
481

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Efficient Selection of Representative Combinations of Objects from Large Database

Md. Anisuzzaman Siddique, Asif Zaman, and Yasuhiko Morimoto
Graduate School of Engineering, Hiroshima University

Higashi-Hiroshima, Japan
Email: anis_cst@yahoo.com, {d140094@, morimoto@mis.}hiroshima-u.ac.jp

Abstract—Many applications require us to select combinations of
objects from a database. To select representative combinations
is one of the important processes for analysing data in such
applications. Skyline query, which retrieves a set of non-dominant
objects, is known to be useful to select representative objects from
a database. Analogically, skyline query for combinations is also
useful. Hence, we consider a problem to select representative
distinctive combinations, which we call “objectsets”, in a numer-
ical database in this paper. We analyse the properties of skyline
objectset computation and develop filtering conditions to avoid
needless objectset enumerations as well as comparisons among
them. We perform a set of experiments to testify the importance
and scalability of our skyline objectset method. In addition,
we confirm that those filtering strategies also work for skyline
objectset query variant called skyband objectset query. There-
fore, we propose another method to compute skyband objectset
skyline result. Our experiments also confirm the effectiveness and
scalability of skyband objectset skyline method.

Keywords–Dataset; Skyline queries; Objectsets; Dominance re-
lationship.

I. INTRODUCTION

This work propose an algorithm called complete objectset
skyline (CSS) to resolve the objectsets skyline query problem.
This article is an extended version of [1].

To select representative objects in a database is important
to understand the data. Assume that we have a hotel database.
To analyse the database, we, first, take a look at representative
records, for example, the cheapest one, the most popular one,
the most convenient one and so on. Skyline query [2] and its
variants are functions to find such representative objects from
a numerical database. Given a m-dimensional dataset D, an
object O is said to dominate another object O′ if O is not worse
than O′ in any of the m dimensions and O is better than O′ in
at least one of the m dimensions. A skyline query retrieves a
set of non dominate objects. Consider an example in the field
of financial investment. In general, an investor tends to buy the
stocks that can minimize cost and risk. Based on this general
assumption, the target can be formalized as finding the skyline
stocks with smaller costs and smaller risks. Figure 1(a) shows
seven stocks records with their costs (a1) and risks (a2). In
the list, the best choice for a client comes from the skyline,
i.e., one of {O1, O2, O3} in general (see Figure 1(b)).

A key advantage of the skyline query is that it does not re-
quire a specific ranking function; its results only depend on the
intrinsic characteristics of the data. Furthermore, the skyline
does not relay on different scales at different dimensions. For
example risk unit or cost unit in Figure 1 may be not same but
it does not affect the skyline query result. However, the order of
the dimensional projections of the objects is important. Skyline
query has broad applications including product or restaurant
recommendations [3], review evaluations with user ratings [4],
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Figure 1. A skyline problem

querying wireless sensor networks [5], and graph analysis [6].
Algorithms for computing skyline objects have been discussed
in the literature [7] [8] [9] [10].

One of the known limitations of the skyline query is that it
can not answer various queries that require us to analyse not
just individual object of a dataset but also their combinations.
It is very likely that an investor has to invest more than one
stock. For example, investment in O1 will render the lowest
cost. However, this investment is also very risky. Are there
any other stocks or sets of stocks, which allow us to have a
lower investment and/or a lower risk? These answers are often
referred to as the investment portfolio. How to efficiently find
such an investment portfolio is the principle issue studied in
this work.

We consider a skyline query for distinctive combinations
of objects (objectsets) in a database. Let k-objectset be a set,
which contains k another object O′ if O is not worse than
O′ in any of the m dimensions and O is better than O′ in at
least one of the m dimensions. A skyline query retrieves a set
of non dominate objects. Consider an example in the field of
financial investment. In general, an investor tends to buy the
stocks that can minimize cost and risk. Based on this general
assumption, the target can be formalized as finding the skyline
stocks with smaller costs and smaller risks. Figure 1(a) shows
seven stocks records with their costs (a1) and risks (a2). In the
list, the best choice for a client comes from the skyline, i.e., one
of {O1, O2, O3} in general (see Figure 1(b)). objects n be the
number of objects in the dataset. The number of k-objectsets in
the dataset amounts to nCk. We propose an efficient algorithm
to compute variants of skyline query among the nCk sets.

