
420

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Novel Taxonomy of Deployment Patterns for
Cloud-hosted Applications: A Case Study of Global
Software Development (GSD) Tools and Processes

Laud Charles Ochei, Andrei Petrovski

School of Computing Science and Digital Media
Robert Gordon University

Aberdeen, United Kingdom
Emails: {l.c.ochei,a.petrovski}@rgu.ac.uk

Julian M. Bass

School of Computing, Science and Engineering
University of Salford

Manchester, United Kingdom
Email: J.Bass@salford.ac.uk

Abstract—Cloud patterns describe deployment and use of
various cloud-hosted applications. There is little research that
focuses on applying these patterns to cloud-hosted Global Soft-
ware Development (GSD) tools. As a result, it is difficult to know
the applicable deployment patterns, supporting technologies and
trade-offs to consider for specific software development processes.
This paper presents a taxonomy of deployment patterns for
cloud-hosted applications. The taxonomy is composed of 24 sub-
categories, which were systematically integrated and structured
into 8 high-level categories. The taxonomy is applied to a selected
set of software tools: JIRA, VersionOne, Hudson, Subversion and
Bugzilla. The study confirms that most deployment patterns are
related and cannot be fully implemented without being combined
with others. The taxonomy revealed that (i) the functionality
provided by most deployment patterns can often be accessed
through an API or plugin integrated with the GSD tool, and (ii)
RESTful web services and messaging are the dominant strategies
used by GSD tools to maintain state and exchange information
asynchronously, respectively. This paper also describes CLIP
(CLoud-based Identification process for deployment Patterns), to
guide software architects in selecting applicable cloud deployment
patterns for GSD tools using the taxonomy and thereafter applies
it to a motivating cloud deployment problem. Recommendations
for guiding architects in selecting applicable deployment patterns
for cloud deployment of GSD tools are also provided.

Keywords—Taxonomy; Deployment Pattern; Cloud-hosted Ap-
plication; GSD Tool; Plugin; Continuous Integration

I. INTRODUCTION

Collaboration tools that support Global Software Devel-
opment (GSD) processes are increasingly being deployed on
the cloud [1][2][3]. The architectures/patterns used to deploy
these tools to the cloud are of great importance to software
architects, because they determine whether or not the system’s
required quality attributes (e.g., performance) will be exhibited
[4][5][6].

Collections of cloud patterns exist for describing the cloud,
and how to deploy and use various cloud offerings [7][8].
However, there is little or no research in applying these patterns
to describe the cloud-specific properties of applications in
the software engineering domain (e.g., collaboration tools for
GSD, hereafter referred to as GSD tools) and the trade-offs

to consider during cloud deployment. This makes it very
challenging to know the deployment patterns (together with
the technologies) required for deploying GSD tools to the
cloud to support specific software development processes (e.g.,
continuous integration (CI) of code files with Hudson).

Motivated by this problem, we propose a taxonomy of
deployment patterns for cloud-hosted applications to help
software architects in selecting applicable deployment patterns
for deploying GSD tools to the cloud. The taxonomy will
also help to reduce the time and risk associated with large-
scale software development projects. We are inspired by the
work of Fehling et al. [7], who catalogued a collection of
patterns that will help architects to build and manage cloud
applications. However, these patterns were not applied to any
specific application domain, such as cloud-hosted GSD tools.

The research question this paper addresses is: “How can
we create and use a taxonomy for selecting applicable
deployment patterns for cloud deployment of GSD tools.”
It is becoming a common practice for distributed enterprises to
hire cloud deployment architects or “application deployers” to
deploy and manage cloud-hosted GSD tools [9]. For example,
the CI systems used by Saleforce.com (a major player in
the cloud computing industry), runs 150000 + test in parallel
across many servers and if it fails it automatically opens a bug
report for software architects and developers responsible for
that checkin [10].

We created and applied the taxonomy against a selected
set of GSD tools derived from an empirical study [11] of
geographically distributed enterprise software development
projects. The overarching result of the study is that most
deployment patterns are related and have to be combined with
others during implementation, for example, to address hybrid
deployment scenarios, which usually involves integrating pro-
cesses and data in multiple clouds.

This article is an extension of the previous work by Ochei
et al. [1]. The main contributions of this article are:
1. Creating a novel taxonomy of deployment patterns for
cloud-hosted applications.
2. Demonstrating the practicality of the taxonomy by: (i)



421

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

applying it to position a set of GSD tools; and (ii) comparing
the different cloud deployment requirements of GSD tools.
3. Describing CLIP, a novel approach for guiding architects in
selecting applicable cloud deployment patterns for GSD tools
using the taxonomy, and thereafter applying it to a motivating
cloud deployment problem.
4. Presenting recommendations and best practice guidelines for
identifying applicable deployment patterns together with the
technologies for supporting cloud deployment of GSD tools.

The rest of the paper is organized as follows: Section II
gives an overview of the basic concepts related to deployment
patterns for Cloud-hosted GSD tools. In Section III, we discuss
the research methodology including taxonomy development,
tools selection, application and validation. Section IV presents
the findings of the study focusing on positioning a set of GSD
tools within the taxonomy. In Section V, we discuss the lessons
learned from applying the taxonomy. The recommendations
and limitations of the study are in Sections VI and VII,
respectively. Section VIII reports the conclusion and future
work.

II. DEPLOYMENT PATTERNS FOR CLOUD-HOSTED GSD
TOOLS

A. Global Software Development

In recent times, Global Software Development has emerged
as the dominant methodology used is developing software for
geographically distributed enterprises. The number of large
scale geographically distributed enterprise software develop-
ment projects involving Governments and large multi-national
companies is on the increase [12][13][14].

Definition 1: Global Software Development. GSD is defined
by Lanubile [15] as the splitting of the development of the
same software product or service among globally distributed
sites. Global Software Development involves several partners
or sites of a company working together to reach a common
goal, often to make a product (in this case, software) [15, 16].

In geographically distributed enterprise software devel-
opment, there are not only software developers, but many
stakeholders such as database administrators, test analysts,
project managers, etc. Therefore, there is a need to have
software tools that support collaboration and integration among
members of the team involved in the software development
project. As long as a software project involves more than
one person, there has to be some form of collaboration [17]
[16][11][18].

B. Cloud-hosted GSD Tools and Processes

Software tools used for Global Software Development
projects are increasingly being moved to the cloud [3]. This
is in response to the widespread adoption of Global Software
Development practices and collaboration tools that support
geographically distributed enterprises software projects [19].
This trend will continue because the cloud offers a flexible
and scalable platform for hosting a broad range of software
services including, APIs and developments tools [2][3].

Definition 2: Cloud-hosted GSD Tool. “Cloud-hosted GSD
Tool” refers to collaboration tools used to support GSD

processes in a cloud environment. We adopt the: (i) NIST
Definition of Cloud Computing to define properties of cloud-
hosted GSD tools; and (ii) ISO/IEC 12207 standard as a frame
of reference for defining the scope of a GSD tool. Portillo et
al. [20] identified three groups of GSD tools for supporting
ISO/IEC 12207 processes:
(i) Tools to support Project Processes- These tools are used
to support the management of the overall activities of the
project. Examples of these processes include project planning,
assessment and control of the various processes involved in the
project. There are several GSD tools that fit into this group.
For instance, JIRA and Bugzilla are software tools widely used
in large software development projects issue and bug tracking.
(ii) Tools to support Implementation Processes such as require-
ments analysis and integration process. For example, Hudson,
is a widely used tool for continuously integrating different
source code builds and components into a single unit.
(iii) Tools for Support Processes - Software tools that fall into
this group are used to support documentation management
processes and configuration management processes involved
in the software development project. For example, Subversion
is a software tool used to track how the different versions of
a software evolves over time.

These GSD tools, also referred to as Collaboration tools
for GSD [20], are increasingly being deployed to the cloud for
Global Software Development by large distributed enterprises.
The work of Portillo et al. [20] presents the requirements and
features of GSD tools and also categorizes various software
tools used for collaboration and coordination in Global Soft-
ware Development.

C. Architectures for Cloud-hosted Applications

Definition 3: Architectural Pattern. Architectural patterns are
compositions of architectural elements that provide packaged
strategies for solving recurring problems facing a system [5].
Architectural patterns can be broadly classified into 3 groups
based on the nature of the architectural elements they use [5]:
(i) module type patterns - which show how systems are
organized as a set of codes or data units in the form of classes,
layers, or divisions of functionality.
(ii) component-and-connector (C&C) type patterns - which
show how the system is organized as a set of components
(i.e., runtime elements used as units of computation, filters,
services, clients, servers etc.) and connectors (e.g., commu-
nication channels such as protocols, shared messages, pipes,
etc.).
(iii) allocation patterns - which show how software elements
(typically processes associated with C&C and modules) relate
to non-software elements (e.g., CPUs, file system, networks
etc.) in its environment. In other words, this pattern shows
how the software elements are allocated to elements in one or
more external environment on which the software is executed.

Architectural and design patterns have long been used to
provide known solutions to a number of common problems
facing a distributed system [5][21]. The architecture of a sys-
tem/application determines whether or not its required quality
attributes (e.g., performance, availability and security) will be
exhibited [4][5].



422

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Cloud Deployment Patterns

In cloud computing environment, a cloud pattern represents
a well-defined format for describing a suitable solution to
a cloud-related problem. Several cloud problems exist such
as how to: (i) select a suitable type of cloud for hosting
applications; (ii) select an approach for delivering a cloud
service; (iii) deploy a multitenant application that guarantees
isolation of tenants. Cloud deployment architects use cloud
patterns as a reference guide that documents best practices on
how design, build and deploy applications to the cloud.

Definition 4: Cloud Deployment Pattern. We define a “Cloud
deployment pattern” as a type of architectural pattern, which
embodies decisions as to how elements of the cloud appli-
cation will be assigned to the cloud environment where the
application is executed.

Our definition of cloud deployment pattern is similar to
the concept of design patterns [21], (architectural) deployment
patterns [5], collaboration architectures [4], cloud computing
patterns [7], cloud architecture patterns [22], and cloud design
patterns [8]. These concepts serve the same purpose in the
cloud (as in many other distributed environments). For ex-
ample, the generic architectural patterns- client-server, peer-
to-peer, and hybrid [5] - relate to the following: (i) the 3
main collaboration architectures, i.e., centralized, replicated
and hybrid [4]; and (ii) cloud deployment patterns, i.e., 2-tier,
content distribution network and hybrid data [7].

