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Abstract—The problem of Skyline computation has attracted
considerable research attention in the last decade. A Skyline query
selects those tuples from a dataset that are optimal with respect
to a set of designated preference attributes. However, the number
of Skyline answers may be smaller than required by the user, who
needs at least k. Given a dataset, a top-k Skyline query returns
the k most interesting elements of the Skyline query based on
some kind of user-defined preference. That said, in some cases,
not only the Pareto frontier is of interest, but also the stratum
behind the Skyline to get exactly the top-k objects from a partially
ordered set stratified into subsets of non-dominated tuples. In
this paper we present the concept of multi-level Skylines for
the computation of different strata and we discuss top-k Skyline
queries in detail. Our algorithms rely on the lattice structure
constructed by a Skyline query over low-cardinality domains. In
addition we present external versions of our algorithms such that
it is not necessary to store the complete lattice in main memory.
We demonstrate through extensive experimentation on synthetic
and real datasets that our algorithms can result in a significant
performance advantage over existing techniques.

Keywords–Skyline; Preferences; Multi-level; Top-k; Lattice.

I. INTRODUCTION

Information systems of different types use various tech-
niques to rank query answers. In such systems users are often
interested in the most important (top-k) and most preferred
query answers in the potentially huge answer space. Different
preference-based query languages have been defined to support
the bases for discriminating poor quality data and to express
user’s preference criteria on top-k [1][2][3].

The Skyline operator for example [4] has emerged as an
important and popular technique for searching the best objects
in multi-dimensional datasets. A Skyline query selects those
objects from a dataset D that are not dominated by any others.
An object p having d attributes (dimensions) dominates an
object q, if p is strictly better than q in at least one dimension
and not worse than q in all other dimensions, for a defined
comparison function. Without loss of generality, we consider
subsets of Rd in which we search for Skylines with respect to
(abbr. w.r.t.) the natural order ≤ in each dimension.

Example 1. The most cited example on Skyline queries is
the search for a hotel that is cheap and close to the beach.
Unfortunately, these two goals are conflicting as the hotels
near the beach tend to be more expensive. Table I presents a
sample dataset with its visualization in Figure 1. Each hotel is

represented as a point in the two-dimensional space of price
and distance to the beach. Interesting are all hotels that are
not worse than any other hotel in these both dimensions.

TABLE I. Sample dataset of hotels.

hotel id beach dist. (km) price (e) board
p1 2.00 25 none
p2 1.25 50 breakfast
p3 0.75 75 half board
p4 0.50 150 full board
p5 0.25 225 full board
p6 1.75 110 half board
p7 1.10 120 breakfast
p8 0.75 220 full board
p9 1.60 165 half board

p10 1.50 185 breakfast

The hotels p6, p7, p9, p10 are dominated by hotel p3. The
hotel p8 is dominated by p4, while the hotels p1, p2, p3, p4, p5
are not dominated by any other hotels and build the Skyline S.
From the Skyline, one can now make the final decision, thereby
weighing the personal preferences for price and distance.
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Figure 1. Skyline example.

Most of the work on Skyline computation has focused
on the development of efficient algorithms for preference
evaluation ([3] gives an overview). The most prominent algo-
rithms are characterized by a tuple-to-tuple comparison-based
approach [4][5]. Based on this, several algorithms have been
published in the last decade, e.g., NN (Nearest Neighbor)
[6], BBS (Branch and Bound Skyline) [7], SFS (Sort-Filter
Skyline) [8], or LESS (Linear Elimination-Sort for Skyline)
[9], just to name a few.
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Unfortunately, the size of the Skyline S can be very small
(e.g., in low-dimensional spaces). Hence, a user might want to
see the next best objects behind the Skyline.

Example 2. In our example above maybe five hotels are not
enough, so we have to present the next stratum called S1ml
(Skyline, multi-level 1, dashed line in Figure 2): p6, p7, p8.
Also, the third best result set S2ml might be of interest: p9, p10.
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Figure 2. Multi-level Skylines.

Furthermore, in the presence of high-dimensional Skyline
spaces, the size of the Skyline S can still be very large, making
it unfeasible for users to process this set of objects [3]. Hence,
a user might want to see the top-k objects. That means a
maximum of k objects out of the complete Skyline set if
|S| >= k, or, for |S| < k, use the Skyline set plus the next
best objects such that there will be k results. In the previous
example a top-3 Skyline query would identify, e.g., p1, p2, and
p3, whereas in a top-10 query it is necessary to consider the
second and third stratum to identify p6, p7, p8, p9, and p10 as
additional Skyline points.

In this work, we propose evaluation strategies for multi-
level and top-k Skyline queries, which do not depend on tuple
comparisons. For this we generalize the well-known Skyline
queries to multi-level Skylines Sml. We present an efficient
algorithm to compute the l-th stratum of a Skyline query
exploiting the lattice structure constructed over low-cardinality
domains. Following [3][10][11], many Skyline applications
involve domains with small cardinalities – these cardinalities
are either inherently small (such as star ratings for hotels), or
can naturally be mapped to low-cardinality domains (such as
price ranges on hotels). In addition, we propose an evaluation
strategy for top-k Skyline queries, which is based on the multi-
level approach.

This paper is an extended version of [1] and additionally
contains a deeper background on lattice-based Skyline com-
putation, additional theoretical results, detailed description of
the multi-level and top-k Skyline algorithms, examples, more
comprehensive experiments, and extended related work. In
addition we provide a section about an external implementation
of our algorithms such that they do not rely on large main
memory.

The remainder of this paper is organized as follows: In
Section II we present the formal background. Based on this
background we will discuss multi-level Skyline computation in
Section III and top-k Skyline computation in Section IV. In
Section V we present an external version of our algorithm.
Section VI contains some remarks. We conduct an extensive

performance evaluation on synthetic and real datasets in Sec-
tion VII. Section VIII contains related work, and Section IX
concludes our paper.

II. SKYLINE QUERIES REVISITED

In this section, we revisit the problem of Skyline compu-
tation and shortly describe the Lattice Skyline approach, since
this is the basis of our algorithms.

A. Skyline Queries
The aim of a Skyline query is to find the best objects in a

dataset D, i.e., S(D). More formally:

Definition 1 (Dominance and Indifference). Assume a set of
vectors D ⊆ Rd. Given x = (x1, ..., xd), y = (y1, ..., yd) ∈ D,
x dominates y on D, denoted as x <⊗ y, if the following
holds:

x <⊗ y ⇐⇒ ∀j ∈ {1, ..., d} : xj ≤ yj ∧
∃i ∈ {1, ..., d} : xi < yi

(1)

We call x and y indifferent on D, denoted as x ∼ y if and
only if ¬(x <⊗ y) ∧ ¬(y <⊗ x).

Note that following Definition 1 we consider subsets of Rd

in that we search for the Skyline w.r.t. the natural order ≤ in
each dimension. Equation (1) is also known as Pareto ordering
[12][13][14][15].

Definition 2 (Skyline S). The Skyline S(D) of D is defined by
the maxima in D according to the ordering <⊗, or explicitly
by the set

S(D) = {t ∈ D | @u ∈ D : u <⊗ t} (2)

In this sense we prefer the minimal values in each domain and
write x <⊗ y if x is better than y.