Assume an investor has to purchase two stocks. In Figure 1,
conventional skyline query outputs {O1, O2, O3}, which does
not suggest sufficient information for the portfolio selection
problem. Users may want to choose the portfolios, which
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TABLE I. Sets of 2 Stocks

ID a1(cost) a2(risk) ID a1(cost) a2(risk) ID a1(cost) a2(risk)
O1,2 6 12 O2,4 12 8 O3,7 18 12
O1,3 10 10 O2,5 10 10 O4,5 14 10
O1,4 10 12 O2,6 8 10 O4,6 12 10
O1,5 8 14 O2,7 14 14 O4,7 18 14
O1,6 6 14 O3,4 16 6 O5,6 10 12
O1,7 12 18 O3,5 14 8 O5,7 16 16
O2,3 12 6 O3,6 12 8 O6,7 14 16

are not dominated by any other sets in order to minimize
the entire costs and risks. In such a case, if an user wants
to select two stocks at a time from previous skyline result
s/he can make two stock set such as {O1,2, O1,3, O2,3} and
select any of them. However, set created from non dominant
objects will be a non dominant set is not always true. For
example, objectset O1,3 is dominated by O2,6 and there is no
opportunity to judge this kind dominance relationship if we
consider previous result only. That means an investor needs
to create all two stocks sets after that perform domination
check among those sets. It is very costly and not a very
user friendly procedure. Table I shows sets consisting of two
stocks, in which attribute values of each set are the sums of
two component stocks. Objectsets {O1,2, O2,3, O2,6} cannot
be dominated by any other objectsets (see Figure 2(a)) and,
thus, they are the answers for the objectset skyline query.
Furthermore, if the investor wants to buy three stocks then s/he
needs to construct all of those three stocks sets and perform
domination check among those sets to get the final result. In
our running example, objectset skyline query for three stocks
will retrieve objectsets {O1,2,3, O1,2,6, O2,3,4, O2,3,6} as the
query result.

Though a skyline query of objectsets is important in
portfolio analysis, privacy aware data analysis, outlier-resistant
data analysis, etc., there have been few studies on the objectsets
skyline problem because of the difficulty of the problem. Su
et al. proposed a solution to find the top-k optimal objectsets
according to a user defined preference order of attributes [11].
However, it is hard to define a user preference beforehand for
some complicated decision making tasks. Guo et al. proposed
a pattern based pruning (PBP) algorithm to solve the objectsets
skyline problem by indexing individuals objects [12]. The key
disadvantage of the PBP algorithm is that it needs object
selecting pattern in advance and the pruning capability depends
on this pattern. Moreover, this algorithm is for fixed size
objectset k and failed to retrieve result for all k.

We have introduced the objectsets skyline operator in
2010 [13]. In this work, we developed a method for finding
the skyline objectsets that are on the convex hull enclosing all
the objectsets. However, it misses objectsets that are not on
the convex hull, which may provide meaningful results.

The main challenge in developing an method for objectset
skyline is to overcome its computational complexity. The space
complexity of objectset skyline computation is exponential in
general and a dataset of n records can have up to nCk skyline
objectsets. This means that the time complexity of objectset
skyline is also exponential because we have to generate all
skyline objectsets during the computation. Since the set of
intermediate candidate objectsets may not fit in memory,
conventional method have to generate all candidate objectsets

in a progressive manner and update the resultant objectset
skyline dynamically. Thus, we cannot implement any index
structures such as R-trees [9] and ZBtrees [14].

In this paper, we present an efficient solution that can select
skyline objectsets, which include not only convex skyline
objectsets but also non-convex skyline objectsets. The objectset
size k can be varied from 1 to n and within which a user may
select a smaller subset of his/her interest.

There is a well-known shortcoming in the skyline query.
Though the result of the skyline query contains top-1 object
for any scoring function, it cannot be used for selecting top-k
(k > 1) object, which means that it cannot be used if an user
wants more than one object for a specific scoring function. For
example, if an user wants to choose top-3 cheapest stocks, the
result of the skyline query does not contain all the top-3. Our
previous objectset skyline query also has this shortcoming of
the skyline query.

To solve the problem, in this paper, we also examine the
objectset of another variant of skyline query called “skyband-
objectset” query. Skyband-objectset query for K-skyband re-
turns a set of objectsets, each objectset of which is not
dominated by K other objectsets. In other words, an objectset
in the skyband-objectset query may be dominated by at most
K − 1 other objectsets.

The skyband-objectset query helps us to retrieve desired
objectsets without any scoring function. It can increase (de-
crease) the number of objectsets by increasing (decreasing) the
skyband value of K. From skyband-objectset result an user can
easily choose his/her desired objectsets by applying top-k set
queries. For the dataset in Figure 1, the skyband-set query for
objectset size s = 1 and K = 1 retrieves all non dominated
objectsets i.e., {O1, O2, O3}. Again, from Figure 1(b) for
s = 1 and K = 2 we get objectsets {O1, O2, O3, O6} those
are dominated by at most one objectset. Here O4, O5, and O7

are dominated by more than one objectset so they are excluded
from the query result. Next, for s = 2 and K = 1 it retrieves
objectsets {O1,2, O2,3, O2,6} shown by double circles in
Figure 2(a). Similarly, for s = 2 and K = 2 skyband-set query
will retrieve {O1,2, O1,6, O2,3, O2,6, O3,4} (see Figure 2(b)).
In this result, objectsets O1,6 and O3,4 are included because
of dominated by only one objectset. Figure 2(b) shows that
objectset O1,6 is dominated by objectset O1,2 and objectset
O3,6 is dominated by objectset O2,3. Therefore, one can use
the skyband-set query at the preprocessing step for top-k set
query. It is useful for candidate set generation to select his/her
desired objectsets without any scoring function.