One of the key responsibilities of a cloud deployment
architect is to allocate elements of the cloud-application to
the hardware processing (e.g., processor, files systems) and
communication elements (e.g., protocols, message queues) on
the cloud environment, so that the required quality attributes
can be achieved.

Figure 2 shows how the elements of Hudson (a typical of
GSD tool) is mapped to the elements of the cloud environment.
Hudson runs on an Amazon EC2 instance while the data it
generates is regularly extracted and archived on a separate
cloud storage (e.g., Amazon S3).

Fig. 1. Mapping elements of a GSD tool to External Environment

E. Taxonomy of Cloud Computing Patterns

What is a Taxonomy and its Purpose? The IEEE Software
& Systems Engineering Standards Committee defines a Tax-
onomy as “a scheme that partitions a body of knowledge into
taxonomic units and defines the relationship among these units.
It aims for classifying and understanding the body of knowl-
edge [23].” As understanding in the area of cloud patterns and
cloud-hosted software tools for distributed enterprise software
development evolves, important concepts and relationships
between them emerge that warrant a structured representation
of these concepts. Being able to communicate that knowledge
provides the prospects to advance research [24].

Taxonomies and classifications facilitate systematic
structuring of complex information. Taxonomies are
mechanisms that can be used to structure, advance
understanding and to communicate this knowledge [25].
According to Sjoberg [26], the development of taxonomies
is crucial to documenting the theories that accumulate
knowledge on software engineering. In software engineering,
they are used for comparative studies involving tools and
methods, for example, software evolution [27] and Global
Software Engineering [28]. The work of Glass and Vessey
[25] and Bourque and Dupuis [29] laid down the foundation
for developing various taxonomies for software development
methods and tools in software engineering. In this paper, we
focus on using a taxonomy to structure cloud deployment
patterns for cloud-hosted applications, in particular in the area
of GSD tools.

Existing Taxonomies and Classifications of Deployment
Patterns for Cloud-hosted Applications Several attempts
have been made by researchers to create classifications of cloud
patterns to build and deploy cloud-based applications. Wilder
[22] describes eleven patterns: Horizontally Scaling Compute,
Queue-Centric Workflow, Auto-Scaling, MapReduce, Database
Sharding, Busy Signal, Node Failure, Colocate and Valet Key.
The authors then illustrate how each pattern can be used to
build cloud-native applications using the Page of Photos web
application and Windows Azure. Each pattern is preceded by
what the authors refer to as “primers” to provide a background
of why the pattern is need. A description is provided about how
each pattern is used to address specific architectural challenges
that are likely to be encountered during cloud deployment.

A collection of over 75 patterns for building and managing
a cloud-native application are provided by Fehling et al. [7].
The “known uses” of the implementation of each pattern is
provided with examples of cloud providers offering products
that exhibit the properties described in the pattern. This helps
to further give a better understanding of the core properties of
each pattern. We find the examples of known uses of patterns
under “storage offering” category (e.g., blob storage, key-value
storage) very useful in understanding how to modify a GSD
tool in order to access a cloud storage. For example, Amazon
S3 and Google cloud storage are products offered by Amazon
and Google, respectively, for use as blob storage on the cloud.
Blob storage is based on an object storage architecture, and
so the GSD tool has to be modified to allow access using a
REST API.

Homer et al. [8] describe: (i) twenty-four patterns that are



423

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

useful in developing cloud-hosted applications; (ii) two primers
and eight guidance topics that provide basic information and
good practice techniques for developing cloud-hosted appli-
cations; and (iii) ten sample applications that illustrate how
to implement the design patterns using features of Windows
Azure. The sample code (written in C#) for these sample
applications is provided, thus making it easy for architects
who intend to use similar cloud patterns to convert the codes
to other web programming languages (e.g., Java, Python) for
use in other cloud platforms.

Moyer [30] discusses a collection of patterns under the
following categories: image (e.g., prepackaged images), ar-
chitecture (e.g., adapters), data (e.g, queuing, iterator), and
clustering (e.g., n-tier) and then use a simple Weblog applica-
tion written using Amazon Web Services (AWS) with Python
to illustrate the use of these patterns. For example, one of
the architectural patterns- Adapters, is similar to “Provider
Adapter” pattern described by Fehling et al [7], which can be
used for interacting with external systems not provided by the
cloud provider. The weblog application uses a custom cloud-
centric framework created by the author called Marajo, instead
of contributing extensions to existing Python frameworks (e.g.,
pylons). Apart from Marajo’s tight integration with AWS, it
may be difficult for it to be widely used by software architects
since it does not offer the rich ecosystem and large public
appeal which other Python-based web frameworks currently
offer.

Sawant and Shah discussed patterns for handling “Big
Data” on the cloud [31]. These include patterns for big data
ingestion, storage, access, discovery and visualization. For
example, it describes how the “Federation Pattern” can be used
to pull together data from multiple sources and then process
the data. Doddavula et al. [32] present several cloud com-
puting solution patterns for handling application and platform
solutions. For instance, it discusses cloud deployment patterns
for: (i) handling applications with highly variable workloads
in public clouds; and (ii) handling workload spikes with cloud
burst.

Erl et al. [33] present a catalogue of over 100 cloud design
patterns for developing, maintaining and evolving cloud-hosted
applications. The cloud patterns, which are divided into eight
groups cover several aspects of cloud computing, such as scal-
ing and elasticity, reliability and resiliency, data management,
and network security and management. For example, patterns
such as shared resources, workload distribution and dynamic
scalability (which are listed under the “sharing, scaling and
elasticity” category) are generally used for workload man-
agement and overall optimization of the cloud environment.
The major strength of Erl et al.’s catalogue of cloud patterns
is in its extensive coverage of techniques for handling the
security challenges of cloud-hosted applications. It describes
various strategies covering areas such as hypervisor attack
vectors, threat mitigation and mobile device management.
Other documentation of cloud deployment patterns can be
found in [34][35][36][37][38][39].

Existing classifications of cloud patterns do not organize
the individual patterns into a clean hierarchy or taxonomy.
This is because most of the patterns tend to handle multiple
architectural concerns [22]. This makes it difficult for an
architect to decide whether the implementation of the cloud

can be done by modifying the cloud-application itself or the
components of the cloud environment where the application is
running.

Cloud patterns in existing classifications are applied to
simple web-based applications (e.g., Weblog application [30])
without considering the different application processes they
support. Moreover, these patterns have not been applied against
a set of applications in software engineering domain, such
as cloud-hosted GSD tools. GSD tools may have similar
architectural structure but they (i) support different software
development processes, and (ii) impose varying workloads on
the cloud infrastructure, which would influence the choice of
a deployment pattern. For example, Hudson being a com-
piler/build tool, would consume more memory than subversion
when exposed to high intensive workload.

Motivated by these shortcomings, we extend the current
research by developing a taxonomy of deployment patterns
for cloud-hosted applications that reflects the two main
components of an architectural deployment structure: the
cloud-application and cloud environment. Thereafter, we
apply the taxonomy to position a set of GSD tools.

III. METHODOLOGY

A. Development of a Taxonomy of Deployment Patterns for
Cloud-hosted Applications

1) Developing the Taxonomy: We develop the taxonomy
by using a modified form of the approach used by Lilien [40]
in his work for building a taxonomy of specialized ad hoc
networks and systems for a given target application class. The
approach is summarized in the following steps:

Step 1: Select the target class of Software Tool- The target
class is based on the ISO/IEC 12207 taxonomy for the software
life cycle process (see Definition 3 for details). The following
class of tools are excluded: (i) tools not deployed in a cloud
environment (even if they are deployed on a dedicated server
to perform the same function); and (ii) general collaboration
tools and development environments (e.g., MS Word, Eclipse).

Step 2: Determine the requirements for the Taxonomy-
The first requirement is that the taxonomy should incorporate
features that restricts it to GSD tools and Cloud Computing.
In this case, we adopt the ISO/IEC 12207 framework [20] and
NIST cloud computing definition [41]. Secondly, it should
capture the components of an (architectural) deployment
structure [5] - software elements (i.e., GSD tool to be
deployed) and external environment (i.e., cloud environment).
Therefore, our proposed taxonomy is a combination of two
taxonomies - Taxonomy A, which relates to the components
of the cloud environment [41], and Taxonomy B, which
relates to the components of the cloud application architecture
[7].

Step 3: Determine and prioritize the set of all acceptable
categories and sub-categories of the Taxonomy- We prior-
itized the categories of the taxonomy to reflect the structure
of a cloud stack from physical infrastructure to the software



424

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

process of the deployed GSD tool. The categories and sub-
categories of the two taxonomies are described as follows:

(1) Application Process: the sub-categories (i.e., project
processes, implementation processes and support processes)
represent patterns for handling the workload imposed on the
cloud infrastructure by the ISO/IEC 12207 software processes
supported by GSD tools [20]. For example, the unpredictable
workload pattern described by Fehling et al. [7] can be used
to handle random and sudden increase in the workload of an
application or consumption rate the IT resources.

(2) Core cloud properties: the sub-categories (i.e., rapid
elasticity, resource pooling and measured service) contain
patterns used to mitigate the core cloud computing properties
of the GSD tools [7].

(3) Service Model: the sub-categories reflect cloud service
models- SaaS, PaaS, IaaS [41].

(4) Deployment Model: the sub-categories reflect cloud
deployment models- private, community, public and hybrid
[41].

(5) Application Architecture: the sub-categories represent
the architectural components that support a cloud-application
such as application components (e.g., presentation, processing,
and data access), multitenancy, and integration. The multite-
nancy patterns are used to deploy a multitenant application to
the cloud in such a way that guarantees varying degrees of iso-
lation of the users. The three patterns that reflect these degrees
of isolation are shared component, tenantisolated component
and dedicated component [7].