Note that an extension to arbitrary orders specified by
utility functions is obvious and that Skylines are not restricted
to numerical domains [16]. For any universe Ω and orderings
<i ∈ (Ω × Ω) (i ∈ {1, ..., d}) the Skyline w.r.t. <i can be
computed, if there exist scoring functions gi : Ω → R for all
i ∈ {1, ..., d} such that x <i y ⇔ gi(x) < gi(y). Then the
Skyline of a set M ⊆ Ω w.r.t. (<i)i=1,...,d is equivalent to the
Skyline of {(g(x1), ..., g(xd)) | x ∈M}.

In general, algorithms of the block-nested-loop class (BNL)
[4] are probably the best known algorithms for computing Sky-
lines. They are characterized by a tuple-to-tuple comparison-
based approach, hence having a worst case complexity of
O(n2), and a best case complexity of the order O(n); n
being the number of input tuples, cf. [9]. The major advantage
of a BNL-style algorithm is its simplicity and suitability for
computing the maxima of arbitrary partial orders. Furthermore,
a multitude of optimization techniques [8][9] and parallel
variants [17][18][19][20] have been developed in the last
decade.

B. Lattice Skyline Revisited
Lattice-based algorithms depend on the lattice structure

constructed by a Skyline query over low-cardinality domains.
An attribute domain dom(S) is said to be low-cardinality if
its value is drawn from a set S = {s1, . . . sm}, such that the
set cardinality m is small. Examples for such algorithms are
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Lattice Skyline [11] and Hexagon [10], both having a worst
case linear time complexity. Both algorithms follow the same
idea: the partial order imposed by a Skyline query constitutes
a lattice.

Definition 3 (Lattice [21]). A partially ordered set D with
operator ’<⊗’ is a lattice if ∀x, y ∈ D, the set {x, y} has
a least upper bound and a greatest lower bound in D. If a
least upper bound and a greatest lower bound is defined for
all subsets of D, we have a complete lattice.

The proof that a Skyline query constitutes a lattice can be
found in [21].

Visualization of such lattices is often done using Better-
Than-Graphs (BTG) [22], graphs in which edges state domi-
nance. The nodes in the BTG represent equivalence classes.
Each equivalence class contains the objects mapped to the
same feature vector of the Skyline query. All values in the same
equivalence class are indifferent and considered substitutable.

Before we consider an example, we need the notion of
max(A).

Definition 4 (max(A)). max(A) is the maximum value for a
preference on the attribute A.

Example 3. An example of a BTG over a 2-dimensional space
is shown in Figure 3 where [0..2]×[0..4] describes a domain of
integers where attribute A1 ∈ {0, 1, 2} and A2 ∈ {0, 1, 2, 3, 4}
(abbr. [2; 4], max(A1) = 2, max(A2) = 4). The arrows show
the dominance relationship between elements of the lattice.
The node (0, 0) presents the best node, i.e., the least upper
bound, whereas (2, 4) is the worst node. The bold numbers
next to each node are unique identifiers (ID) for each node in
the lattice, cp. [10]. Nodes having the same level in the BTG
are indifferent, i.e., for example, that neither the objects in the
node (0, 4) are better than the objects in (1, 3) nor vice versa.
A dataset D does not necessarily contain tuples for each lattice
node. In Figure 3, the gray nodes are occupied (non-empty)
with elements from the dataset whereas the white nodes have
no element (empty).
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Figure 3. Lattice over [0..2]× [0..4].

The method to obtain the Skyline can be visualized using
the BTG. The elements of the dataset D that compose the
Skyline are those in the BTG that have no path leading to
them from another non-empty node in D. In Figure 3, these

are the nodes (0, 1) and (2, 0). All other nodes have direct
or transitive edges from these both nodes, and therefore are
dominated.

When consing lattice algorithms the question arises how to
map tuples t from a dataset D to the lattice structure. In [11]
the authors use a function F (t), which denotes a one-to-one
mapping of an element t ∈ D to a position in the BTG. For
example, in the boolean case one can use the binary value of
the boolean attributes to determine the array position, i.e., if
d = 3, then the element (true, false, true) ∈ D is represented
by position 5 (101 in binary representation) in the BTG. A
more general approach is presented in [10], where the position
of a tuple is computed as below and also serves as the unique
identifier (ID) mentioned in Example 3.

Lemma 1 (Edge Weights and Unique Node IDs). Let S(D)
be a Skyline query over a d-dimensional low-cardinality do-
main dom(A) := dom(A1) × . . . × dom(Ad), and a =
(a1, . . . , ad) ∈ dom(A).

a) The weight of an edge in the BTG expressing dominance
between two direct connected nodes w.r.t. any attribute Ai

is characterized by

weight(Ai) :=

d∏
j=i+1

(max(Aj) + 1) (3)

For j > d we set weight(Ai) = 1.
b) The unique identifier (ID) for a ∈ dom(A) is given by

ID(a) =

d∑
i=1

(weight(Ai) · ai) (4)

The proof of Lemma 1 can be found in [10].

Example 4. Reconsider Example 3. The edge weights of the
node a := (a1, a2) = (0, 1) are weight(a1) = 4 + 1 = 5 and
weight(a2) = 1 as annotated in Figure 3. Hence, the unique
identifier is ID(a) = 5 · 0 + 1 · 1 = 1, the bold number left of
the node.

Note that the edge weights are also used to find the direct
dominated nodes of a given node a. Just add the different
edge weights to the unique identifier and one will get all
direct dominated nodes, e.g., 1+1 = 2 and 1 + 5 = 6, both
are dominated by node 1 in Figure 3. The pseudocode to find
all direct dominated nodes is depicted in Algorithm 1 and is
straightforward.

Lattice based algorithms exploit these observations to find
the Skyline of a dataset over the space of vectors drawn from
low-cardinality domains and in general consist of three phases.
The pseudocode can be found in Algorithm 2. For details we
refer to [10] and [11].

1) Phase 1: The Construction Phase initializes the data
structures. The lattice is represented by an array in main
memory (line 3 in Algorithm 2). Each position in the array
stands for one node ID in the lattice. Initially, all nodes of
the lattice are marked as empty and not dominated.

2) Phase 2: In the Adding Phase the algorithm determines
for each element t ∈ D the unique ID and therefore the
node of the lattice that corresponds to t. This node will be
marked as non-empty (line 7).
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Algorithm 1 getDirectDominatedNodesBy(a)
Input: Node a.
Output: List of immediate dominated nodes.