We introdue CSS to resolve the objectsets skyline query
problem. It progressively filters the objectsets that are impossi-
ble to be the objectsets skyline result, and uses a filtering mech-
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Figure 2. Objectset skyline problem

anism to retrieve the skyline objectsets without enumerating all
objectsets. We develop two filtering techniques to avoid gen-
erating a large number of unpromising objectsets. Moreover,
we confirm that proposing filtering strategies is also useful for
skyband objectset query computation. We also propose another
method called K-skyband objectset skyline (KSS) to compute
skyband objectset query result. The efficiency of the both
algorithms are then examined with experiments on a variety
of synthetic and real datasets.

The remaining part of this paper is organized as follows.
Section II reviews the related work. Section III discusses the
notions and basic properties for skyline objectset as well as
the problem of skyband objectset. In Section IV, we specify
details of our algorithms with proper examples and analysis.
We experimentally confirm our algorithms in Section VI under
a variety of settings. Finally, Section VII concludes this work
and describes our future intention.

II. RELATED WORK

Our work is motivated by previous studies of skyline query
processing as well as objectsets skyline query processing.
Therefore, we briefly review conventional skyline query and
objectset skyline query proposed in this work.

A. Skyline Query Processing
Borzsonyi et al. first introduced the skyline operator

over large databases and proposed three algorithms: Block-
Nested-Loops(BNL), Divide-and-Conquer (D&C), and
B-tree-based schemes [2]. BNL compares each object of the
database with every other object, and reports it as a result
only if any other object does not dominate it. A window
W is allocated in main memory, and the input relation is
sequentially scanned. In this way, a block of skyline objects
is produced in every iteration. In case the window saturates, a
temporary file is used to store objects that cannot be placed in
W . This file is used as the input to the next pass. D&C divides
the dataset into several partitions such that each partition can
fit into memory. Skyline objects for each individual partition
are then computed by a main-memory skyline algorithm. The
final skyline is obtained by merging the skyline objects for
each partition. Chomicki et al. improved BNL by presorting,
they proposed Sort-Filter-Skyline(SFS) as a variant of

BNL [7]. Among index-based methods, Tan et al. proposed two
progressive skyline computing methods Bitmap and Index [15].
In the Bitmap approach, every dimension value of a point
is represented by a few bits. By applying bit-wise AND
operation on these vectors, a given point can be checked if
it is in the skyline without referring to other points. The index
method organizes a set of m-dimensional objects into m lists
such that an object O is assigned to list i if and only if its value
at attribute i is the best among all attributes of O. Each list is
indexed by a B-tree, and the skyline is computed by scanning
the B-tree until an object that dominates the remaining entries
in the B-trees is found. The current most efficient method is
Branch-and-Bound Skyline(BBS), proposed by Papadias
et al., which is a progressive algorithm based on the best-first
nearest neighbor (BF-NN) algorithm [9]. Instead of searching
for nearest neighbor repeatedly, it directly prunes using the
R*-tree structure.

Recently, more aspects of skyline computation have been
explored. Chan et al. proposed k-dominant skyline and de-
veloped efficient ways to compute it in high-dimensional
space [16]. Lin et al. proposed n-of-N skyline query to support
online query on data streams, i.e., to find the skyline of the
set composed of the most recent n elements. In the cases
where the datasets are very large and stored distributively, it
is impossible to handle them in a centralized fashion [17].
Balke et al. first mined skyline in a distributed environment by
partitioning the data vertically [18]. Vlachou et al. introduce
the concept of extended skyline set, which contains all data
elements that are necessary to answer a skyline query in any
arbitrary subspace [19]. Tao et al. discuss skyline queries
in arbitrary subspaces [20]. More skyline variants such as
dynamic skyline [21] and reverse skyline [22] operators also
have recently attracted considerable attention.

B. Objectsets Skyline Query Processing
There are two closely related works, which are “top-

k combinatorial skyline queries” [11] and “convex skyline
objectsets” [13]. Su et al. studied how to find top-k optimal
combinations according to a given preference order in the
attributes. Their solution is to retrieve non-dominate combi-
nations incrementally with respect to the preference until the
best k results have been found. This approach relies on the
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preference order of attributes and the limited number (top-k)
of combinations queried. Both the preference order and the
top-k limitation may largely reduce the exponential search
space for combinations. However, in our problem there is
no preference order nor the top-k limitation. Consequently,
their approach cannot solve our problem easily and efficiently.
Additionally, in practice it is difficult for the system or a user
to decide a reasonable preference order. This fact will narrow
down the applications of [11]. Siddique and Morimoto studied
the “convex skyline objectset” problem. It is known that the
objects on the lower (upper) convex hull, denoted as CH ,
is a subset of the objects on the skyline, denoted as SKY .
Every object in CH can minimize (maximize) a corresponding
linear scoring function on attributes, while every object in SKY
can minimize (maximize) a corresponding monotonic scoring
function [2]. They aims at retrieving the objectsets in CH ,
however, we focus on retrieving the objectsets in CH ⊆ SKY .
Since their approach relies on the properties of the convex hull,
it cannot extend easily to solve complete skyline problem.