(6) Cloud Offerings: the sub-categories reflect the major
infrastructure cloud offerings that can be accessed- cloud
environment, processing, storage and communication offering
[7]. Patterns that fall under “communication patterns” are
probably the best documented in this group. Examples include
Priority Queue [8], Queue-Centric workflow, message-oriented
middleware, which are used to ensure the reliability of mes-
sages exchanged between users.

(7) Cloud Management: contains patterns used to manage
both the components and processes/runtime challenges) of
GSD tools. The 2 sub-categories are - management compo-
nents, which are used for managing hardware components
(e.g., servers) and management processes, which are used for
managing processes (e.g., database transactions) [7]. The node
failure pattern described by Wilder [22] can be used to handle
sudden hardware failures. The “Health Endpoint Monitoring”
pattern [8] and the “resiliency management” pattern can be
used to handle runtime failures or unexpected software failures.

(8) Composite Cloud: contains compound patterns (i.e.,
patterns that can be formed by combining other patterns
or can be decomposed into separate components). The
sub-categories are: decomposition style and hybrid cloud
application [7]. The patterns under the decomposition style
describe how the software and hardware elements of the
cloud environment are composed (or can be decomposed) into
separate components. A well-known example is the two-tier
(or client/server) pattern, in which each component or process
on the cloud environment is either a client or a server. Another
example is the multisite deployment pattern [22], where users

form clusters around multiple data centres or are located in
globally distributed sites. Hybrid cloud application patterns are
integrations of other patterns and environments. For example,
the “hybrid development environment” pattern can be used
to integrate various clouds patterns to handle different stages
of software development- compilation, testing, and production.

Step 4: Determine the space of the Taxonomy- The selected
categories and their associated sub-categories define the space
of the taxonomy. The taxonomy (Table I) is composed of
24 sub-categories, which were systematically integrated and
structured into 8 high-level categories. The information that
the taxonomy conveys has been arranged into four columns:
deployment components, main categories, sub-categories, and
related patterns.

2) Description of the Taxonomy of Deployment Patterns
for Cloud-hosted Applications: Table I shows the taxonomy
captured in one piece. In the following, we describe the key
sections of the taxonomy.

Deployment Components of the Taxonomy: There are two
sections of the taxonomy: the upper-half represents Taxonomy
A, which is based on NIST Cloud Computing Definition,
while the lower-half represents Taxonomy B, which is based
on the components of a typical cloud application architecture.
The taxonomy has 24 sub-categories, which are structured into
8 high-level categories: four categories each for Taxonomy, A
and B.

Hybrid Deployment Requirements: The thick lines (Table
I) show the space occupied by patterns used for hybrid-
deployment scenarios. There are two groups of hybrid-related
patterns: one related to the cloud environment and the other
related to the cloud-hosted application. For example, the
hybrid cloud pattern (i.e., under “hybrid clouds” sub-category
of Taxonomy A) is used to integrate different clouds into a
homogenous environment while the hybrid data pattern (i.e.,
under “hybrid cloud applications” sub-category of Taxonomy
B) is used to distribute the functionality of a data handling
component among different clouds.

Examples of Related Patterns: Entries in the “Related Pattern”
column show examples of patterns drawn from well-known
collections of cloud patterns such as [7][8][22]. The cloud
patterns found in these collections may have different names
but they share the same underlying implementation principle.
For example, message-oriented middle-ware pattern [7] is
captured in Homer et al. [8] and Wilder [22] as a Queue-
centric workflow pattern and competing consumers pattern,
respectively.

B. GSD Tool Selection

We carried out an empirical study to find out: (1) the
type of GSD tools used in large-scale distributed enterprise
software development projects; and (2) what tasks they utilize
the GSD tools for.



425

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. TAXONOMY OF DEPLOYMENT PATTERNS FOR
CLOUD-HOSTED APPLICATIONS

Deployment
Components

Categories of Deployment Patterns Related PatternsMain Categories Sub-Categories

Cloud-hosted
Environment
(Taxonomy A)

Application Process
Project processes Static workload
Implementation
processes

Continuously changing work-
load

Support processes Continuously changing work-
load

Core Cloud Properties
Rapid Elasticity Elastic

platform,Autoscaling[22]
Resource Pooling Shared component, Private

cloud
Measured Service Elastic Platform, Throttling[8]

Cloud Service Model
Software resources SaaS
Platform resources PaaS
Infrastructure
resources

IaaS

Cloud Deployment
Model

Private clouds Private cloud
Community clouds Community cloud
Public clouds Public cloud
Hybrid clouds Hybrid cloud

Cloud-hosted
Application
(Taxonomy B)

Composite Cloud
Application

Hybrid cloud appli-
cations

Hybrid Processing, Hybrid
Data,Multisite Deployment [22]

Decomposition
style

2-tier/3-tier application, Con-
tent Delivery Network [22]

Cloud Management Management
Processes

Update Transition Process,
Scheduler Agent [8]

Management Com-
ponents

Elastic Manager, Provider
Adapter, External Configuration
Store [8]

Cloud Offerings

Communication Of-
fering

Virtual Networking, Message-
Oriented Middleware

Storage Offering Block Storage, Database Shard-
ing [22], Valet Key [8]

Processing
Offerings

Hypervisor, Map Reduce [22]

Cloud Environment
Offerings

Elastic Infrastructure, Elastic
Platform, Runtime Reconfigura-
tion [8]

Cloud Application
Architecture

Integration Integration Provider, Restricted
Data Access Component

Multi-tenancy Shared Component, Tenant-
Isolated Component

Application compo-
nents

Stateless Component, User In-
terface Component

1) Research Site: The study involved 8 international
companies, and interviews were conducted with 46
practitioners. The study was conducted between January,
2010 and May, 2012; and then updated between December,
2013 and April, 2014. The companies were selected from
a population of large enterprises involved in both on-shore
and off-shore software development projects. The companies
had head offices in countries spread across three continents:
Europe (UK), Asia (India), and North America (USA). Data
collection involved document examination/reviews, site visits,
and interviews. Further details of the data collection and data
analysis procedure used in the empirical study can be seen in
Bass [11].

2) Derived Dataset of GSD Tools: The selected set of
GSD tools are: JIRA [42], VersionOne [43], Hudson [44],
Subversion [45] and Bugzilla [46]. We selected these tools
for two main reasons: (i) Practitioners confirmed the use of
these tools in large scale geographically distributed enterprise
software development projects [11]; (ii) The tools represent
a mixture of open-source and commercial tools that support
different software development processes; and are associated
with stable developer communities (e.g., Mozilla Foundation)
and publicly available records (e.g., developer’s websites,
whitepapers, manuals). Table II (another view of the one in
[11]) shows the participating companies, projects and the
GSD tools they used.

TABLE II. PARTICIPATING COMPANIES, SOFTWARE PROJECTS,
SOFTWARE-SPECIFIC PROCESS AND GSD TOOLS USED

Companies Projects Software
process

GSD tool

Company A, Banga-
lore

Web Mail
Web Calendar

Issue tracking
Code integration

JIRA
Hudson

Company B, Banga-
lore

Web Mail
Web Calendar

Issue tracking
Version control

JIRA
Subversion

Company H, Delhi
Customer
service
Airline

Agile tailoring
Issue tracking

VersionOne
JIRA

Company D,
Bangalore (Offshore
Provider to
Company E)

Marketing
CRM

version control
Error tracking

Subversion
Bugzilla

Company E, London
Banking
Marketing
CRM

Issue tracking
Agile tailoring
Code Building

JIRA
VersionOne
Hudson

JIRA: JIRA is a bug tracking, issue tracking and project
management software tool. JIRA products (e.g., JIRA Agile,
JIRA Capture) are available as a hosted solution through
Atlassian OnDemand, which is a SaaS cloud offering. JIRA
is built as a web application with support for plugin/API
architecture that allows developers to integrate JIRA with
third-party applications such as Eclipse, IntelliJ IDEA and
Subversion [42].

Hudson: Hudson is a Continuous Integration (CI) tool, written
in Java, for deployment in a cross-platform environment.
Hudson is hosted partly as an Eclipse Foundation project and
partly as a Java.NET project. It has a rich set of plugins
making it easy to integrate with other software tools [47].
Organizations such as Apple and Oracle use Hudson for setting
up production deployments and automating the management of
cloud-based infrastructure [44].

VersionOne: VersionOne is an all-in one agile management
tool built to support agile development methodologies such
as Scrum, Kanban, Lean, and XP [43]. It has features that
support the handling of vast amounts of reports and globally
distributed teams in complex projects covering all aspects
of teams, backlog and sprint planning. VersionOne can be
deployed as a SaaS (on-demand) or On-Premises (local) [48].

Subversion: Subversion is a free, open source version con-
trol system used in managing files and directories, and the
changes made to them over time [45]. Subversion implements
a centralized repository architecture whereby a single central
server hosts all project metadata. This facilitates distributed
file sharing [19].

BugZilla: Bugzilla is a web-based general-purpose bug tracker
and testing tool originally developed and used for the Mozilla
project [46]. Several organizations use BugZilla as a bug
tracking system for both open source(Apache, Linux, Open
Office) and proprietary projects(NASA, IBM) [49].

C. Applying the Taxonomy

In this section, we demonstrate the practicality of the
taxonomy in two ways: (1) Positioning the selected GSD
tools against the taxonomy; and (2) Presenting a process
for identifying applicable deployment patterns for cloud
deployment of GSD tools. This framework may be used for
other similar GSD tools not listed in our dataset.



426

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Positioning GSD Tools on the Taxonomy: We
demonstrate the practicality of the taxonomy by applying
it to position a selected set of GSD tools. We used the
collection of patterns from [7] as our reference point, and
then complemented the process with patterns from [8][22].

The structure of the positioned deployment pattern, in
its textual form, is specified as a string consisting of three
sections-(i) Applicable deployment patterns; (ii) Technologies
required to support such implementation; and (iii) Known
uses of how the GSD tool (or one of its products) implements
or supports the implementation of the pattern. In a more
general sense, the string can be represented as: [PATTERN;
TECHNOLOGY; KNOWN USE]. When more than one
pattern or technology is applicable, we separate them with
commas. Each sub-category of the taxonomy represents a
unique class of reoccurring cloud deployment problem, while
the applicable deployment pattern represents the solution.