1: function GETDIRECTDOMINATEDNODESBY(a)
2: nodes ← list() // empty list to store dominated nodes
3: // loop over the Ai

4: for i← 1, . . . , d do
5: // check if there is an edge for Ai

6: domNode ← ID(a) + weight(Ai)
7: if domNode is valid, then
8: // domNode is in the next level and inside the BTG
9: nodes.add(domNode)

10: end if
11: end for
12: return nodes
13: end function

3) Phase 3: After all tuples have been processed, in the Re-
moval Phase dominated nodes are identified. The nodes of
the lattice that are marked as non-empty and which are not
reachable by the transitive dominance relationship from any
other non-empty node represent the Skyline values. Nodes
that are non-empty but are reachable by the dominance
relationship are marked dominated to distinguish them from
present Skyline values.
From an algorithmic point of view this is done by a
combination of breadth-first traversal (BFT) and depth-first
traversal (DFT). The nodes of the lattice are visited level-
by-level in a BFT (the dashed line in Figure 3, line 10 in
Algorithm 2). Each time a non-empty and not dominated
node is found, a DFT will start to mark dominated nodes
as dominated (lines 12 – 17). The DFT does not need to
explore branches already marked as dominated. The BFT
can stop after processing a whole level not containing empty
nodes hence marking the end of Phase 3.
For example, the node (0, 1) in Figure 3 is not empty.
The DFT recursively walks down and marks all dominated
nodes as dominated (thick black arrows). After the BFT
has finished, the non-empty and not dominated nodes (here
(0, 1) and (2, 0)) contain the Skyline objects.

III. MULTI-LEVEL SKYLINE COMPUTATION

In some cases it is necessary to return not only the best
tuples as in common Skyline computation, but also to retrieve
tuples directly dominated by those of the Skyline set (the
second stratum), i.e., the tuples behind the Skyline. Following
this method transitively, the input is partitioned into multiple
levels (strata) in a way resembling the elements’ quality
w.r.t. the search preferences. In this section, we introduce the
concept of multi-level Skylines and present an algorithm for
efficient computation of iterated preferences in linear time.

A. Background
We extend Definition 2 of the Skyline by a level value to

form multi-level Skyline (Sml) sets.

Definition 5 (Multi-Level Skyline Sml). The multi-level Sky-
line set of level l (i.e., the l-th stratum) for a dataset D is
defined as

S0ml(D) := S(D)

Slml := S
(
D \⋃l−1

i=0 Siml(D)
)

Algorithm 2 Lattice Skyline (cp. [10][11])
Input: Dataset D with n tuples over d low-cardinality attributes,
Array BTG of size V , Vi is the cardinality of dimension i.
Output: Skyline points.

1: // Phase 1: Construction Phase
2: Let V be the number of entries in the lattice, V ← V1, ·, . . . ·Vd

3: Let BTG be an array of size V holding the different designators
empty, non-empty, dominated, initialized to empty

4: // Let ID(t) be the unique identifier of a tuple t ∈ D and the
index position in BTG.

5: // Phase 2: Adding Phase
6: for all t ∈ D do
7: Set BTG[ID(t)] to non-empty
8: end for
9: // Phase 3: Removal Phase

10: for i← 0 . . . V in a BFT do
11: // Find all direct dominated nodes
12: for all g ∈ getDirectDominatedNodesBy(BTG[i]) do
13: if BTG[i] == (non-empty or dominated) then
14: BTG[g]← dominated
15: do a DFT to mark successors as dominated
16: end if
17: end for
18: end for
19: // Output Skyline
20: for all t ∈ D do
21: if BTG[ID(t)] == non-empty then
22: output t as a Skyline point
23: end if
24: end for

Thereby S0ml(D) is identical to the standard Skyline S(D)
from Definition 2, and Slmax

ml denotes the non-empty set with
the highest level.

Example 5. For example, the query S1ml(D) on our hotel
sample dataset computes the set of “second-best” tuples in
the dataset D, i.e., the second stratum consisting of the objects
p6, p7, and p8 as depicted in Figure 2, dashed line. The query
S2ml(D) returns p9, p10.

Therefore, by iterating the Skyline operator one can rank
the tuples in a given relation instance. Before we present our
algorithm for multi-level Skyline computation we prove some
properties.

Lemma 2. For each tuple t in a finite dataset D, there is
exactly one Slml set it belongs to:

∀t ∈ D :
(
∃!l : t ∈ Slml(D)

)
(5)

Proof: A Skyline query on D 6= ∅ never yields an
empty result, i.e., S(D) 6= ∅. Starting at 0, for each l =
0, 1, 2, . . . the input dataset diminishes as all selection results
for smaller values of l are removed from the input. Since
D \⋃l

i=0 Siml(D) ⊂ D \⋃l−1
i=0 Siml(D) and |D| is finite, there

has to be some lmax for which the following holds:

lmax−1⋃
i=0

Siml(D) ⊂ D ∧
lmax⋃
i=0

Siml(D) = D

So each tuple in D belongs to exactly one Siml(D).
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Lemma 2 shows that all tuples in a dataset belong to a Sml

set of some level. So a kind of order on D w.r.t. the Skyline
query is induced.

Lemma 3. All elements of Slml(D) are dominated by elements
of Siml(D) for all i < l:

∀y ∈ Slml(D) : (∃x ∈ Siml(D) : x <⊗ y)) if i < l (6)

Proof: Consider a tuple y ∈ Slml(D) that is not dominated
by any element of Siml(D) for i < l. Following Definition 5,
y ∈ Siml(D). This is a contradiction.

For every Skyline query on D 6= ∅ there is at least a Sml

set of level 0. If it is the only one, no tuple in D is worse
than any other w.r.t. the preference. Just as well, it is possible
that all tuples in D belong to Sml sets of different levels. The
Skyline query then defines a total order on the elements of D.

For each node x in the BTG, we can determine the stratum
l of the Slml set it belongs to. Of course, all tuples in one
equivalence class (which is represented by one node) are
elements of the same Slml set. To find the Slml set for each
node, we start at level 0 at the top node of the better-than
graph. All tuples belonging to the standard Skyline set have
a S0ml set level of 0. As the following lemma will show, the
level of each tuple is the highest level of all tuples dominating
it, increased by one:

Lemma 4 (Slml set level for an object). For an object
t ∈ D (or the BTG node representing its level values),
l(t) : dom(A)→ N0 can be computed as follows:

l(t) :=

 0 ⇐⇒ t ∈ S0ml(D)
1 + max({l(s)|s ∈ D ∧ t <⊗ s})

⇐⇒ t 6∈ S0ml(D)

Proof: This follows from Definition 5 and Lemma 3.

With these concepts, we are now able to adjust lattice-based
Skyline algorithms to compute multi-level Skyline sets.

B. The Multi-Level Lattice Skyline Algorithm (MLLS)
We will now see how the lattice based Skyline algorithms

described in Section II-B can be adjusted to support multi-
level Skyline computation. We call this algorithm Multi-Level
Lattice Skyline (MLLS). The first two phases of the standard
lattice algorithms, construction and adding, remain unchanged.
Modifications have to be done solely in the removal phase.
Actually, as dominated nodes are not “removed” anymore, the
removal phase is replaced by a node classification phase, cp.
Algorithm 3.