The similar related work is “Combination Skyline Queries”
proposed in [12]. Guo et al. proposed a pattern based pruning
(PBP) algorithm to solve the objectsets skyline problem by
indexing individuals objects. The key problem of PBP al-
gorithm is that it needs object selecting pattern in advance
and the pruning capability depends on this pattern. For any
initial wrong pattern this may increase the exponential search
space. Moreover, it fails to vary the cardinality of objectset
size k. Our solution does not require to construct any pattern
previously and also vary the objectset size k from 1 to n. There
are some other works focusing on the combination selection
problem but related to our work weakly [23] [24]. Roy et al.
studied how to select “maximal combinations”. A combination
is “maximal” if it exceeds the specified constraint by adding
any new object. Finally, the k most representative maximal
combinations, which contain objects with high diversities, are
presented to the user. Wan et al. study the problem to construct
k profitable products from a set of new products that are not
dominated by the products in the existing market [24]. They
construct non-dominate products by assigning prices to the
new products that are not given beforehand like the existing
products. Moreover, there exist no previous work that focus
on skyband objectset query and are not suitable to solve this
type query.

III. PRELIMINARIES

This section formally defines objectset skyline query and
objectset Skyband query and studies their basic properties.

Given a dataset D with m-attributes {a1, a2, · · · , am} and
n objects {O1,O2, · · · , On}. We use Oi.aj to denote the j-th
dimension value of object Oi. Without loss of generality, we
assume that smaller value in each attribute is better.

Dominance
An object Oi ∈ D is said to dominate another object Oj ∈

D, denoted as Oi ≤ Oj , if Oi.ar ≤ Oj .ar (1 ≤ r ≤ m) for
all m attributes and Oi.at < Oj .at (1 ≤ t ≤ m) for at least
one attribute. We call such Oi as dominant object and such
Oj as dominated object between Oi and Oj . For example, in
Figure 1(b) object O7 is dominated by object O5. Thus, for
this relationship, object O5 is considered as dominant object
and O7 as dominated object.

Skyline

An object Oi ∈ D is said to be a skyline object of D, if and
only if does not exist any object Oj ∈ D (j 6= i) that dominates
Oi, i.e., Oj ≤ Oi is not true. The skyline of D, denoted by
Sky(D), is the set of skyline objects in D. For dataset shown
in Figure 1(a), object O2 dominates {O4, O5, O6, O7} and
objects {O1, O3} are not dominated by any other objects in
D. Thus, skyline query will retrieve Sky(D) = {O1, O2, O3}
(see Figure 1(b)).

In the following, we first introduce the concept of objectset,
and then use it to define objectsets skyline. A k-objectset s is
made up of k objects selected from D, i.e., s = {O1, · · · , Ok}
and for simplicity denoted as s = O1,··· ,k. Each attribute value
of s is given by the formula below:

s.aj = fj(O1.aj , · · · , Ok.aj), (1 ≤ j ≤ m) (1)

where fj is a monotonic aggregate function that takes k pa-
rameters and returns a single value. For the sake of simplicity,
in this paper we consider that the monotonic scoring function
returns the sum of these values, i.e.,

s.aj =

k∑
i=1

Oi.aj , (1 ≤ j ≤ m) (2)

though our algorithm can be applied on any monotonic aggre-
gate function. Recall that the number of k-objectsets in D is
nCk = n!

(n−k)!k! , we denote the number by |S|. If we consider
stocks shown in Figure 1, then the total number of objectset
for two stocks is 7C2 i.e., |S| = 21 and objectset O1,2 is made
up from object O1 and O2.

Dominance Relationship

A k-objectset s ∈ D is said to dominate another k-objectset
s′ ∈ D, denoted as s ≤ s′, if s.ar ≤ s′.ar (1 ≤ r ≤ m)
for all m attributes and s.at < s′.at (1 ≤ t ≤ m) for at
least one attribute. We call such s as dominant k-objectset and
s′ as dominated k-objectset between s and s′. For example,
in Figure 2(a) objectset O1,6 is dominated by objectset O1,2.
In this relationship objectset O1,2 is considered as dominant
objectset and O1,6 as dominated objectset.

