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Abstract—Semantic INdexing (SIN) is the task to detect concepts
like Person and Car in video shots. One main obstacle in SIN is
the abundant information contained in a shot where not only a
target concept to be detected but also many other concepts are
displayed. In consequence, the detection of the target concept
is adversely affected by other irrelevant concepts. To overcome
this, we enhance SIN based on a human brain mechanism to
effectively select important regions in the shot. Specifically, SIN is
integrated with Focus of Attention (FoA) which identifies salient
regions that attract user’s attention. The feature of a shot is
extracted by weighting regions based on their saliencies, so as to
suppress effects of irrelevant regions and emphasise the region of
the target concept. In this integration, it is laborious to prepare
salient region annotation that assists detecting salient regions
most likely to contain the target concept. Thus, we extend FoA
using Weakly Supervised Learning (WSL) to generate salient
region annotation only from shots annotated with the presence
or absence of the target concept. Moreover, rather than the target
concept, other concepts are more salient in several shots. Features
of these shots falsely emphasise concepts other than the target.
Hence, we develop a filtering method to eliminate shots where
the target concept is unlikely to be salient. Experimental results
show the effectiveness for each of our contributions, that is, SIN
using FoA, FoA extended by WSL, and filtering.

Keywords–Semantic indexing; Focus of attention; Weakly su-
pervised learning; Filtering.

I. INTRODUCTION

For effective processing of large-scale video data, one key
technology is Semantic INdexing (SIN) to detect human-
perceivable concepts in shots [1], [2]. Concepts are textual
descriptions of semantic meanings that can be perceived by
humans, such as Person, Car, Building and Explosion Fire.
Below, concept names are written in italics to distinguish
them from the other terms. Many sources reported that the
state-of-the-art video processing can be achieved using concept
detection results as an intermediate representation of a shot [3].
Regarding this, traditional features just represent visual charac-
teristics that significantly vary depending on various changing
factors like camera techniques and shooting environments.
On the other hand, the intermediate representation describes
the presence of semantically meaningful concepts. Thus, if
we could obtain accurate results where concepts are detected
irrespective of changing factors, those results would facilitate
categorising/retrieving shots that are visually dissimilar, but
show similar semantic meanings. Motivated by this, much
research effort has been made on SIN [1], [3], [4], [5], [6],
[7].
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Figure 1. An illustration of feature extraction based on descriptors extracted
from patches.

SIN is formulated as a binary classification problem where
shots displaying a target concept are distinguished from the
rest of the shots. One of the most important issues is feature
extraction. Using Figure 1, we present an overview of the
currently most popular approach [3], [4], [5], [6] while defining
necessary terms for the following discussion. The approach
consists of two main steps below:
1. Patch and descriptor extraction: This step aims to collect
visual characteristics of patches that are small regions in a
shot like red circles in Figure 1 (a). The rationale behind this
is that as long as many patches are collected, some of them
should keep their visual characteristics similar, irrespective of
changing factors. From each patch, a descriptor is extracted as
a vector, which numerically represents its visual characteristic.
This is exemplified in Figure 1 (a), where three of patches are
enlarged and their descriptors are shown on the right. It should
be noted that compared to patches, we use the term ‘region’ to
indicate a much larger region like the one of the car surrounded
by the blue rectangle in Figure 1 (a).
2. Feature extraction: This step aggregates descriptors ex-
tracted from various patches to form a feature, which rep-
resents the distribution of those descriptors. For example,
the histogram-type feature in Figure 1 (b) reveals that many
descriptors characterise patches similar to the third one from
the left, and there is no patch that is similar to the rightmost
one in terms of descriptors. This kind of feature is effective for
capturing detailed parts of a target concept. Especially, even
if the target concept is partially invisible due to the occlusion
by other concepts or the camera setting, the feature includes
descriptors extracted from patches corresponding to the visible
part of the target.