The classification phase uses the same breadth-first and
depth-first traversal as the original lattice Skyline algorithms.
We need the node states empty and non-empty. In addition,
we need to store a temporary value tmpml for the level of the
Sml set a node belongs to currently. When a node n is reached,
we reset the tmpml values for the nodes v1, v2, . . . , that are
directly dominated by n. The value tmpml(vi) for a node vi
is computed as follows:

tmpml(vi) ={
max (tmpml(vi), tmpml(n)) ⇔ n is empty
max (tmpml(vi), tmpml(n) + 1) ⇔ n is not empty

Algorithm 3 Multi-Level Skyline – Classification Phase
Input: Better-Than Graph (BTG)
Output: list of Sml sets

1: function CLASSIFY(BTG)
2: Sml ← list<list>() // initialize list to store Sml sets
3: tmpml[|BTG|]← 0 // initialize tmpml array with 0’s
4: // iterate over all nodes n (BFT), start with node ID 0
5: n ← node(ID = 0)
6: repeat
7: // use offset for tmpml computation
8: offset ← n.isEmpty() ? 0 : 1
9: // let domNodes be the list of direct dominated nodes

10: domNodes ← getDirectDominatedNodesBy(n)
11: for all v in domNodes do // compute tmpml

12: tmpml(v)← max(tmpml(v), tmpml(n) + offset)
13: end for
14: // node not empty, add objects to Sml sets
15: if !n.isEmpty() then
16: i← tmpml[n]
17: // add all elements in node n to the Si

ml set
18: Sml.addAll(i, n.getElements())
19: end if
20: n← nextNode() // next node in BFT
21: until n == NIL // repeat until end of BTG is reached
22: return Sml

23: end function

In Algorithm 3, for a more convenient and efficient access
to each of the Sml sets after the classification phase, we
generate a list of nodes belonging to each Sml set while
walking through the BTG. For this, we initialize a list of lists,
which will store the Siml sets for each level i and an array
of size of the BTG for the tmpml levels values (lines 2–3).
Then we start the BFT at node 0 (line 5). If the current node
n is empty we set an offset to 0, otherwise to 1 (line 8).
The function getDirectDominatedNodesBy() retrieves
all nodes directly dominated by n (cp. Algorithm 1). The
complexity of this function is given by the number of Skyline
dimensions as for each of them not more than one node can be
dominated and we only visit directly dominated nodes (so the
DFT ends at depth 1). The actual complexity of finding each
of the directly dominated nodes or a node’s successor in the
BFT is specific to the representation of the BTG in memory,
but can be assumed as O(1) [10][11]. For all direct dominated
nodes compute the tmpml value in (lines 11–13). Afterward,
if the node n contains elements from the input dataset, we
retrieve for Siml the level i the elements belongs to (line 16)
and add all elements of the node n to the Siml building up the
multi-level Skyline sets (line 18). We continue with the next
node in the BFT (line 20) until the end of the BTG is reached
(line 21). The result is a list of Siml sets.

Example 6. Figure 4 visualizes an example of Algorithm 3.
Since node 0 is empty, the first relevant node is 1. Therefore

we set tmpml[1] = 0 and add 1 to all direct dominated nodes,
i.e., tmpml[2] = tmpml[6] = 1. We continue with node 5,
which does not affect anything (the offset for the node is
0 and hence the tmpml values for the dominated nodes 6
and 10 remain unchanged). Since node 2 is empty, we set
tmpml[3] = tmpml[7] = 1. Node 6 has already tmpml[6] = 1.
The next node is 10, which still has tmpml[10] = 0. Node 3
sets tmpml[4] = tmpml[8] = 2, and so on. After the BFT has
finished we have 4 Sml sets.
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Figure 4. Multi-level Skylines Slml.

Note that our multi-level Skyline algorithm has the same
runtime complexity as the original Lattice Skyline algorithms
[10][11]. In MLLS the construction and adding phase are
unchanged in comparison to Lattice Skyline. The classification
phase is a simple modification of the original removal phase
without any additional overhead. Therefore, we state a linear
runtime complexity of O(dV +dn), where d is the dimension-
ality, n is the number of input tuples, and V is the product
of the cardinalities of the low-cardinality domains from which
the attributes are drawn.

IV. TOP-K SKYLINE COMPUTATION

The concept of top-k ranking is used to rank tuples
according to some score function and to return a maximum
of k objects [23]. On the other hand, Skyline retrieves tuples
where all criteria are equally important concerning some user
preference [4]. However, the number of Skyline answers may
be smaller than required by the user, for whom k are needed.
Therefore, top-k Skyline was defined as a unified language to
integrate them [24][25].

A. Background
Top-k Skyline allows to get exactly the top k from a

partially ordered set stratified into subsets of non-dominated
tuples. The idea is to partition the set into subsets (strata, multi-
level Skyline sets) consisting of non-dominated tuples and to
produce the top-k of these partitions.

In general, existing solutions calculate the first stratum with
some sort of post-processing [24][25][26]. That means, after
identifying the first stratum S0ml(D), they remove the contained
objects from the original input dataset D and continue Skyline
computation on the reduced data. Hence, the second stratum
is S1ml = S (D \ S(D)). This workflow is continued until k
objects are found. Definition 6 outlines the three different cases
which might occur:

Definition 6 (Top-k Skyline). A top-k Skyline query Sktk(D)
on an input dataset D computes the top k elements with respect
to the Skyline preferences. Formally:

1) If |S(D)| > k, then return only k tuples from S(D),
because not all elements can be returned due to result
set size limitations. Any k tuples are a correct choice.

2) If |S(D)| = k, then Sktk(D) = S(D). That means return
all tuples of S0ml(D). In this case there is no difference
between the Skyline set and the top-k result set.

3) If |S(D)| < k, then the elements of S(D) are not enough
for an adequate answer. We have to find a value j, which
meets the following criterion:∣∣∣∣∣

j−1⋃
i=0

Siml(D)

∣∣∣∣∣ < k ≤
∣∣∣∣∣

j⋃
i=0

Siml(D)

∣∣∣∣∣ (7)

That means, not only all elements of S(D) = S0ml(D) are
returned, but also some of S1ml(D), and if the number of
result tuples is still less than k, then S2ml(D), and so
on. Note that from Sjml(D) exactly k −

∣∣∣⋃j−1
i=0 Siml(D)

∣∣∣
elements will be returned, which might not be all of it.

B. The Top-k Lattice Skyline Algorithm (TkLS)
In this section, we adapt the concept of multi-level Skyline

computation in Section III to the computation of top-k Skylines.
Algorithm 3 returns a set of all Siml sets, hence the first

k elements of these sets correspond to the top-k elements.
However, in a top-k approach it is not necessary to compute
all strata. To return the correct number of results, we will loop
through the different Siml sets in order of their level and keep
the sum of tuples belonging to them. We have to find the Siml
sets that completely belong to the top-k results. That means,
it is enough to compute l multi-levels such that

k ≤
∣∣∣∣∣

l⋃
i=0

Siml(D)

∣∣∣∣∣ (8)

From an algorithmic point of view we adjust the multi-
level Skyline algorithm as follows: Instead of dealing with
node states like dominated, non-empty, or empty in the Adding
Phase (cp. Section II-B), each node in the BTG is represented
by an integer counter, counting the number of tuples belonging
to the node. During the adding phase, this counter is increased.
In addition, for each level of Siml, we keep track of the number
of tuples belonging to it. Each time the Siml set level i for a
non-empty node is determined, the number of tuples belonging
to this Siml set is increased by the number of tuples belonging
to the node. When all tuples are read, the classification is done
just as described in Section III-B, Algorithm 3, but we append
a simple break condition after line 19, which checks the above
equation. Afterward, we can return the top-k elements.