Objectsets Skyline

A k-objectset s ∈ D is said to be a skyline k-objectset if s
is not dominated by any other k-objectsets in D. The skyline
of k-objectsets in D, denoted by Skyk(D), is the set of skyline
k-objectsets in D. Assume k = 2, then for the dataset shown
in Table III, 2-objectset O1,2, O2,3, and O2,6 are not dominated
by any other 2-objectsets in D. Thus, 2-objectset skyline query
will retrieve Sky2(D) = {O1,2, O2,3, O2,6} (see Figure 2(a)).

Domination Objectsets

Domination objectsets of k-objectsets, denoted by DSk(D)
is said to be a set of all dominated k-objectsets in D. Since
the 1-objectsets skyline result is Sky1(D) = {O1, O2, O3},
then the domination objectsets of 1-objectsets is DS1(D) =
{O4, O5, O6, O7}, i.e., D − Sky1(D).
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TABLE II. domRelationTable for 1-objectsets

Object Dominant Object
O1 ∅
O2 ∅
O3 ∅
O4 O2, O3

O5 O2, O6

O6 O2

O7 O1, O2, O3, O4, O5, O6

Objectset Skyband
Objectset skyband query returns a set of objectsets, each

objectset of which is not dominated by K other objectsets.
In other words, an objectset in the skyband-set query may be
dominated by at most K − 1 other objectsets. If we want to
apply skyband objectset query in D and choose objectset size
s = 2 and K = 2, then the objectset skyband will retrieve
{O1,2, O1,6, O2,3, O2,6, O3,4} as query result.

IV. COMPLETE SKYLINE OBJECTSETS ALGORITHM

In this section, we present our proposed method called
Complete Skyline objectSets (CSS). It is a level-wise iterative
algorithm. Initially, CSS computes conventional skyline, i.e.,
1-objectsets skyline then 2-objectsets skyline, and so on, until
k-objectsets skyline.

For k = 1, we can compute 1-objectsets skyline using
any conventional algorithms. In this paper, we use SFS
method proposed in [7] to compute 1-objectsets skyline
and receive the following domination relation table called
domRelationTable.

For the objectsets skyline query problem, the total number
of objectsets is |S| = nCk for a dataset D containing n
objects when we select objectsets of size k. This poses serious
algorithmic challenges compared with the traditional skyline
problem. For example, Brute Force approach needs to calculate
each objectset s and also needs to judge domination check
among all |S| objectsets. Fortunately, large parts of the com-
putations can be avoided with our proposed CSS algorithm.
As Table III illustrates, |S| = 21 possible combinations are
generated from only seven objects when k = 2. Even for
a small dataset with thousands of entries, the number of
objectsets is prohibitively large. Thanks to the Theorem 1,
which gives us opportunity to prune many non-promising
objectsets.

Theorem 1. If all k members of an objectset s are in
DSk−1(D), where DSk−1(D) = DS1(D)∪· · ·∪DSk−1(D),
then objecsets s /∈ Skyk(D).

Proof: Assume s = {O1, · · · , Ok} and s ∈ Skyk(D).
Since all members of s are in DSk−1(D), then there must be
k distinct dominant objectsets for each member of s. Suppose
{O′1, · · · , O′k} are those k distinct objectsets and {O′1,··· ,k}
construct an objectset s′. Now, it implies dominance relation-
ship s′ ≤ s, which contradict initial assumption s ∈ Skyk(D).
Hence, a non dominant k-objectsets contains at least one
skyline objectset.

Dominance relation given in Table II retrieves DS1(D) =
{O4, O5, O6, O7}. By using Theorem 1 for k = 2, we can
safely prune 4C2 = 6 objectsets such as {O4,5, O4,6, O4,7,

O5,6, O5,7, O6,7} from Sky2(D) computation, since these
combinations do not have any member from Skyk−1(D). After
pruning by this theorem the number of remaining objecsets,
i.e., 15 (21-6), is still too large for our running example.
To avoid large objecsets comparison, CSS applies the second
pruning strategy as follows:

Theorem 2. Suppose S1, S2, and S3 be the three objectsets
in D. If objectset S1 ≤ S2, then S1 ∪ S3 ≤ S2 ∪ S3 is true.

Proof: Given that S1, S2, and S3 are the three objectsets
in D and S1 ≤ S2 is true. Now, if we think another objectset
S3 as a constant and add it on both side then we will get the
relationship S1 ∪ S3 ≤ S2 ∪ S3. Thus if objectset S1 ≤ S2 is
true, then S1 ∪ S3 ≤ S2 ∪ S3 is also true.