2) How to Identify Applicable Deployment Patterns using
the Taxonomy: Based on the experience gathered from posi-
tioning the selected GSD tools on the taxonomy, we describe
CLIP (CLoud-based Identification process for deployment
Patterns), a general process for guiding software architects
in selecting applicable cloud deployment patterns for GSD
tools using the taxonomy. The development of CLIP (shown
in Figure 2 in Business Process Model and Notation (BPMN))
was inspired by IDAPO. Stol et al. [6] used IDAPO to describe
a process for identifying architectural patterns embedded in the
design of open-source software tools.

Fig. 2. CLIP Framework for Identifying Deploying Patterns

The process of selecting the cloud deployment pattern(s) is
an iterative process. The first step is to (1) find out the main
business requirements of the organization. An example of
a business requirement is fast feedback time, secure access to
the shared component, and even the requirement of limited
resource. The next step is to (2) gather information about
the architectural structure of the GSD tool. We recommend
the use of a IDAPO, a process designed by Stol el al[6] for

identifying architectural patterns in an open-source software.
At the end of that process, the architect would be able to
identify among other things, the type of software and its
domain, the technologies used, components and connectors,
data source requirements (e.g., database type, data access
method, file system etc.), and the default architectural pattern
used in the design of the software.

After gathering information about the architectural struc-
ture of the GSD tool, the next step is to (3) identify all
the installation and configuration requirements of the
GSD tool. This information can be obtained directly from the
documentation of the GSD tool or by creating a test application
with the GSD tool. Based on the information gathered in
the previous steps, the architect would be able to (4) from
the given cloud infrastructure, select a suitable level of
the cloud-application stack that will accommodate all the
installation and configuration requirements of the user. If
in doubt, we recommend that the architect should start with
the first cloud stack level, which is the application level (i.e.,
GSD tool together with the software process it supports).

At this stage, the architect has to (5) choose the archi-
tectural deployment component of interest. In the cloud (as
in other distributed environments), a cloud deployment pattern
targets either the cloud environment or the cloud-application.
If the architect is concerned with the cloud environment, then
Taxonomy A should be used to select patterns for mapping
business requirements to the unchangeable cloud properties,
such as the location of the cloud infrastructure. However, if
the architect is concerned with the cloud-hosted application,
then Taxonomy B should be used to select deployment patterns
for mitigating cloud properties, for example, performance and
availability of the cloud-application.

The architect should then (6) check for hybrid deploy-
ment requirements. Usually, there are three main require-
ments that motivate the use of a hybrid-related cloud pattern.
These include: (i) elasticity where there is need to increase or
decrease the availability of cloud resources; (ii) accessibility;
and (iii) combined assurance of privacy, security and trust
[7]. For Taxonomy A, a typical requirement would be the
need for integration of multiple clouds into a homogenous
environment (e.g., using the hybrid cloud pattern), while that
of Taxonomy B would be the need for distribution of the func-
tionality/components of the GSD tool among different clouds
(e.g., using the hybrid processing pattern). In either case, the
respective hybrid related sub-category should be referenced to
identify applicable patterns. otherwise the architect has to (7)
select a cloud deployment problem that corresponds to the
sub-category of the chosen Taxonomy. We have arranged
the cloud deployment patterns into 8 high-level categories and
24 sub-categories that represent a recurring cloud deployment
problem.

At this point, the process of selecting suitable deployment
patterns involves referencing many sources of information
several times. The architect can map the component/process
of the GSD tool with the resources of the cloud infrastructure.
We also recommend that the architect should revisit steps 1, 2,
and 3. Assuming an architect wants Hudson to communicate
with other external components/applications, then a better
deployment pattern of choice would be Virtual Networking
(via self service interface) to allow different users to be



427

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

isolated from each other, to improve security and shield users
form performance influence. However, if the communication is
required internally to exchange messages between application
components, then a message-oriented middleware would be the
obvious choice.

After selection, the (8) patterns have to be validated to
ensure that the chosen cloud stack level can accommodate all
the installation and configuration requirements of the GSD
tool. This can be done by mapping the components/process
of the GSD tool identified from the previous steps to the
available cloud resources. Another option would be to create a
test application with the GSD tool to check if deploying to the
cloud is workable. If validation fails, the architect may move
one level lower in the cloud stack and repeat the process form
step 4. Once confirmed, the (9) selected pattern(s) (together
with the use case that gave rise to the selection) should be
registered in a repository for later use by other architects.

D. Validation of the Taxonomy

We validate the taxonomy in theory by adopting the
approach used by Smite et al. [28] to validate his proposed
taxonomy for terminologies in global software engineering. A
taxonomy can be validated with respect to completeness by
benchmarking against existing classifications and demonstrat-
ing its utility to classify existing knowledge [28].

We have benchmarked Taxonomy A to existing classifi-
cations: the ISO/IEC 12207 taxonomy of software life cycle
processes and the components of a cloud model based on NIST
cloud computing definition, NIST SP 800-145. Taxonomy B is
benchmarked to components of a cloud application architecture
such as cloud offering and cloud management, as proposed by
Fehling et al. [7]. The collection of patterns in [7] captures
all the major components and processes required to support
a typical cloud-based application, such as cloud management
and integration.

We demonstrate the utility of our taxonomy by: (i) posi-
tioning the 5 selected GSD tools within the taxonomy; and (ii)
applying CLIP to guide an architect in identifying applicable
deployment patterns together with the supporting technologies
for deploying GSD tools to the cloud. Tables III and IV show
that several deployment patterns (chosen from 4 studies) can
be placed in the sub-categories of our taxonomy. In Section
III C, we describe CLIP and then demonstrate its practicality
with a motivating cloud deployment problem.

E. Case Study: Selecting Applicable Patterns for Deploying
Components for Automated Build Verification Process

In this section, we present a simple case study of a cloud
deployment problem to illustrate how to use the process
described in this paper (i.e., CLIP) given our taxonomy to
guide in the selection of applicable pattern.

Motivating Problem: A cloud deployment architect intends to
deploy a data-handling component to the cloud so that its
functionality can be integrated into a cloud-hosted Continuous
Integration System (e.g., Hudson). The laws and regulations
of the company make it liable to archive builds of source code
once every week and keep it accessible for auditing purposes.

Access to the repository containing the archived source code
shall be provided solely to certain groups of users. How can
we deploy a single instance of this application to the cloud to
serve multiple users, so that the performance and security of
a particular user does not affect other users when there is a
change in the workload?

Proposed Solution: In the following, we will go through
the steps outlined in Section III C in order to select an
appropriate cloud deployment pattern for handling the above
cloud deployment problem.

Step 1: The key business requirements of this company are:
(i) the shared repository that archives the source code cannot
be shared; (ii) a single instance of this application should be
deployed to the cloud to serve multiple users, and (iii) isolation
among individual users should be guaranteed.

Step 2: Hudson is a web-based application and so it can
easily be modified to support a 3-tier architectural pattern. An
important component of this architectural pattern is the shared
repository containing the archived data.

Step 3: Information obtained from Hudson documentation
suggests that Hudson needs a fast and reliable communication
channel to ensure that data is archived simultaneously between
different environments/clouds.

Step 4: A review of the hardware and software requirements
from Hudson documents suggests that having access to the
application level and middle-level of the application stack will
be sufficient to provide the configuration requirements for
deploying and running Hudson on the given cloud infrastruc-
ture. A self-service interface can be provided as a PaaS (e.g.,
Amazon’s Elastic Beanstalk) for configuring the hardware and
software requirements of Hudson.

Step 5: The architectural deployment component of interest
is the cloud-application itself, since the user has no direct
access to the cloud IaaS. Therefore, the architect has to select a
deployment pattern that can be implemented at the application
level to handle the business requirements of the company.
Based on this information, we turn to Taxonomy B, which
contain cloud patterns used to mitigate cloud properties such
as performance on the application level. Also, the fact that
we are not attempting to integrate two cloud environments
further strengthens the choice of our architectural deployment
component of interest.

Step 6: After a careful review of the requirements, we conclude
that a hybrid-related deployment pattern is the most suitable
cloud deployment pattern for addressing the requirements of
the customer. We assume that the data archived by Hudson
contains the source code that drives a critical function of an
application used by the company. Any unauthorized access
to it can be disastrous to the company. The hybrid backup
deployment pattern seems to be the most appropriate in this
circumstance. This pattern can be used to extract and archive
data to the cloud environment. Fehling et al. [7] discussed
several types of hybrid -related patterns that can be used at
the application level.

Step 7: As we have selected the hybrid backup pattern in
the previous step, carrying out step 7 to select a deploy-
ment problem that corresponds to a particular sub-category



428

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the taxonomy is no longer relevant. However, there are
other patterns that can be selected from Taxonomy B for
complementary purposes. For example, in a situation where
the performance of the communication channel is an issue, the
message-oriented pattern can be used to assure the reliability
of messages sent from several users to access the component
that is shared.

Step 8: The selected deployment pattern was validated by
carefully reviewing its implementation to ensure that it can
accommodate the user’s configuration requirements and ulti-
mately address the cloud deployment problem. We mapped
Hudson and its supporting components to the available cloud
resources.

In Figure 6, we show the architecture of the hybrid backup
that is proposed for solving the cloud deployment problem.
The architecture consists of two environments: one is a static
environment that hosts Hudson and the other is an elastic
cloud environment where the cloud storage offering (e.g.,
Amazon’s S3) resides. This static environment represents the
company’s Local Area Network (LAN) that runs Hudson.
During Hudson’s configuration on the “Post-build Action”
section, the location of the files to archive should point to
the storage offering that resides on the cloud environment.

The cloud storage (accessed via a REST API) has to be
configured in such a way that guarantees isolation among the
different users. We assume that the data handling component
is initially available as a shared component for all users. To
ensure that the archived data is not shared by every user, the
same instance of the shared component can be instantiated and
deployed exclusively for a certain number of users.

From implementation standpoint, all user-id’s associated
with each request to Hudson are captured and those requests
with exclusive access rights are then routed to the cloud
storage. We discuss an approach named “COMITRE (Cloud-
based approach to Multitenancy Isolation Through request RE-
routing) in Ochei et al. [50] for deploying a single instance of
Hudson to the cloud for serving multiple users (i.e., multi-
tenancy) in such a way that guarantees different degrees of
isolation among the users.