C. Examples
In this section we provide some examples for top-k Skyline

query computation and discuss different strategies for returning
result objects.

Example 7. Consider a Skyline query on three attributes over
the domain [2; 2; 1]. The lattice structure is given in Figure 5.
The small index numbers next to each node show the number
of tuples represented by each node. Nodes without index are
empty.

After reading all input objects and classifying the nodes,
k tuples should be returned. The different Slml set levels and
their sizes can be found in Table II. We will see what happens
for different values of k. The three cases correspond to those
described in Definition 6.
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Figure 5. BTG for Example 7.

TABLE II. Nodes and Slml set levels.

l 0 1 2 3 4

(0,0,1) (0,2,0) (2,0,1) (2,1,1) (2,2,1)nodes in
(0,1,0) (1,0,1) (1,2,1)Sl

ml(D)
(2,0,0) (2,2,0)

|Sl
ml(D)| 4 4 32 12 14

1) k = 3: Three of four tuples belonging to the nodes of
S0ml(D) are returned.

2) k = 4: S0ml(D) is returned.
3) k = 10: S0ml(D) and S1ml(D) are returned completely,

leading to 8 tuples in the result set. Additionally, k−8 = 2
tuples from S2ml(D) are returned.

Please note that the proposed algorithm will not return
tuples in a progressive way. A tuple with a higher overall level
than another could be returned, just because of the order of the
input relation. The next example will outline such a scenario:

Example 8. Reconsider the Skyline query from Example 7.
The top-1 result should be returned. Tuples belonging to the
corresponding nodes are read in the following order:

(0, 2, 0), (2, 1, 1), (2, 0, 0), (0, 1, 0), . . .

The third tuple read is the first one in S0ml(D). As the top-1
query is looking for only one result, the algorithm will stop
after reading (and returning) (2, 0, 0).

One may criticize that picking the top-k results from the
different equivalence classes (nodes of the BTG) is arbitrary in
some manner, especially if a multi-level set Sjml only partially
belongs to the top-k result set. In most cases, there will be one
Sjml set only partially belonging to the top-k results. From Sjml

only k −
∣∣∣⋃j−1

i=0 Siml(D)
∣∣∣ tuples have to be returned such that

the total number of k results is matched. All other tuples are
discarded. In this case we have to pick some arbitrary elements
out of this Sjml set to fill up the top-k elements.

To handle this “problem” we can think about some kind of
ordering or sorting before returning the top-k elements. Only
those tuples belonging to some specific equivalence classes
could be returned. The information on the number of tuples
in the different equivalence classes may as well be another
criteria. By using this information, a number of different
top-k queries could be executed with only a small need for

computations. An additional weighting of the Skyline attributes
can be used to sort the nodes differently. Still, information on
the Slml set level of a node can be used, taking it as some
attribute result candidates are ordered by. Whichever additional
conditions and characteristics are used, the top-k results can
be taken then from the nodes coming first in the new order,
as Example 9 shows.

Example 9. After the computations for answering the query
in Example 7, some kind of presentation preference may
induce a different weighting of the attributes. Imagine that
the first attribute is more important than the second, and the
second one is more important than the third. Such presentation
preferences often are added to user preferences in online shops
[27].

To answer this query, the set of non-empty nodes in the BTG
has to be identified. Then, these nodes are ordered ascending
w.r.t. the level value for the first attribute. Nodes with equal
level value are ordered ascending w.r.t. their Slml set level l.
For the non-empty nodes of the BTG, this leads to the following
order w.r.t. the query (with best elements being on top). Nodes
pooled in a set {, } remain unordered, due to Skylines being
strict partial orders [12].

{(0,0,1), (0,1,0)},
{(0,2,0)},
{(1,0,1)},
{(1,2,1)},
{(2,0,0)},

{(2,0,1), (2,2,0)},
{(2,1,1)},
{(2,2,1)}

The nodes holding the top-k tuples than can now be
identified by suming up the number of tuples belonging to each
of the nodes. Using the values of Example 7 (and Figure 5), a
top-5 query could be answered by returning all tuples of the
nodes (0, 0, 1), (0, 1, 0), and (0, 2, 0). Please note that a top-4
query would return all tuples of nodes (0, 0, 1) and (0, 1, 0),
but not all of (0, 2, 0).

We omit further discussions of the effects of different
ordering strategies here as w.r.t. the original Skyline query, all
candidates in Sjml are equally good results. We have seen that
in spite of being developed for Skyline queries, our multi-level
Skyline algorithm can easily be applied to top-k Sykline queries
as well. Its greatest advantage remains: the linear runtime
complexity in the number of input tuples and size of the BTG.

V. EXTERNAL LATTICE

All lattice-based algorithms (e.g., [10][11][20]) keep the
complete lattice structure in main memory. Hence all nodes
must be in memory, may it be in an array, a hash map, or some
other data structure. Following [20], the memory requirements
is linear w.r.t. the size of the BTG:

mem(BTG) =

⌈
1

4

m∏
i=1

(max(Ai) + 1)

⌉
(in bytes)

where max(Ai) is the maximal value of attribute Ai in the low-
cardinality domain dom(A1)× . . . dom(Am), cp. Definition 4.
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However, memory requirements can be very high in some
cases. The logical next step is to develop external algorithms
for multi-level and top-k Skyline computation.

The idea behind our approach is to always keep one level
of the BTG in memory. We need each node together with the
information if a tuple belongs to it and its Siml. For a BTG
level c, we read through the input relation and mark each node
we find a tuple belonging to it as non-empty. After all tuples
have been read in the current round, we compute the next level
c+1, with all nodes marked empty. We then walk through the
nodes in level c and for each node n we set the Siml of the
dominated nodes to

Siml iff n is empty and
Si+1
ml iff n is non-empty.

After this, the Siml of level c can be written to external
memory and removed from main memory. During this ”infor-
mation handover” to the next level, we need to keep two levels
in memory. We need the level we just were working with to
deliver information of domination to the next level. As we
have to be able to deal with the BTG’s levels with the most
nodes, we require enough main memory to store the level with
the most nodes twice. To analyze this amount, we need some
information on the structure of the lattice (see [22]).

Theorem 1. For a BTG (lattice) over a d-dimensional Skyline
query on the domain dom(A) = dom(A1) × . . . × dom(Ad)
the following holds:

a) Height of the BTG:

height(BTG) = 1 +

d∑
i=1

max(Ai) (9)

b) Width of the BTG at a specific level l, width(BTG, l):

width(BTG, l) = w(l, {A1, . . . , Ad}), where

w(l, {A1, . . . , Ad}) =

min(l,max(A1))∑
i=0

w(l − i, {A2, . . . , Ad}),

if d > 1

w(l, {Ad}) =

{
0, if max(Ad) < l
1, if max(Ad) ≥ l

c) Maximum width of the BTG:
Due to the symmetrical structure of a BTG, the level with
the maximum width will occur at level⌊height(BTG)

2

⌋
Note that an efficient algorithm for computing the width

of the lattice for a given Skyline query can be found in [28].
As we have to work from level to level, it is very useful

to be able to compute a first node for a given level l without
any information about nodes in other levels. To create a given
level we start with the left-most node. The level value for each
Aj of the left-most node of a BTG for a Skyline query over
dom(A) := dom(A1) × . . . × dom(Ad) can be found using
the following expression:

max(min(l −
d∑

i=j+1

max(Ai),max(Aj)), 0) (10)

With this formula we set the level values of Ad to the
highest possible value for the given level l. Then we set
the level value for Ad−1 to l − max(Ad) (if possible). If
l−max(Ad) > max(Ad−1), parts of the level sum l are used
to ”fill” the level value at position d− 2 and so on.