Theorem 2 gives us another opportunity to eliminate huge
number objectsets. Table II shows that object O4 is dominated
by O2 and O3 (O2 ≤ O4 and O3 ≤ O4). By using Theorem
2, we get following dominance relations for 2-objectsets:
O1,2 ≤ O1,4, O2,3 ≤ O2,4, O2,3 ≤ O3,4. Similarly, object
O5 is dominated by O2 and O6 (O2 ≤ O5 and O6 ≤ O5).
From this relation, we can derive O1,2 ≤ O1,5, O2,3 ≤ O3,5,
and O2,6 ≤ O2,5. From O2 ≤ O6, we can derive O1,2 ≤ O1,6,
O2,3 ≤ O3,6. Finally, from the last row of Table II we have the
dominance relationship {O1, O2, O3, O4, O5, O6 ≤ O7}. Now
if we use objects {O1, O2, O3} as common objects then we
get following additional dominance relationship {O1,2 ≤ O1,7,
O2,3 ≤ O3,7, O2,6 ≤ O2,7}. Thus, according to Theorem
2, we can safely prune more 11 objectsets such as {O1,4,
O2,4, O3,4, O1,5, O2,5, O3,5, O1,6, O3,6, O1,7, O2,7, O3,7} for
Sky2(D). Actually, CSS algorithm will compose remaining
(15-11) = 4 objecsets such as {O1,2, O1,3, O2,3, O2,6} and
it needs to perform domination checks among them. After
performing domination check it retrieves {O1,2, O2,3, O2,6}
as Sky2(D) query result. However, during this procedure CSS
also updates the dominance relation table for 2-objectsets as
shown in Table III.

For k = 2 dominance relation Table III retrieves domination
objectsets DS2(D) = {O1,3, O1,4, O1,5, O1,6, O1,7, O2,4,
O2,5, O2,7, O3,4, O3,5, O3,6, O3,7}. When k = 3, conventional
skyline algorithm needs to check dominance relation among
|S| = 35 (7C3) objectsets. In contrast to such conventional
algorithms, our CSS algorithm does not compose those 3-
objectsets if the distinct 3 objects are in DS1(D) or DS1(D)∪
DS2(D). For DS1(D) = {O4, O5, O6, O7}, CSS does not
compute 4C3 = 4 objectsets. They are {O4,5,6, O4,5,7, O4,6,7},
and O5,6,7. For DS1(D) ∪DS2(D), CSS pruned another 22
objectsets. These 22 objectsets are {O1,3,4, O1,3,5, O1,3,6,
O1,3,7, O1,4,5, O1,4,6, O1,4,7, O1,5,6, O1,5,7, O1,6,7, O2,4,5,
O2,4,6, O2,4,7, O2,5,6, O2,5,7, O2,6,7, O3,4,5, O3,4,6, O3,4,7,
O3,5,6, O3,5,7, O3,6,7} After using Theorem 1, the remaining
objectset number is reduced to 9 (35-26). After applying
Theorem 2, CSS deos not need to compute another 5 objectets
such as {O1,2,4, O1,2,5, O1,2,7, O2,3,5}, and O2,3,7. Finally, the
proposed algorithm will compose only four objectsets {O1,2,3,
O1,2,6, O2,3,4, O2,3,6} and perform domination check among
these four objectsets to obtain Sky3(D). After the domination
check, since these objectsets are not dominated by each other
thus, CSS retrieves {O1,2,3, O1,2,6, O2,3,4, O2,3,6} as Sky3(D)
result. CSS will continue similar iterative procedure for the rest
of the k values to compute Skyk(D).
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TABLE III. domRelationTable for 2-objectsets

Objectset Dom. Objectset Objectset Dom. Objectset
O1,2 ∅ O3,4 O2,3

O1,3 ∅ O3,5 O2,3, O3,6

O1,4 O1,2, O1,3 O3,6 O2,3

O1,5 O1,2, O1,6 O3,7 O1,3, O2,3, O3,4, O3,5, O3,6

O1,6 O1,2 O4,5 O2,5, O3,5, O2,4, O4,6

O1,7 O1,2, O1,3, O1,4, O1,5, O1,6 O4,6 O2,6, O3,6, O2,4

O2,3 ∅ O4,7 O1,4, O2,4, O3,4, O4,5, O4,6, O2,7, O3,7

O2,4 O2,3 O5,6 O2,6, O2,5

O2,5 O2,6 O5,7 O1,5, O2,5, O3,5, O4,5, O5,6, O2,7, O6,7

O2,6 ∅ O6,7 O1,6, O2,6, O3,6, O4,6, O5,6, O2,7

O2,7 O1,2, O2,3, O2,4, O2,5, O2,6

V. OBJECTSETS SKYBAND COMPUTATION

We adapt previous CSS method for objectset skyband query
computation. We term this method as k-skyband objectset
(KSS). Initially consider a skyband objectset query where
objectset size s = 1 and skyband size K = 1 i.e., conventional
skyline query. Then it retrieves {O1, O2, O3} as the objectset
skyband query result. If we keep objectset size s = 1 and
increase the skyband value K to 2, then objectset skyband
result becomes {O1, O2, O3, O6}. Similarly, skyband objectset
query for s = 1 and K = 3 retrieves {O1, O2, O3, O4, O5,
O6}. Finally, for s = 1 and K = 4 KSS retrieves all objects
as a result.