The different degrees of isolation between users accessing
an application component that is shared is captured in three
multitenancy patterns: shared component, tenant-isolated com-
ponent and dedicated component [7].

Step 9: Finally, the cloud deployment scenario, the selected
patterns together with the implemented architecture is docu-
mented for reference and reuse by other architects.

IV. FINDINGS

In this section, we present the findings obtained by ap-
plying the taxonomy against a selected set of GSD tools:
JIRA, VersionOne, Hudson, Subversion and Bugzilla. Refer to
Section III- B for details of the processes supported by these
tools.

A. Comparing the two Taxonomies

The cloud deployment patterns featured in Taxonomy A
(i.e., upper part of Table I) relate to the cloud environment

Fig. 3. Mapping Hudson to Cloud Stack based on Hybrid Backup pattern

hosting the application, while the cloud deployment patterns
in Taxonomy B (i.e., lower part of Table I) relates to the
cloud-hosted application itself. For example, the PaaS pattern
is used to provide an execution environment to customers on
the provider-supplied cloud environment. The Elastic platform
pattern can be used in the form of a middleware integrated
into a cloud-hosted application to provide an execution envi-
ronment.

B. Hybrid-related deployment Patterns

Both taxonomies contain patterns for addressing hybrid
deployment scenarios (i.e., the space demarcated with thick
lines). For example, a hybrid cloud (Taxonomy A) integrates
different clouds and static data centres to form a homogeneous
hosting environment, while hybrid data (Taxonomy B) can be
used in a scenario where data of varying sizes generated from
a GSD tool resides in an elastic cloud and the remainder of
the application resides in a static environment.

C. Patterns for Implementing Elasticity

We have observed that there are patterns that can be used by
GSD tools to address rapid elasticity at all levels of the cloud
stack. For example, an Elastic manager can be used at the
application level to monitor the workload experienced by the
GSD tool and its components (based on resource utilization,
number of messages exchanged between the components, etc.)
in order to determine how and when to provision or de-
provision resources. Elastic platform and Elastic infrastructure
can be used at the platform and infrastructure resources level,
respectively.

D. Accessing Cloud Storage

The data handling components of most GSD tools are built
on block storage architectures (e.g., relational databases such
Oracle and MySQL used within Hudson and Bugzilla) for
storing data, which are directly accessible by the operating
system. However, a vast majority of storage offerings available
on the cloud are based on object storage architecture. For
example, Amazon S3, Google Cloud Storage and Windows
Azure Blob provide cloud storage to cloud applications ac-
cording to blob storage pattern [7]. Blob storage can be very



429

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

useful for archiving large data elements (e.g., video, installers,
and ISO images arising from Hudson builds and test jobs.

E. Positioning of GSD tools on the Taxonomy

Tables II and III show the findings obtained by positioning
the cloud-hosted GSD tools on each sub-category of the
taxonomy. In the following, we present a shortlist of these
findings to show that we can identify applicable deployment
patterns to address a wide variety of deployment problems.

(i) All the GSD tools considered in this study are based
on web-based architecture. For example, Bugzilla and JIRA
are designed as a web-based application, which allows for
separation of the user interface, and processing layers from
the database that stores details of bugs/issues being tracked.

(ii) All the GSD tools support API/Plugin architecture.
For example, JIRA supports several APIs that allows it
to be integrated with other GSD tools. The Bugzilla:Web
services, a standard API for external programs to interact
with Bugzilla, implies support for stateless pattern. These
APIs represent known uses of how these deployment patterns
are implemented.

(iii) Virtualization is a key supporting technology used in
combination with other patterns to achieve elasticity at
all levels of the cloud stack, particularly in ensuring fast
provisioning and de-provisioning of infrastructure resources.

(iv) The GSD tools use Web services (through a REST API
in patterns such as integration provider [7]) to hold external
state information, while messaging technology (through
message queues in patterns such as Queue-centric workflow
[22] and Queue-based load leveling [8]) is used to exchange
information asynchronously between GSD tools/components.

(vi) Newer commercial GSD tools (JIRA and VersionOne)
are directly offered as SaaS on the public cloud. On the other
hand, older open-source GSD tools (Hudson, Subversion and
Bugzilla) are the preferred for private cloud deployment.
They are also available on the public cloud, but by third party
cloud providers.

We summarize our findings as follows: Although there are
a few patterns that are mutually exclusive (e.g., stateless versus
stateful components, and strict versus eventual consistency
[7]), most patterns still have to be combined with others (e.g,
combining PaaS with Elastic platform). These deployment
patterns may also use similar technologies such as REST,
messaging and virtualization to facilitate their implementation.

V. DISCUSSION

The findings clearly suggest that by positioning a set of
GSD tools on our proposed taxonomy, the purpose of the study
has been achieved. The overarching result of the study is that
most deployment patterns have to be combined with others
during implementation. The findings presented here support
previous research suggesting that most patterns are related and
so two or more patterns can be used together [5][21].

A. Combining Related Deployment Patterns

Many deployment patterns are related and cannot be fully
implemented without being combined with other ones, espe-
cially to address hybrid deployment scenarios. This scenario
is very common in collaborative GSD projects, where a GSD
tool either requires multiple cloud deployment environments
or components, each with its own set of requirements. Our
taxonomy, unlike others [22][8], clearly shows where to look
for hybrid-related deployment patterns (i.e., the space demar-
cated by thick lines in Table I) to address this challenge.
For example, when using Hudson there is usually a need to
periodically extract the data it generates to store in an external
storage during continuous integration of files. This implies
the implementation of a hybrid data pattern. Hudson can be
used in combination with other GSD tools, such as Subversion
(for version control) and Bugzilla (for error tracking) within
a particular software development project, each of which may
also have their own deployment requirements.

B. GSD Tool Comparison

The taxonomy gives us a better understanding of various
GSD tools and their cloud specific features. While other tax-
onomies and classifications use simple web applications [22] to
exemplify their patterns, we use a mixture of commercial and
open-source GSD tools. For example, commercial GSD tools
(i.e., JIRA and VersionOne) are offered as a SaaS on the public
cloud and also have a better chance of reflecting the essential
cloud characteristic. Their development almost coincides with
the emergence of cloud computing, allowing new features to
be introduced into revised versions. The downside is that they
offer less flexibility in terms of customization [52].

On the other hand, open-source GSD tools (i.e., Hudson,
Subversion) are provided on the public cloud by third party
providers and they rely on API/plugins to incorporate support
for most cloud features. The downside is that many of the
plugins available for integration are not maintained by the
developer’s community and so consumers use them at their
own risk. The taxonomy also revealed that open-source GSD
tools (e.g., Hudson, Subversion) are used at a later stage of
a software life-cycle process in contrast to commercial tools,
which are used at the early stages.

C. Support for API/Plugin Architecture

Another interesting feature of our taxonomy is that by
positioning the selected GSD tools on it, it was discovered
that the support for the implementation of most deployment
patterns is practically achieved through API/Plugin integration
[36]. This is no coincidence, as a typical cloud application is
composed of various web-based related technologies such as
web services, SOA and n-tier architectures. Therefore, a GSD
tool with little or no support for APIs/Plugins is unlikely to
attract interest from software developers. For example, JIRA’s
Elastic Bamboo support for Blob storage on Windows Azure
is through an API [42]. JIRA has a plugin for integrating with
Hudson, Subversion and Bugzilla [42] and vice versa.

D. Components and Connectors for maintaining state infor-
mation and exchanging information asynchronously

Our taxonomy also highlights the technologies used to sup-
port the software processes of GSD tools, unlike others, which



430

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. POSITIONING GSD TOOLS ON THE PROPOSED TAXONOMY (TAXONOMY A)

Category Sub-Category JIRA VersionOne Hudson Subversion Bugzilla

Application Process
Project
processes

Static workload, Contin-
uously changing work-
load; SaaS; JIRA used
by small no. of users, is-
sues tracked reduces over
time[42]

Static workload; SaaS;
VersionOne is installed
for a small number of
users[43]

Process not supported Process not supported Process not supported

Implementation
processes

Process not supported Process not supported Continuously changing
workload; PaaS; Hudson
builds reduces gradually
as project stabilizes[44]

Process not supported Process not supported

Support
processes

Process not supported Process not supported Process not supported Static workload,
Continuously changing
workload;PaaS,
Hypervisor; rate of
code files checked into
Subversion repository is
nearly constant or reduces
over time[45]

Continuously
changing workload;
PaaS,Hypervisor; Errors
tracked using Bugzilla
reduces over time[46]

Core Cloud
Properties

Rapid Elasticity Stateless pattern, Elas-
tic platform; REST API;
JIRA is installed in cloud
as SaaS[42]

Stateless pattern, Elas-
tic platform; REST API;
VersionOne is installed in
cloud as SaaS[43]

Elastic infrastructure,
shared component;
hypervisor; Hudson server
is supported by hypervisor
in a private cloud[44]

Elastic infrastructure,
tenant-isolation
component; hypervisor;
Subversion repository
is supported by Elastic
infrastructure[45]

Stateless pattern; REST
API; Bugzilla is installed
in cloud as SaaS in private
cloud[46]

Resource Pool-
ing

Hypervisor, Public
Cloud, ; Virtualization;
JIRA deployed on the
public cloud as SaaS[42]

Hypervisor, Public
cloud; Virtualization;
VersionOne deployed on
public cloud as SaaS[43]

Hypervisor, Tenant-
isolated component;
Virtualization; Hudson
is deployed on a
hypervisor[44]

Hypervisor, Tenant-
isolated component;
Virtualization; Subversion
is deployed on a
hypervisor[42]

Hypervisor, Public
cloud; Virtualization;
Bugzilla deployed on the
public cloud[46]

Measured Ser-
vice

Static workload, Elastic
Infrastructure,Throttling[8];
Virtualization; Small
number JIRA users
generates a nearly
constant workload[42]

Static workload, Elastic
Infrastructure,Throttling[8];
Virtualization; Small
number of VersionOne
users generates small
workload[43]

Static workload, Elastic
Infrastructure,Throttling[8];
Virtualization; Hudson
can be supported on
public cloud by elastic
infrastructure[44]