Example 10. Consider Figure 3. The first node of level 3 for
example is computed as follows:

• for A1: max(min(3− 4, 2), 0) = 0

• for A2: max(min(3, 4), 0) = 3

Therefore, we have the node (0, 3).

Algorithm 4 is a more generic version of this formula that
can do the filling with only for just a part of the Ai in dom(A).
Applying Algorithm 4 to all Ai obviously yields equal results
as above Equation (10) and produces the left-most node of a
BTG w.r.t. the BFT.

Algorithm 4 FILL-UP
Input: node n, index, level l, Skyline query over dom(A1)×
. . .× dom(Ad)
Output: a BTG node

1: function FILL-UP(n, index, l)
2: dist ← 0
3: x ← n
4: // loop over the Ai

5: for i← d, . . . , index do
6: // apply Equation (10)
7: x[i] := max(min(l −∑d

j=i+1 x[j],max(Ai)), 0)
8: dist ← dist + x[i]
9: end for

10: if dist 6= 0 then
11: // no valid distribution can be found
12: return NIL
13: end if
14: return x
15: end function

To find the next node y in the BFT for a given node
x := (x1, . . . , xd), we shift one level value to a position more
left (i.e., with a lower index i) and fill the rest of the node
with Algorithm 4. This shift function is given in Algorithm
5. It is repeatedly used to create a whole level of the BTG in
Algorithm 6. With all these helping procedures, we can define
Algorithm 7, External TkLS.

Further optimizations are straightforward. As during the
switch to the next level we have to keep two levels in memory,
we can always keep at least two levels in memory and process
tuples of all nodes of these. We actually are able to hold a
higher number of levels in memory at most times. Starting at
level 0, in the first step we can compute as many levels as
we can fit into memory completely. Then the reading of the
input relation can be done for multiple levels at once. The
level switch then has to be adjusted to compute the Siml of all
nodes in memory, write those to external memory, and remove
the information from main memory. Before the highest BTG
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Algorithm 5 NEXT-NODE
Input: node n, Skyline query over dom(A1)×. . .×dom(Ad)
Output: next node in same level in BFT search

1: function NEXT-NODE(n)
2: l ←∑d

i=1 n[i]
3: for i← d, . . . , 1 do
4: if n[i] > 0 then
5: n[i] = n[i]− 1
6: for j ← i− 1, . . . , 1 do
7: if n[j] < max(Aj) then
8: n[j] = n[j] + 1
9: rem ← l −∑j

k=1 n[k]
10: return FILL-UP(n, 1, l - rem)
11: end if
12: end for
13: end if
14: end for
15: // no more node in current level can be found
16: return NIL
17: end function

Algorithm 6 CREATE-LEVEL
Input: level l, Skyline query over dom(A1)× . . .×dom(Ad)
Output: a list of nodes of the given level

1: function CREATE-LEVEL(l)
2: // init a list to hold nodes
3: result ← list()
4: node ← init node of level 0
5: node ← FILL-UP(node,1,l)
6: while (node 6= NIL) do
7: result.add(node)
8: node ← NEXT-NODE(node)
9: end while

10: // no more nodes in current level can be found
11: return result
12: end function

level is processed, the next level has to be calculated - or more
than one level, if they fit into memory. That way any amount
of memory between the minimum requirement and enough to
keep the whole BTG in main memory can be used efficiently.
If more than two levels fit into memory in average, the number
of loops through the input relation is lower than for one level
in memory. The algorithm will actually turn into a variant of
in-memory TkLS when the whole BTG fits into memory and
the input relation has to read only once.

Please note that if working with more than one level at a
time, we need to loop through the input relation twice for every
set of levels in memory. In the first loop, we only mark non-
empty nodes. After this first loop, we can do a BFT/DFT to
find the correct Siml for the nodes in memory. The second loop
through the input relation will then return the tuples together
with their Siml. Tuples belonging to the lowest level in memory
could be returned instantly in the first loop as for them the Siml
will not change anymore. As we work on at least two levels
at a time, the number of loops through the input relation is at
most as high as while working on only one level (i.e., max(A)
loops). For the lowest (and highest) levels, potentially more
than two levels fit into memory.

Algorithm 7 External TkLS
Input: Skyline query over dom(A1)× . . .× dom(Ad)

1: prvLvl ← NIL
2: for i← 0, . . . ,

∑d
i=1 max(Ai) do

3: currLvl ← CREATE-LEVEL(i)
4: // walk through prvLvl and set Siml for
5: // all nodes in currLvl

6: // read input relation and
7: // • mark non-empty nodes in currLvl
8: // • return each input tuple with its Siml
9: prvLvl ← currLvl

10: end for

Memory requirements and worst case performance of our
algorithms with an external BTG can be found in Lemma 5.

Lemma 5 (Properties of External TkLS).

a) The memory requirements for TkLS with an external
lattice is given by:

mem(BTG) := 2 ·max(width(BTG)) (11)

b) The number of rounds the input relation has to be read is
given by:

rounds := n · height(BTG) (12)

c) The runtime complexity is given by the number of rounds,
hence

O(n · height(BTG)) (13)

We will see External TkLS at work in Example 11.

Example 11. We will apply External TkLS to a Skyline query
and an input dataset D resembling the ones known from
Example 6 and Figure 4. Our main memory is big enough to
hold information of 6 nodes (twice the width of the BTG).

Round 1:

• currLvl is level 0 with node (0, 0).
The node is marked as belonging to S0ml.

• Input relation is read, but no tuples are found.

Round 2:

• currLvl is level 1 with nodes (0, 1) and (1, 0).
All nodes are marked as belonging to S0ml.

• Input relation is read.
Node (1, 0) is non-empty.
Tuples belonging to it are returned as part of S0ml.

Round 3:

• currLvl is level 2 with nodes (0, 2), (1, 1), and (2, 0).
Nodes (0, 2) and (1, 1) are marked as S1ml, nodes
(0, 2) as S0ml.

• Input relation is read.
Nodes (1, 1) and (2, 0) are non-empty.
Tuples are returned as parts of S0ml resp. S1ml.

The algorithm continues until Round 7 (for level 6) in which
tuples in S3ml are returned.
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This algorithm can easily be adjusted to compute a ”nor-
mal” Skyline. We just have to omit the Siml and only keep
the status (emtpy, non-emtpy, or dominated) for each node.
Only nodes belonging to non-emtpy nodes will be returned as
Skyline results. An additional stop criteria could be added as
well: The Skyline is found as soon as one level only holds
non-emtpy and dominated nodes.

