. ICUIMC ’11.
New York, NY, USA: ACM, 2011, pp. 30:1–30:8. [Online]. Available:
http://doi.acm.org/10.1145/1968613.1968650

[24] J.-Y. Wu, J.-l. Zhang, T. Wang, and Q.-l. Shen, “Study on redundant
strategies in peer to peer cloud storage systems.” Applied Mathematics
Information Sciences, 2011, pp. 235–242.

[25] D. S. and K. Piromsopa, “Research on cloud storage environment file
system performance optimization,” vol. 2. Information Management,
Innovation Management and Industrial Engineering (ICIII), 2011, pp.
58–62.

[26] C. Miguel, C. Manuel, and R. Antony, “Performance and dependability
of structured peer-to-peer overlays.” in proceedings of the 2004 DSN
(IEEE), 2004, pp. 9–18.

[27] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” vol. 22, 2004, pp. 41–53.

[28] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer
information system based on the xor metric,” in Revised Papers from
the First International Workshop on Peer-to-Peer Systems, ser. IPTPS
’01. London, UK, UK: Springer-Verlag, 2002, pp. 53–65. [Online].
Available: http://dl.acm.org/citation.cfm?id=646334.687801

[29] N. Antonopoulos, J. Salter, and R. M. A. Peel, “A multi-ring method
for efficient multi-dimensional data lookup in p2p networks.” in
FCS, H. R. Arabnia and R. Joshua, Eds. CSREA Press, 2005, pp.
10–16. [Online]. Available: http://dblp.uni-trier.de/db/conf/fcs/fcs2005.
html#AntonopoulosSP05

[30] X. Zhang, J. Ai, Z. Wang, J. Lu, and X. Meng, “An efficient
multi-dimensional index for cloud data management,” in Proceedings
of the First International Workshop on Cloud Data Management,
ser. CloudDB ’09. New York, NY, USA: ACM, 2009, pp. 17–24.
[Online]. Available: http://doi.acm.org/10.1145/1651263.1651267

[31] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing
multi-dimensional data in a cloud system,” in Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’10. New York, NY, USA: ACM, 2010, pp. 591–602.
[Online]. Available: http://doi.acm.org/10.1145/1807167.1807232

[32] S. Wu and K.-L. Wu, “An indexing framework for efficient retrieval
on the cloud.” vol. 32, no. 1, 2009, pp. 75–82. [Online]. Available:
http://dblp.uni-trier.de/db/journals/debu/debu32.html#WuW09

[33] A. F. Beardon and D. Minda, “The hyperbolic metric and geometric
function theory,” in International Workshop on Quasiconformal Map-
pings And Their Applications, 2006, pp. 9–56.

[34] R. Kleinberg, “Geographic routing using hyperbolic space,” in in
Proceedings of the 26th Annual Joint Conference of INFOCOM. IEEE
Computer and Communications Societies, 2007, pp. 1902–1909.

[35] D. Krioukov, F. Papadopoulos, M. Boguñá, and A. Vahdat, “Greedy for-
warding in scale-free networks embedded in hyperbolic metric spaces,”
SIGMETRICS Perform. Eval. Rev., vol. 37, no. 2, 2009, pp. 15–17.

[36] A. Miquel, “Un afficheur générique d’arbres à l’aide de la géométrie hy-
perbolique,” in Journées francophones des langages applicatifs (JFLA),
2000, pp. 49–62.

[37] F. Papadopoulos, D. Krioukov, M. Boguñá, and A. Vahdat,
“Greedy forwarding in dynamic scale-free networks embedded in
hyperbolic metric spaces,” in Proceedings of the 29th Conference
on Information Communications, ser. INFOCOM’10. Piscataway,
NJ, USA: IEEE Press, 2010, pp. 2973–2981. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1833515.1833893

[38] V. Gaede and O. Günther, “Multidimensional access methods,” ACM
Comput. Surv., vol. 30, no. 2, Jun. 1998, pp. 170–231. [Online].
Available: http://doi.acm.org/10.1145/280277.280279

[39] I. Kazmi and S. F. Y. Bukhari, “Peersim: An efficient & scalable testbed
for heterogeneous cluster-based p2p network protocols.” Washington,