Static workload, Elastic
Infrastructure,Throttling[8];
Virtualization; Subversion
can be supported on
public cloud by elastic
infrastructure[45]

Static workload, Elastic
Infrastructure,Throttling[8];
Virtualization; Bugzilla
can be supported on third
party public cloud by
elastic infrastructure[46]

Cloud Service
Model

Software
resources

SaaS; Web Services,
REST; JIRA
OnDemand[42]

SaaS; Web Services,
REST; VersionOne
OnDemand[43]

SaaS; Web Services,
REST; Hudson is
offered by 3rd party
cloud providers like
CollabNet[51]

SaaS; Web Services,
REST; Subversion is
offered by 3rd party
cloud providers like
CollabNet[51]

SaaS; Web Services,
REST; Bugzilla is
offered by 3rd party
cloud providers like
CollabNet[51]

Platform
resources

PaaS; Elastic platform,
Message Queuing; JIRA
Elastic Bamboo[42]

PaaS; Elastic platform,
Message Queuing; No
known use

PaaS; Elastic platform,
Message Queuing; Build
Doctor and Amazon EC2
for Hudson

PaaS; Elastic platform,
Message Queuing; Flow
Engine powered by Jelas-
tic for Subversion

PaaS; Elastic platform,
Message Queuing; No
known use

Infrastructure
resources

Not applicable Not applicable IaaS; Hypervisor; Hudson
is a distributed execution
system comprising mas-
ter/slave servers[44]

IaaS; Hypervisor; Subver-
sion can be deployed on a
hypervisor

Not applicable

Cloud Deployment
Model

Private usage Private cloud; Hypervi-
sor; JIRA can be deployed
on private cloud using pri-
vate cloud software like
OpenStack

Private cloud;
Hypervisor; VersionOne
On-premises[43]

Private cloud; Hypervi-
sor; Hudson can be de-
ployed on private cloud
using private cloud soft-
ware

Private cloud; Hypervi-
sor; Subversion can be de-
ployed on private cloud
using private cloud soft-
ware

Private cloud; Hypervi-
sor; Bugzilla can be de-
ployed on private cloud
using private cloud soft-
ware

Community us-
age

Community cloud; SaaS;
Bugzilla can be deployed
on private cloud

Community cloud; SaaS;
Bugzilla can be deployed
on community cloud

Community cloud;
SaaS,Paas, IaaS; Bugzilla
can be deployed on
community cloud

Community cloud;
SaaS,IaaS; Bugzilla
can be deployed on
community cloud

Community cloud; SaaS,
PaaS; Bugzilla can be
deployed on community
cloud

Public usage Public cloud; SaaS; JIRA
OnDemand is hosted on
public cloud[42]

Public cloud; SaaS; Ver-
sionOne is hosted on pub-
lic cloud[43]

Public cloud;
SaaS,PaaS,IaaS; Hudson
is hosted on public
cloud(via 3rd party
providers)[51]

Public cloud; SaaS, IaaS;
Subversion is hosted on
public cloud(via 3rd

party providers)[51]

Public cloud; SaaS, PaaS;
Bugzilla is hosted on pub-
lic cloud(via 3rd party
providers)[51]

Hybrid usage Hybrid cloud; SaaS;
JIRA used to track issues
on multiple clouds

Hybrid cloud; SaaS; Ag-
ile projects are stored in
different clouds[45]

Hybrid cloud;
SaaS,PaaS, IaaS; Hudson
builds done in separate
cloud

Hybrid cloud; SaaS,
IaaS; Subversion
repository resides in
multiple clouds

Hybrid cloud; SaaS,
PaaS;Bugzilla DB can be
stored in different clouds

focus mostly on the design of cloud-native applications [7].
Web services (via REST) and messaging (via message queues)
are the preferred technologies used by cloud deployment
patterns (e.g., stateless pattern, message-oriented middleware)
to interconnect GSD tools and other components. REST style
is favoured by public cloud platforms. For example, JIRA’s
support for SOAP and XML-RPC is depreciated in favour of
REST [42]. This trend is also reported in [22][36].

E. Accessing Data stored in Cloud Storage

Some GSD tools (e.g., Subversion) handle large amounts of
data (images, music, video, documents/log files) depending on
the nature of the software development project. This data can
be stored on a cloud storage to take advantage of its ability to

scale almost infinitely and store large volumes of unstructured
data. The downside is that the application code of the GSD
tool has to be modified to enable direct HTTP-based REST
API calls. Cloud storage’s object architecture requires REST
API to be either integrated as a plugin into the GSD tool or
coded separately. Storing data on the cloud is invaluable in a
case where the GSD tool runs on a static environment and the
data it generates is to be archived on an elastic cloud.

F. Patterns for Cloud-application Versus Cloud-environment

Our taxonomy can be used to guide an architect in focusing
on a particular architectural deployment component of interest
- that is, either a cloud-hosted application or cloud-hosted
environment. Other taxonomies [8][22] are concerned with



431

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. POSITIONING GSD TOOLS ON THE PROPOSED TAXONOMY (TAXONOMY B).

Category Sub-Category JIRA VersionOne Hudson Subversion Bugzilla

Application
Architecture

Application
Components

User interface
component,Stateless;
REST API, AJAX; State
information in JIRA thru
REST API[42]

User-interface
component,Stateless;
jQuery AJAX, REST/Web
Service; VersionOne REST
API[43]

User-interface
component,Stateless;
REST API, AJAX; Hudson
Dashboard pages via
REST[44]

User-interface com-
ponent,Stateless;REST
API, AJAX; ReSTful
Web Services used to
interact with Subversion
Repositories [45]

Stateless;
Bugzilla:WebService
API; Bugzilla::WebService
API[46]

Multitenancy Shared component; Elas-
tic Platform, Hypervisor;
JIRA login system[42]

Shared component; Hy-
pervisor; VersionOne sup-
ports re-useable configura-
tion schemes[43]

Shared component;
Hypervisor; Hudson 3.2.0
supports multi-tenancy
with Job Group View and
Slave isolation[44]

Tenant Isolated
component; Hypervisor;
Global search/replace
operations are shielded
from corrupting subversion
repository.[45]

Shared component; Hy-
pervisor; Different users
are virtually isolated within
Bugzilla DB[46]

Cloud
Integration

Restricted Data Access
component, Integration
provider; REST API;
JIRA REST API is used to
integrate JIRA with other
applications[42]

Integration provider;
REST, Web Services;
VersionOne OpenAgile
Integrations platform,
REST Data API for user
stories[43]

Integration provider;
REST, Web Services;
Stapler component of
Hudson’s architecture uses
REST[44]

Integration provider;
REST, Web Services;
Subversion API[45]

Integration provider;
REST, Web Services;
Bugzilla::WebService
API[46]

Cloud Offering

Cloud environ-
ment Offering

Elastic platform; PaaS;
JIRA Elastic Bamboo runs
builds to create instances of
remote agents in the Ama-
zon EC2[42]

Integration provider;
REST, Web Services;
Versionone’s Project
Management tools are
used with TestComplete
for automated testing
environment [43]

Elastic Infrastruc-
ture/Platform, Node-
based Availability;
PaaS, IaaS; Hudson is a
distributed build platform
with ”master/slave”
configuration [44]

Elastic platform; PaaS;
Subversion repository can
be accessed by a self-
service interface hosted on
a shared middleware

Elastic Platform; PaaS;
Bugzilla s hosted on a
middleware offered by
providers[46]

Processing Of-
fering

Hypervisor; Virtualiza-
tion; JIRA is deployed on
virtualized hardware

Hypervisor; Virtualiza-
tion; VersionOne can be
deployed on virtualized
hardware

Hypervisor; Virtualiza-
tion; Hudson is deployed
on virtualized hardware

Hypervisor; Virtual-
ization; Subversion is
deployed on virtualized
hardware

Hypervisor; Virtualiza-
tion; Bugzilla is deployed
on virtualized hardware

Storage
Offering

Block; Virtualization; Elas-
tic Bamboo can access cen-
tralized block storage thru
an API integrated into an
operating system running
on virtual server[42]

Block storage; Virtualiza-
tion; VersionOne can ac-
cess centralized block stor-
age thru an API inte-
grated into an operating
system running on virtual
server[43]

Block, Blob storage;
Virtualization; Azure Blob
service used as a repository
of build artifacts created by
a Hudson

Hypervisor; Virtualiza-
tion; Subversion can access
centralized block storage
thru an API integrated
into an operating system
running on virtual server

Hypervisor; Virtualiza-
tion; Bugzilla can access
centralized block storage
thru an API integrated
into an operating system
running on virtual server

Communication
Offering

Message-Oriented
Middleware; Message
Queuing; JIRA Mail
Queue[42]

Message-Oriented
Middleware; Message
Queuing; VersionOne’s
Defect Work Queues[43]

Message-Oriented
Middleware, Virtual net-
working;Message Queu-
ing,Hypervisor;Hudson’s
Execution System Queuing
component

Message-Oriented
Middleware;Message
Queuing;Subversion’s
Repository layer[45]

Message-Oriented
Middleware;Message
Queuing; Bugzilla’s Mail
Transfer Agent[46]

Cloud Management Management
Components

Provider Adapter,
Managed Configuration,
Elastic manager;RPC,
API; JIRA Connect
Framework[42], JIRA
Advanced configuration

Managed Configu-
ration;RPC, API;
VersionOne segregation
and appl. configuration

Elastic load balancer,
watchdog;Elastic
platform; Hudson
execution system’s Load
Balancer component)

Managed Configu-
ration;RPC, API;
configuration file is used to
configure how/when builds
are done

Managed Configura-
tion;RPC, API; Bugzilla
can use configuration file
for tracking and correcting
errors

Management
Processes

Elastic management
process;Elasticity
Manager; JIRA Elastic
Bamboo, and Time
Tracking feature[42]

Elastic management
process;Elasticity
Manager; VersionOne’s
OnDemand security
platform[43]

Update Transition
process;Message Queuing;
continuous integration of
codes by Hudson’s CI
server[44]

Update Transition
process;Message Queuing;
continuous updates of
production versions of the
appl. by Subversion[45]

Resiliency management
process;Elasticity
platform; Bugzilla Bug
monitoring/reporting
feature[46]

Composite
Application

Decomposition
Style

3-tier;stateless, processing
and data access compo-
nents; JIRA is web-based
application[42]

3-tier;stateless, processing
and data access compo-
nents; VersionOne is a web
application[43]

3-tier, Content Dist.
Network;user interface,
processing, data access
components, replica distr.;
Hudson is an extensible
web application, code file
replicated on multiple
clouds[44]

3-tier;stateless, processing
and data access compo-
nents; Subversion is a web-
based application [45]

3-tier;stateless, processing
and data access compo-
nents; Bugzilla is a web
application[46]

Hybrid Cloud
Application

Hybrid processing; pro-
cessing component; JIRA
Agile used to track daily
progress work[42]

Hybrid Development
Environment;processing
component; VersionOne’s
OpenAgile Integration[43]

Hybrid Data,
Hybrid Development
Environment; data access
component;Separate
environment for code
verification and testing

Hybrid Data, Hybrid
Backup; data access
component,stateless;Code
files extracted for external
storage

Hybrid Processing;
processing component;
DB resides in data center,
processing done in elastic
cloud

the design of cloud-native applications. Assuming an architect
is either interested in providing the right cloud resources, or
mapping the business requirement to cloud properties that
cannot be changed (e.g., location and ownership of the cloud
infrastructure), then Taxonomy A would be more relevant.