VI. REMARKS

In this section we will discuss some additional points on
our lattice-based multi-level and top-k algorithms.

A. High-Cardinality Domains

The lattice based multi-level and top-k algorithms are
restricted to low-cardinality domains. Since this is a huge
restriction to Skyline computation, we want to adjust our
algorithms to handle high-cardinality domains as well. One
approach to handle large domains is suggested in [29]. The
idea is to use a down-scaling of a high-cardinality domain
to a small domain such that a lattice based algorithm can be
used as some kind of pre-filtering, which eliminates objects
before the final Skyline computation. Afterward, a BNL style
algorithm is necessary for final evaluation.

This approach is in focus when handling large domains
for multi-level and top-k Skyline computation. Instead of
eliminating objects in the lattice-based pre-filtering phase,
a similar approach as in Section IV might be used. The
down-scaling [29] leads to several comparable objects in the
scaled equivalence classes. An additional counter for each
equivalence class as well as an overall counter for each level
in the scaled lattice could serve as a break condition similar
to our top-k Skyline algorithm. Afterward, a BNL-style top-k
algorithm like EBNL or ESFS (cp. [25]) could do the final
computation of the k best objects.

B. Parallelization

Since multi-core processors are going mainstream, one
might also think about a parallel variant of TkLS. For the
first two phases, the Construction Phase and the Adding Phase
(cp. Section II-B) we can follow the approach of [20], which
presents different parallel implementations of the lattice-based
algorithms. They also show how to parallelize phase 3, the
Removal Phase, in Lattice Skyline. However, since in TkLS
the removal phase is replaced by a Classification Phase,
the proposed parallelization does not apply anymore. The
parallelization of the classification phase shown in Algorithm
3 is not straightforward, since line 12 – where the temporary
value tmpml is computed – depends on some pre-computations,
which can only be done following sequential execution. There-
fore, parallelization of TkLS is restricted to phase 1 and phase
2. However, following [20], the adding phase takes the most
computation time. Hence, we expect an enormous speed-up
in multi-level and top-k Skyline computation when applying
phase 2 in parallel.

VII. EXPERIMENTS

This section provides our benchmarks on synthetic and real
data to reveal the performance of the outlined algorithms.

A. Benchmark Framework
The concept of MLLS is the basis of TkLS, hence the

performance of our top-k approach reflects the power of our
multi-level Skyline algorithm. And since there is no competitor
for MLLS, we only compared our approach TkLS to the state-
of-the-art algorithms in generic top-k Skyline computation, Ex-
tended Block-Nested-Loop (EBNL) and Extended Sort-Filter-
Skyline (ESFS) [25]. EBNL is a variant of the standard BNL
algorithm [4] with the modification that each computed stratum
is removed from the dataset and the Skyline is computed again.
ESFS is an extension of SFS [8] exploiting some kind of data
pre-sorting. In the worst-case EBNL and ESFS have a time
complexity of O(n2), whereas all lattice based algorithms
have linear runtime complexity. Note that there are other
top-k Skyline algorithms (cp. Section VIII), but all of them
exploit some index structure. Since our algorithm is generic
for all kind of input data, we do not compare index based
algorithms to our approach. Also note that we used the non-
external version of our algorithm, because EBNL and ESFS
are implemented as main memory algorithms.

All algorithms have been implemented in Java 7.0. TkLS
follows the implementation details given in [20] and [10]. The
experiments were performed on a machine running Debian
Linux 7.1 equipped with an Intel Xeon 2.53 GHz processor.
Our prototype is available as open source project on GitHub
https://github.com/endresma/TopKSkyline.git.

For our synthetic datasets we used the data generator
commonly used in Skyline research [4]. We generated anti-
correlated (anti), correlated (corr), and independent (ind)
distributions and varied (1) the data cardinality n, (2) the
data dimensionality d, and (3) the top-k value. For the ex-
periments on real-world data, we used the well-known Zil-
low and NBA datasets. All datasets where adapted for low-
cardinality Skyline computation. The Zillow dataset crawled
from www.zillow.com contains more than 2M entries about
real estate in the United States. Each entry includes number
of bedrooms and bathrooms, living area in sqm, and age
of the building. The NBA dataset is a small 5-dimensional
dataset containing 17264 tuples, where each entry records
performance statistics for a NBA player. Following [30], NBA
is a fairly correlated dataset. Both datasets serve as real-world
applications, which require finding the Skyline on data with a
low-cardinality domain.

B. Experimental Results
We now present our experimental results.
Figure 6 presents the behavior of our TkLS algorithm on a

typical top-k Skyline query. We chose a 3-dimensional dataset
because this is very common in Skyline or Pareto preference
selection. The low-cardinality domain was constructed by
[3; 4; 4], which might correspond to attributes like “board”
(none, breakfast, half board, full board), “star ratings” (1*–
5*), and “price ranges” (e.g., [40−80[, [80−120[, [120−160[,
[160−200[, [200−240[) in a search for the best hotel. To keep
the hotel example we chose k = 5 (a user wants only to see a
few hotels) and restricted the input size to 50 to 300 objects.

We present the runtime on anti-correlated, correlated, and
independent data. Figure 6a shows the result on anti-correlated
data. TkLS clearly outperforms EBNL and ESFS even though
TkLS has some overhead in constructing the lattice. ESFS and
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(a) Runtime: anti-correlated data.
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(b) Runtime: correlated data.
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(c) Runtime: independent data.

Figure 6. Runtime results on small input sizes: d = 3, top-5.
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(a) Runtime: anti-correlated data.
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(b) Runtime: correlated data.
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(c) Runtime: independent data.

Figure 7. Runtime results on different input sizes: d = 5, top-500.
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(a) Runtime: anti-correlated data, top-500.
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(b) Runtime: correlated data, top-1000.
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(c) Runtime: independent data, top-1000.

Figure 8. Experimental results on different dimensions: d = 3, 5, 7, n = 50K.
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(a) Runtime: anti-correlated data.
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(b) Runtime: correlated data.

��

��

��

��

��

��

��

����
���

�

����

�
�
�
���

�
��
�
�
�
�

�������
�������
��������
���������

���������
���������
����������
����������
����������
�����������
�����������
�����������
�����������
�����������
���

(c) Runtime: independent data.

Figure 9. Influence of different k values: k ∈ {100, 500, 1K, 25K}, d = 5, n = 50K.
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(a) NBA data: d = 5, n = 17264.
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(b) Zillow data: d = 4, n = 2M .

Figure 10. Experimental results on real data.

EBNL are almost equally good. Note that |S0ml(D)| = 7,
that means the top-5 objects lie in the first stratum, i.e.,
the Skyline set. In the case of correlated (Figure 6b) and
independent (Figure 6c) ESFS outperforms EBNL, but is worse
than TkLS. Therefore, our multi-level algorithm is the first
choice when evaluating Skyline queries on small datasets and
low-cardinality domains.