Similar to objectset skyline query problem if we select
objectsets of size s, then the number of objectsets is |S| = nCs

for a dataset D containing n objects. Unfortunately, to compute
skyband objectset we can not use Theorem 1. This is because,
even if all k member of an objectset s are in DSk(D), it can
be retrieved as the member of objectset skyband. However,
to compute objectset skyband query efficiently, we introduce
Theorem 3, which is useful to filter objectsets as well as to
reduce the number of comparisons required domination check.

Theorem 3. If an objectset, say s, is dominated by at least K
other objectsets, then we do not need to compose objectsets
that contain s for K-skyband-set computation.

Proof: Let S1, S2, S3, and S4 be objectsets in DS.
Assume that objectset S1 is dominated by two objectsets S2

and S3 (S2 ≤ S1 and S3 ≤ S1). Thanks to Theorem 2,
we can say that if S2 ≤ S1 is true, then for super objectset
S2∪S4 ≤ S1∪S4 is also true. Similarly, S3∪S4 ≤ S1∪S4 is
true. There exist at least two other objectset such as S2 ∪ S4

and S3 ∪ S4 that can dominate super objectset S1 ∪ S4. It
implies that an objectset is dominated by two objectsets, it
cannot be an objectset of 2-skyband-set. Thus, it is proved
that if an objectset is dominated by at least K other objectsets
then we do not need to compose super objectsets that contain
the dominated objectset for skyband-set computation.

From Table II, we can easily construct similar
domRelationTable for objectset size s = 2 as shown
in Table III by using Theorem 2 and Theorem 3. Dominance
relation Table III retrieves candidates for objectset skyband
queries when objecetset size s = 2. For example, if an user
specifies skyband objectset query for s = 2 and K = 1,
then the proposed algorithm will retrieve candidate objectsets
{O1,2, O1,3, O2,3, O2,6} from Table III. Note that the
proposed algorithm will compose only four objectsets and

perform domination check among them to obtain skyband
objectset result {O1,2, O2,3, O2,6}. Here, objectset O1,3

is dominated by objectset O2,6. Next, if the user concerns
about skyband objectset query with s = 2 and K = 2,
then the proposed algorithm will choose candidate objectsets
{O1,2, O1,3, O1,6, O2,3, O2,4, O2,5, O2,6, O3,4, O3,6} and
perform domination check among these objectsets. Finally, it
retrieves {O1,2, O1,6, O2,3, O2,6, O3,4} as skyband-set query
result. The dominance relation Table III retrieves candidate
objectsets for any skyband objectset query when s = 2. The
proposed method will continue similar iterative procedures to
construct dominance relation table each time for larger value
of s and ready to report objectset skyband queries result for
any skyband value of K.

VI. PERFORMANCE EVALUATION

In the experimental section, we empirically evaluated the
performance of our proposed CSS and KSS approaches. We do
not compare our algorithms with the algorithm for computing
top-k combinatorial skyline [11]. The reasons are twofold.
First, RCA requires the user to determine the ranking of every
dimension of the dataset, and its performance varies depending
on the user preference. Second, while our algorithms compare
only groups of the same size, RCA compares groups of differ-
ent sizes as well. However, in order to measure their relative
performance, we adapt SFS skyline algorithm to compute set
skyline algorithm [7]. To make the comparison fair, we have
excluded all the pre-processing cost of SFS method such as
cost of objectset generation.

We conduct a set of investigations with different dimen-
sionalities (m), data cardinalities (n), and objectset size (k)
to judge the effectiveness and efficiency of proposed methods.
All experiments were run on a computer with Intel Core i7
CPU 3.4GHz and 4 GB main memory running on Windows.
We compiled the source codes under jdk 1.8. Each experiment
is repeated five times and we report the average results for
performance evaluation. The execution times in the graphs
shown in this section are plotted in log scale.

A. Performance on Synthetic Datasets

We prepared synthetic datasets with three data distributions
correlated, anti-correlated, and independent, which are used in
[2]. The results are shown in Figures 3, 4, and 5. The sizes
of resulting synthetic datasets are varied from 2.3k to 161.7k
depending on the number of objects n.
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Figure 3. Performance for different cardinality

Effect of Cardinality
For this experiment, we specify the data dimensionality m

to 4, objectset size k to 3, and vary dataset cardinality n. If
the cardinality n takes the values of 25, 50, 75, and 100 then
total objectset size become 2.3k, 19.6k, 67.5k, and 161.7k,
respectively. We plot the running times of the algorithms in
Figure 3. Figure 3(a), (b), and (c) respectively reports the
performance on the correlated, the independent, and the anti-
correlated datasets. The horizontal line represents the data
cardinality and the vertical line represents execution time. We
observe that all methods are affected by data cardinality. If the
data cardinality increases then their performances fall down.
The results demonstrate that proposed methods significantly
outperforms the SFS method. The performance of SFS method
degrades rapidly as the the dataset size increases, especially for
the anti-correlated data distribution. This represents that the
proposed methods can successfully prune the objectset com-
posing as well as many unnecessary comparisons. However,
the difference between CSS and KSS is not very significant.
KSS needs little bit extra time to retrieve results for all K.