However, if the interest is in mitigating certain cloud
properties that can be compensated at an application level
(e.g., improving the availability of the cloud-hosted GSD
tool), then Taxonomy B should be considered. Fehling et al.
describe other cloud properties that are either unchangeable or
compensatable for deploying cloud applications [7].

VI. RECOMMENDATIONS

In this section, we present a set of recommendations in
the form of selection criteria in Table V to guide an architect
in choosing applicable deployment patterns for deploying any
GSD tool.

To further assist the architect in making a good choice,
we describe CLIP (CLoud-based Identification process for
deployment Patterns), a general process for guiding architects
in selecting applicable cloud deployment patterns for GSD
tools using our taxonomy. The development of CLIP was



432

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V. RECOMMENDATIONS FOR SELECTING APPLICABLE DEPLOYMENT PATTERNS FOR CLOUD DEPLOYMENT OF GSD TOOLS.

Category Sub-Category Selection Criteria Applicable Patterns

Application Process
Project Processes Elasticity of the cloud environment is not required Static workload
Implementation
Processes

Expects continuous growth or decline in workload over time Continuously changing workload

Support Processes Resources required is nearly constant;continuous decline in
workload

Static workload, Continuously changing workload

Core Cloud
Properties

Rapid Elasticity Explicit requirement for adding or removing cloud resources Elastic platform, Elastic Infrastructure
Resource Pooling Sharing of resources on specific cloud stack level-IaaS, PaaS,

SaaS
Hypervisor, Standby Pooling Process

Measured Service Prevent monopolization of resources Elastic Infrastructure, Platform, Throttling/Service
Metering[8]

Cloud Service
Model

Software Resources No requirement to deploy and configure GSD tool Software as a Service
Platform Resources Requirement to develop and deploy GSD tool and/or components Platform as a Service
Infrastructure as a Ser-
vice

Requires control of infrastructure resources (e.g., storage, mem-
ory) to accommodate configuration requirements of the GSD tool

Infrastructure as a Service

Cloud Deployment
Model

Private Usage Combined assurance of privacy, security and trust Private cloud
Community Usage Exclusive access by a community of trusted collaborative users Community cloud
Public Usage Accessible to a large group of users/developers Public cloud
Hybrid Usage Integration of different clouds and static data centres to form a

homogenous deployment environment
Hybrid cloud

Application
Architecture

Application
Components

Maintains no internal state information User Interface component, Stateless pattern

Multitenancy A single instance of an application component is used to serve
multiple users, depending on the required degree of tenant isola-
tion

Shared component, tenant-isolated component, dedicated
component

Integration Integrate GSD tool with different components residing in multiple
clouds

Integration provider, Restricted Data Access component

Cloud Offering

Cloud environment Requires a cloud environment configured to suit PaaS or IaaS
offering

Elastic platform, elastic infrastructure

Processing Offering Requires functionality to execute workload on the cloud Hypervisor
Storage Offering Requires storage of data in cloud Block storage, relational database
Communication
Offering

(1) Require exchange of messages internally between appl. com-
ponents; (2) Require communication with external components

(1) Message-oriented middleware; (2) Virtual Networking

Cloud Management Management
Components

(1) Pattern supports Asynchronous access; (2) State information
is kept externally in a central storage

(1) Provider Adapter; Elastic manager; Managed Configura-
tion

Management Processes (1)Application component requires continuous update; (2) Auto-
matic detection and correction of errors

(1) Update Transition process; (2) Resiliency management
process

Composite
Application

Decomposition Style Replication or decomposition of application functional-
ity/components

(1) 3-tier; (2) Content Distribution Network

Hybrid Cloud Applica-
tion

Require the distribution of functionality and/or components of the
GSD tool among different clouds

(1) Hybrid processing; (2) Hybrid Data; (3) Hybrid Backup;
(4) Hybrid Development Environment

inspired by IDAPO, a similar process proposed by Stol et al.
for identifying architectural patterns in open source software
[6]. The key for the successful use of CLIP is selecting a
suitable level of cloud stack that will accommodate all the
configuration requirements of the GSD tool to be selected.
The architect has more flexibility to implement or support the
implementation of a deployment pattern when there is greater
“scope of control” of the cloud stack according to either the
SaaS, PaaS or IaaS service delivery model [9]. For example,
to implement the hybrid data pattern [7] for deploying Hudson
to an elastic cloud, the architect would require control of the
infrastructure level of the cloud stack to allow for provisioning
and de-provisioning of resources (e.g., storage, memory, CPU).

VII. LIMITATIONS OF THE STUDY

There are multiple taxonomies developed by researchers
to categorize the cloud computing space into various aspects
such as, cloud resources provisioned to customers, features of
cloud environment for research and scientific experimentation,
cloud usage scenarios [53] and cloud architectural patterns.
This study considered cloud deployment patterns that could
be used to design and deploy applications to the cloud.

The findings of this study should not be generalized to:
(i) all cloud hosted software services. We focused on cloud-
hosted GSD tools (e.g., Hudson) used for large-scale dis-
tributed enterprise software development projects.
(ii) small and medium size software development projects.

Large projects are usually executed with stable and reliable
GSD tools. For small projects (with few developers and short
duration), high performance and low cost may be the main
consideration in tool selection.

The small number of GSD tools in the selected dataset is
appropriate because we are not carrying out a feature-analysis
based study of GSD tools, but only using it to apply against our
proposed taxonomy. Future research can be done to re-evaluate
how new GSD tools can be positioned within the taxonomy.

VIII. CONCLUSION

In this paper, we have created and used a taxonomy of
deployment patterns for cloud-hosted applications to contribute
to the literature on cloud deployment of Global Software
Engineering tools.

Eight categories that form the taxonomy have been de-
scribed: Application process, Cloud properties, Service model,
Deployment model, Application architecture, Cloud offerings,
Cloud management, and Composite applications. Application
process contains patterns that handles the workload imposed
on the cloud infrastructure by the ISO/IEC 12207 software
processes. Cloud properties contains patterns for mitigating
the core cloud computing properties of the tools. Patterns
in Service model and Deployment model reflect the NIST
cloud definition of service models and deployment models,
respectively. Application architectures contains patterns that



433

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

support the architectural components of a cloud-application.
Patterns in Cloud offerings reflect the main offerings that can
be provided to users on the cloud infrastructure. Cloud man-
agement contains patterns used to manage both the components
and processes of software tools. Composite cloud contains
patterns that can be formed by combining other patterns or
can be decomposed into separate components.

These categories were further partitioned into 24 sub-
categories, which were mapped to the components of an (archi-
tectural) deployment structure. This mapping reveals two com-
ponents classes: cloud-hosted environment and cloud-hosted
application. Cloud-hosted environment and cloud-hosted ap-
plication classes capture patterns that can be used to address
deployment challenges at the infrastructure level and applica-
tion level, respectively.

By positioning a selected set of software tools, JIRA,
VersionOne, Hudson, Subversion and Bugzilla, on the taxon-
omy, we were able to identify applicable deployment patterns
together with the supporting technologies for deploying cloud-
hosted GSD tools. We observed that most deployment patterns
are related and can be implemented by combining with others,
for example, in hybrid deployment scenarios to integrate data
residing in multiple clouds.

We have described CLIP, a novel approach for selecting
applicable cloud deployment patterns, and thereafter applied
it to a motivating deployment problem involving the cloud
deployment of a GSD tool to serve multiple users in such a way
that guarantees isolation among different users. We have also
provided recommendations in tabular form, which shows the
selection criteria to guide an architect in choosing applicable
deployment patterns. Examples of deployment patterns derived
from applying these selection criteria have been presented.

We plan to carry out several Case Studies involving
the deployment of cloud-hosted GSD tools to compare how
well different deployment patterns perform under different
deployment conditions with respect to specific Global Software
Development tools and processes (e.g., continuous integration
with Hudson). Thereafter, we will carryout a cross-case analy-
sis to synthesize the findings of the different case studies. In the
future, we will develop a Decision Support Model based on the
CLIP framework to help software architects in automating the
process of selecting applicable cloud deployment patterns for
GSD tools. This will speed up the cloud deployment process
by providing proven patterns with the supporting technologies.

ACKNOWLEDGMENT

This research was supported by the Tertiary Education Trust
Fund (TETFUND), Nigeria, and Robert Gordon University,
UK.

REFERENCES

[1] L. C. Ochei, J. M. Bass, and A. Petrovski, “Taxonomy
of deployment patterns for cloud-hosted applications: A
case study of global software development (gsd) tools,”
in The Sixth International Conference on Cloud Comput-
ing, GRIDs, and Virtualization (CLOUD COMPUTING
2015). IARIA, 2015, pp. 86–93.

[2] R. Buyya, J. Broberg, and A. Goscinski, Cloud Comput-
ing: Principles and Paradigms. John Wiley & Sons,
Inc., 2011.