Figure 7 presents the runtime of all algorithms on a 5-
dimensional anti-correlated, correlated, and independent dis-
tributed dataset. We used a top-500 query on different data
cardinality. The low-cardinality domain was constructed by
[2; 3; 5; 10; 100]. For all Skyline sets it holds that |S(D)| < 500
to get the effect of computing more than the 0-stratum. In
contrast to the previous experiment we used larger input sizes
(10K to 250K). Here, TkLS clearly outperforms EBNL and
ESFS, which rely on a tuple-to-tuple comparison. TkLS always
constructs the same lattice for all kind of data, and hence, has
similar runtimes for all kind of input sizes.

Figure 8 shows the runtime of all algorithms on 3, 5, and
7 dimensions having anti-correlated, correlated, and indepen-
dent data (up to [2; 3; 5; 10; 10; 10; 100]). The underlying data
cardinality is n = 50000 and the target was to find the top-500
respectively the top-1000 elements. We also present the size
of the different multi-level Skylines. For example, in the anti-
correlated data (Figure 8a), if d = 3 we have |S0ml(D)| = 290
and the first stratum has |S1ml(D)| = 5254 objects. This is
also the reason why ESFS in this case is worse than for
d = 5 or d = 7. ESFS has to compare all objects of the first
stratum to all others, not yet dominated tuples. Figure 8b and
8c show the results on correlated and independent datasets.
In all our benchmarks TkLS outperforms EBNL and ESFS
due its small lattice structure and independency of the data
distribution, cp. [11].

Figure 9 visualizes the effect of different values of k
for anti-correlated, correlated, and independent data distri-
butions. Therefore we computed top-k elements for k ∈
{100, 500, 1K, 25K} using 5 dimensions (as in Figure 7) and
a data cardinality of n = 50000.

The runtime for TkLS for all ks and all distributions
is very similar. This is due to the lattice based approach,
where no tuple-to-tuple comparison is necessary, but only the
construction of the BTG. Since the BTG for all ks is the same,
the runtime for all top-k queries is quite similar.

Considering the results on anti-correlated data in Figure

9a, in the top-100 query only the Skyline S(D) has to be
computed. For k = 500 we have to compute stratum 0, 1,
and 2. For top-1000 the first five strata are necessary, and for
k = 25K we need 41 strata to answer the query. We also see in
this experiment that ESFS exploiting some pre-sorting is worse
than EBNL. This is due the reordering of the elements. The
results for correlated (Figure 9b) and independent data (Figure
9c) are quite similar. For the correlated and independent data
we decided to use k = 1000 such that at least the second
stratum must be computed to fulfill the 1000 objects.

Figure 10a shows the results on the NBA dataset, where
the domain is drawn from [10; 10; 10; 10; 10]. The NBA set
has a size of 17265 objects. Again, TkLS has similar runtime
for each k whereas the runtime for EBNL and ESFS increases
with larger k values.

In Figure 10b we present the Zillow dataset (domain
[10; 10; 36; 46]). We compute the top-k elements for k ∈
{100, 5000, 10000} to show the effect of computing different
strata. TkLS clearly outperforms EBNL and ESFS. Again,
since our algorithm is based on the lattice of a Skyline
query the runtimes for the different ks are quite similar.
EBNL and ESFS have to compute four strata to fulfill the
k = 10000 query, which results in a long runtime and hence
bad performance.

VIII. RELATED WORK

The most prominent algorithms for Skyline computation
are based on a block-nested-loop style tuple-to-tuple compari-
son (e.g., BNL [4]). Based on this several algorithms have been
published, e.g., the NN algorithm [6], SFS [8], or LESS [9], to
just list some. Many of these algorithms have been adapted for
parallel Skyline computation, e.g., [17][19][31]. There are also
algorithms utilizing an index structure to compute the Skyline,
e.g., [7][32]. Another approach exploits the lattice structure
induced by a Skyline query over low-cardinality domains.
Instead of direct comparisons of tuples, a lattice structure
represents the better-than relationships. Examples for such
algorithms are Lattice Skyline [11] and Hexagon [10], both
having a linear time complexity. There is also work on parallel
preference computation exploiting the lattice structure [20].
The authors of [29] present how to handle high-cardinality
domains and therefore makes lattice algorithms available for a
broad scope of applications.

The present paper is an extended version of [1], where
the basics of multi-level and top-k Skylines were discussed.
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The idea of multi-level Skylines was already mentioned by
Chomicki [12] under the name of iterated preferences. How-
ever, Chomicki has never presented an algorithm for the
computation of multi-level preferences.

In [33] the term “multi-level Skyline” was used, but it has
nothing to do with the objects behind the Skyline. It was only
used for a Skyline algorithm where a pre-computed Skyline
dataset was used to compute continuous Skylines. Apart from
that there is no other work on computing the i-th stratum of
a Skyline query.

Regarding top-k [23][34] and Skyline [3] queries, there are
some approaches that combine these both paradigms to top-
k Skyline queries. In [24] and [25] the authors calculate the
first stratum of the Skyline with some sort of post-processing.
Afterward, they define the k best objects or continue Skyline
computation without the first stratum. A similar approach was
followed in [35], which presented the first study for process-
ing top-k dominating queries over distance-based dynamic
attribute vectors defined over a metric space. They present
the Skyline-Based Algorithm (SBA) to compute the top-1
dominating object, which is removed from the dataset and
the same process is repeated until all top-k results have been
reported. The authors of [26] abstract Skyline ranking as a
dynamic search over Skyline subspaces guided by user-specific
preferences. In [36][37][38] and [39] an index based approach
is used for top-k Skyline computation. However, index based
algorithms in general cannot be used if there is a join or
Cartesian product involved in the query. Su et al. [40] consider
top-k combinatorial Skyline queries, and Zhang et al. [41]
discuss a probabilistic top-k Skyline operator over uncertain
data. Top-k queries are also of interest in the computation of
spatial preferences [42][43], where the aim is to retrieve the k
best objects in a spatial neighborhood of a feature object. Yu
et al. [44] consider the problem of processing a large number
of continuous top-k queries, each with its own preference. The
authors of [45] present a framework for top-k query processing
in large-scale P2P networks, where the dataset is horizontally
distributed to peers. For this they compute k-skyband sets as
a pre-processing step, which are aggregated to answer any
incoming top-k queries.

Although there is some related work, the problem of
efficiently evaluating top-k Skylines is still an open issue.

IX. CONCLUSION AND FUTURE WORK

In this paper we discussed the iterated evaluation of a
Skyline query. For this, we provided a deep insight into lattice-
based Skyline algorithms, and afterward presented how to
modify Lattice Skyline to get multi-level Skyline sets. After a
running through a set of input tuples, we are able to return not
only the Pareto frontier, but also the tuples that are directly
dominated by them, and so on. Our approach supports multi-
level and top-k Skyline computation without computing each
stratum of the Skyline query individually or relying on the
time-consuming tuple-by-tuple comparisons. Comprehensive
experiments show the benefit of our approach in comparison
to existing techniques. Furthermore, the external version of our
algorithm allows the evaluation of top-k Skyline queries even
when main memory is low. For future work we want to get
rid of the restriction on low-cardinality domains. Therefore, we
want to adjust our algorithms as suggested in Section VI-A.
However, this could be a challenging task.
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