Effect of Dimensionality
In these experiments, we set the data cardinality n to 50,

objectset size k to 3 and vary dataset dimensionality m ranges
from 2 to 5. The elapsed time results are shown in Figure 4(a),
(b), and (c). The horizontal line shows the data dimensionality
m and the vertical line shows the execution time. The results
showed that as the dimension m increases the performance
of the all methods becomes slower. This is because checking
the dominance relationship between two objectsets becomes
more expensive with large values of m. For higher dimension,
when the number of non dominant objectset increases the
performance of all methods become sluggish. The running time
of the proposed algorithms achieve satisfactory even when the
dimension size is large. The results on correlated datasets are
9-20 times faster than the independent and the anti-correlated
datasets. We observed that the time difference between CSS
and KSS is not notable for the same reason as we discuss in
previous section.

Effect of Objectset Size
In these experiments, we examine the performance of the

proposed CSS and KSS under various objectset size k. We
limit the data cardinality n to 50 and dataset dimensionality m
to 4. The results are described in Figure 5(a), (b), and (c). The
horizontal line shows the objectset size k and the vertical line
shows the time taken. The results showed that as the objectset
size k rises up, the performance of all methods are fallen down.
The performance of SFS method is much worse than that of
the proposed methods when the objectset size k is greater than
1. This is because the proposed methods use SFS algorithm
for k = 1 to construct domRelationTable, and executing
domination check. For higher value of s, it does not require to
compose all objectset and it reduces the number of unnecessary
comparisons. We notice that the time difference between CSS
and KSS is not significant and CSS is faster that KSS.

From the experimental results, we observe a pattern that
the speed up of the proposed methods over SFS is 4-10
times faster. Since the number of skyline objectsets of the
anti-correlated datasets is generally larger than those of the
independent datasets and the correlated datasets, the algorithms
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with the anti-correlated datasets take generally more execution
time than those of the other datasets.

B. Performance on Real Dataset
We next present the experimental results of the proposed

algorithms with real datasets. To examine the results for
real dataset, we select the FUEL dataset, which is obtained
from “www.fueleconomy.gov”. FUEL dataset is 24k 6-
dimensional objects, in which each object stands for the
performance of a vehicle (such as mileage per gallon of
gasoline in city and highway, etc.). The attribute domain range
for this dataset is [8, 89].

To deal with FUEL dataset, we conducted similar exper-
iments like synthetic datasets. First, to study dimensionality,
we specify the data cardinality n to 50, objectset size k to 3
and vary dataset dimensionality m from 2 to 5.

Figure 6(a) illustrates the performance the objectset skyline
and objectset skyband queries of different dimension sizes. As
the dimensions increases, the running time for all methods
increases accordingly. However, CSS and KSS outperforms
than SFS technique.

Our second experiments on real data examine the perfor-
mance of different data cardinality n. For these experiments,
we limit the dimensionality m to 4, objectset size k to 3,
and vary dataset cardinality n from 25 to 100. The results are
shown in Figure 6(b). As the data size increases, the running
time for all methods increase sharply. We can observe that
CSS is better than KSS and SFS.

In the final experiments, we examine the performance
under various objectset size k. We fix the data cardinality n
to 50 and dimensionality m to 4. The results are shown in
Figure 6(c). As the objectset size increases, the execution time
for all methods also increase. We can observe that the running
time of CSS and KSS are much superior to SFS.

Notice that we get similar standardized results like inde-
pendent distribution that represents the scalability of CSS and
KSS on real dataset for all experiments with FUEL dataset.

These experiments demonstrate that our proposed CSS and
KSS are consistently better than the SFS method on both
synthetic and real datasets. Therefore, our experiments confirm
the effectiveness and scalability of our algorithms.

VII. CONCLUSION

This paper addresses a skyline query for set of objects
in a dataset. After analysis various properties of objectsets
skyline, we propose an efficient and general algorithm called
CSS to compute objectsets skyline. Because of the exponential
growth in the number of combinations of tuples, objectsets
skyline computation using conventional method is inherently
expensive in terms of both time and space. Therefore, in order
to prune the search space and improve the efficiency, we
have developed two major pruning strategies. Using synthetic
and real datasets, we demonstrate the scalability of proposed
method. Intensive experiments confirm the effectiveness and
superiority of our CSS algorithm.

In the future, first, we intend to implement the object-
sets skyline problem when the aggregation function is not
monotonic. As another direction for future work, we may
consider a problem of finding a small number of representative
skyline objectsets, similarly to finding a small number of
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representative skyline objectsets. Third, we want to design
more optimized mechanisms for objectsets computation on
distributed MapReduce environment.
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