[3] M. A. Chauhan and M. A. Babar, “Cloud infrastructure
for providing tools as a service: quality attributes and
potential solutions,” in Proceedings of the WICSA/ECSA
2012 Companion Volume. ACM, 2012, pp. 5–13.

[4] S. Junuzovic and P. Dewan, “Response times in n-
user replicated, centralized, and proximity-based hybrid
collaboration architectures,” in Proceedings of the 2006
20th anniversary conference on Computer supported co-
operative work. ACM, 2006, pp. 129–138.

[5] L. Bass, P. Clements, and R. Kazman, Software Architec-
ture in Practice, 3/E. Pearson Education India, 2013.

[6] K.-J. Stol, P. Avgeriou, and M. A. Babar, “Design and
evaluation of a process for identifying architecture pat-
terns in open source software,” in Software Architecture.
Springer, 2011, pp. 147–163.

[7] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and
P. Arbitter, Cloud Computing Patterns. Springer, 2014.

[8] A. Homer, J. Sharp, L. Brader, M. Narumoto, and
T. Swanson, Cloud Design Patterns, R. Corbisier, Ed.
Microsoft, 2014.

[9] L. Badger, T. Grance, R. Patt-Corner, and J. Voas, “Cloud
computing synopsis and recommendations,” NIST special
publication, vol. 800, p. 146, 2012.

[10] S. Hansma, “Go fast and don’t break things: Ensuring
quality in the cloud.” in Workshop on High Performance
Transaction Systems(HPTS 2011), Asilomar, CA, October
2011. Summarized in Conference Reports column of
USENIX; login 37(1), February 2012.

[11] J. Bass, “How product owner teams scale agile methods
to large distributed enterprises,” Empirical Software En-
gineering, pp. 1–33, 2014.

[12] W. Aspray, F. Mayadas, M. Y. Vardi et al., “Globaliza-
tion and offshoring of software,” Report of the ACM
Job Migration Task Force, Association for Computing
Machinery, 2006.

[13] J. D. Herbsleb, “Global software engineering: The future
of socio-technical coordination,” in 2007 Future of Soft-
ware Engineering. IEEE Computer Society, 2007, pp.
188–198.

[14] C. Larman and B. Vodde, Practices for scaling lean and
agile development: large, multisite, and offshore product
development with large-scale Scrum. Pearson Education,
2010.

[15] F. Lanubile, “Collaboration in distributed software devel-
opment,” in Software Engineering. Springer, 2009, pp.
174–193.

[16] J.-P. Pesola, H. Tanner, J. Eskeli, P. Parviainen, and
D. Bendas, “Integrating early v and v support to a gse tool
integration platform,” in Global Software Engineering
Workshop (ICGSEW), 2011 Sixth IEEE International
Conference on. IEEE, 2011, pp. 95–101.

[17] M. A. Babar and M. Zahedi, “Global software develop-
ment: A review of the state-of-the-art (2007–2011),” IT
University of Copenhagen, Tech. Rep., 2012.

[18] J. D. Herbsleb and A. Mockus, “An empirical study of
speed and communication in globally distributed software
development,” Software Engineering, IEEE Transactions
on, vol. 29, no. 6, pp. 481–494, 2003.

[19] F. Lanubile, C. Ebert, R. Prikladnicki, and A. Vizcaı́no,



434

International Journal on Advances in Software, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

“Collaboration tools for global software engineering,”
Software, IEEE, vol. 27, no. 2, pp. 52–55, 2010.

[20] J. Portillo-Rodriguez, A. Vizcaino, C. Ebert, and M. Pi-
attini, “Tools to support global software development
processes: a survey,” in Global Software Engineering
(ICGSE), 2010 5th IEEE International Conference on.
IEEE, 2010, pp. 13–22.

[21] J. Vlissides, R. Helm, R. Johnson, and E. Gamma,
“Design patterns: Elements of reusable object-oriented
software,” Addison-Wesley, vol. 49, p. 120, 1995.

[22] B. Wilder, Cloud Architecture Patterns, 1st ed.,
R. Roumeliotis, Ed. 1005 Gravenstein Highway North,
Sebastopol, CA 95472.: O’Reilly Media, Inc., 2012.

[23] IEEE, “Ieee standard glossary of software engineering
terminology,” Office, vol. 121990, no. 1, p. 1, 1990.

[24] M. Unterkalmsteiner, R. Feldt, and T. Gorschek,
“A taxonomy for requirements engineering and
software test alignment,” ACM Transactions on
Software Engineering and Methodology, vol. Vol.
V, No. N, Article A, 2013. [Online]. Available:
http://doi.acm.org/10.1145/0000000.0000000

[25] R. L. Glass and I. Vessey, “Contemporary application-
domain taxonomies,” Software, IEEE, vol. 12, no. 4, pp.
63–76, 1995.

[26] D. I. Sjoberg, T. Dyba, and M. Jorgensen, “The future of
empirical methods in software engineering research,” in
Future of Software Engineering, 2007. FOSE’07. IEEE,
2007, pp. 358–378.

[27] J. Buckley, T. Mens, M. Zenger, A. Rashid, and
G. Kniesel, “Towards a taxonomy of software change,”
Journal of Software Maintenance and Evolution: Re-
search and Practice, vol. 17, no. 5, pp. 309–332, 2005.

[28] D. Smite, C. Wohlin, Z. Galvina, and R. Prikladnicki, “An
empirically based terminology and taxonomy for global
software engineering,” Empirical Software Engineering,
pp. 1–49, 2012.

[29] R. Dupuis, “Software engineering body of knowledge,”
2004.

[30] C. Moyer, Building Applications for the Cloud: Con-
cepts, Patterns and Projects. Pearson Education, Inc,
Rights and Contracts Department, 501 Boylston Street,
Suite 900, Boston, MA 02116, USA: Addison-Wesley
Publishing Company, 2012.

[31] N. Sawant and H. Shah, Big Data Application Architec-
ture - A problem Solution Approach. Apress, 2013.

[32] Z. Mahmood, Cloud Computing: Methods and Practical
Approaches. Springer-Verlag London, 2013.

[33] T. Erl and A. Naserpour, Cloud Computing Design Pat-
terns. Prentice Hall, 2014.

[34] S. Strauch, U. Breitenbuecher, O. Kopp, F. Leymann,
and T. Unger, “Cloud data patterns for confidentiality,”
in Proceedings of the 2nd International Conference on
Cloud Computing and Service Science, CLOSER 2012,
18-21 April 2012, Porto, Portugal. SciTePress, 2012,
pp. 387–394.

[35] J. Varia, “Migrating your existing applications
to the cloud: a phase-driven approach to cloud
migration.” Amazon Web Services (AWS),
[Online: accessed in November, 2014 from
http://aws.amazon.com/whitepapers/].

[36] J. Musser. (2012) Enterprise-class api patterns for cloud
and mobile. CITO Research.

[37] Arista.com. Cloud networking: Design patterns for
cloud-centric application environments. ARISTA Net-
works, Inc. Online: accessed in November, 2015 from
http://www.arista.com/assets/data/pdf/CloudCentric...pdf.

[38] C. Brandle, V. Grose, M. Young Hong, J. Imholz,
P. Kaggali, and M. Mantegazza. (2014, June) Cloud
computing patterns of expertise. IBM. International
Technical Support Organization. [Online]. Available:
ibm.com/redbooks

[39] J. Varia. (2014) Architecting for the cloud:
best practices. Amazon Web Services (AWS).
Online: accessed in November, 2015 from
http://aws.amazon.com/whitepapers/.

[40] L. Lilien, “A taxonomy of specialized ad hoc networks
and systems for emergency applications,” in Mobile and
Ubiquitous Systems: Networking & Services, 2007. Mo-
biQuitous 2007. Fourth Annual International Conference
on. IEEE, 2007, pp. 1–8.

[41] P. Mell and T. Grance, “The nist definition of cloud
computing,” NIST special publication, vol. 800, no. 145,
p. 7, 2011.

[42] Atlassian.com. Atlassian documentation for jira 6.1. At-
lassian, Inc. Online: accessed in November, 2015 from
https://www.atlassian.com/software/jira/.

[43] VersionOne, “Versionone-agile project management and
scrum,” VersionOne Inc., [Online: accessed in November,
2015 from http://www.versionone.com].

[44] M. Moser and T. O’Brien. The hudson book. Or-
acle, Inc., USA. Online: accessed in November,
2015 from http://www.eclipse.org/hudson/the-hudson-
book/book-hudson.pdf.

[45] B. Collins-Sussman, B. Fitzpatrick, and M. Pilato, Ver-
sion control with subversion. O’Reilly, 2004.

[46] Bugzilla.org. The bugzilla guide. The Mozilla Foun-
dation. [Online: accessed in November, 2015 from
http://www.bugzilla.org/docs/.

[47] Hudson. Hudson extensible continuous integration server.
Oracle Inc., USA. [Online: accessed in November, 2015
from http://www.hudson-ci.org].

[48] Versionone.com. Top 10 reasons to choose versionone.
VersionOne Inc. [Online: accessed in November, 2015
from http://www.versionone.com/whyversionone.pdf].

[49] N. Serrano and I. Ciordia, “Bugzilla, itracker, and other
bug trackers,” Software, IEEE, vol. 22, no. 2, pp. 11–13,
2005.

[50] L. C. Ochei, J. M. Bass, and A. Petrovski, “Evaluating
degrees of multitenancy isolation: A case study of cloud-
hosted gsd tools,” in 2015 International Conference on
Cloud and Autonomic Computing (ICCAC). IEEE, 2015,
pp. 101–112.

[51] CollabNet. Subversionedge for the enterprise. Collab-
Net, Inc. [Online: accessed in November, 2015 from
http://www.collab.net/products/subversion].

[52] I. Sommerville, Software Engineering. Pearson Educa-
tion, Inc. and Addison-Wesley, 2011.

[53] A. Milenkoski, A. Iosup, S. Kounev, K. Sachs, P. Ry-
gielski, J. Ding, W. Cirne, and F. Rosenberg, “Cloud
usage patterns: A formalism for description of cloud
usage scenarios,” Standard Performance Evaluation Cor-
poration(SPEC) Research Cloud Working Group, Tech.
Rep., 2013.