However, many concepts other than the target are displayed
in a shot. For example, the shot in Figure 1 (a) includes the
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Figure 2. Example shots where Car is shown in non-salient regions.

target concept Car and many others like Building, Road and
Sky. Nonetheless, most of the existing SIN methods [3], [4],
[5], [6] do not consider whether each patch belongs to the
target concept or not. As a result, the feature is affected by
patches of other concepts, and the detection performance of
the target concept is degraded.

We aim to develop a SIN method that effectively spot-
lights a target concept while suppressing effects of the other
irrelevant concepts. To this end, we incorporate Focus of
Attention (FoA) (also called visual attention) into SIN. FoA
implements ‘selective attention’ that is a brain mechanism to
determine which regions in a shot (or video frame) are of
most interest [8], [9], [10]. It is said that eyes are receiving
visual data with the size 108-109 bits every second [9]. It is
impossible for a human to completely analyse this huge size
of data. Nevertheless, the human can effortlessly recognise
meanings in a shot by fixating (or directing his/her gaze to)
important regions. We apply this brain mechanism to SIN with
the following logic: The fact that the human perceives the
appearance of a target concept in the shot means that he/she
fixates its region. Based on this, FoA is used to increase
priorities of such regions and decrease those of the other
regions, in order to construct a feature that emphasises the
appearance of the target concept. In what follows, regions that
attract fixations are called salient regions.

It should be noted that we focus only on appearances
of a target concept in salient regions. In other words, we
do not address its appearances in non-salient regions. For
example, assuming that Car is the target concept, two shots
in Figure 2 display it only in small background regions
surrounded by red rectangles. These regions are clearly non-
salient. Humans do not pay attention to or are not aware of the
target concept appearing in such non-salient regions. Hence,
these appearances are considered as meaningless and useless
for subsequent processes like video categorisation, browsing
and retrieval.

FoA consists of two main processes, bottom-up and top-
down. The former implements human attention driven by
stimuli acquired from the external environment. Since these
stimuli can be thought as the visual information that eyes
receive from a shot, they are equated with features extracted
from the shot. However, salient regions detected based only on
features are not so accurate because of the semantic gap, which
is the lack of agreement between automatically extractable
features and human-perceived semantics [11]. Thus, the top-
down process implements attention driven by prior knowledge
and expectation in the internal human mind. This biases the
selection of salient regions based on human’s intention, goal
and situation. In our case, the top-down process utilises the
knowledge about spatial relations between a target concept
and surrounding ones in order to selectively localise salient
regions most likely to contain the target. Finally, salient

regions obtained by the bottom-up and top-down processes
are combined to model their interaction.

To incorporate FoA into SIN, we address the following
two issues: The first issue is the data availability of the top-
down process. One typical formulation of this process is to
adopt the machine learning framework, where salient regions
in test shots are detected by referring to training shots in
which salient regions are annotated in advance [12], [13], [14]
or recorded by an eye tracker [14], [15]. However, a large
number of training shots is needed to detect diverse kinds of
salient regions. Due to a tremendous number of video frames
in shots, it requires prohibitive cost to manually prepare many
training shots. In addition, using an eye-tracker requires both
labour and monetary costs. Thus, we develop an FoA method
using Weakly Supervised Learning (WSL), where a classifier to
predict precise labels is constructed only using loosely labelled
training data [16]. In our case, this kind of training data are
shots that are annotated only with the presence or absence of
a target concept. These shots are used to build a classifier that
can identify the region of the target concept in a shot, such as
the blue rectangular region in Figure 1 (a) in the case where
Car is the target. Regions identified by the classifier are used
as annotated salient regions in the top-down process.

The second issue is the discrepancy that salient regions do
not necessarily coincide with regions of a target concept. The
reason is twofold: Firstly, it is difficult to objectively judge
whether the target concept is salient or not. In other words,
training shots can be annotated only with the presence of the
target concept without considering its saliency. Consequently,
like two shots in Figure 2, the target concept is shown in small
background regions in several training shots. It is impossible
or unreasonable to regard such regions as salient. The second
reason for the discrepancy is possibly occurring errors in FoA.
Even if the region of the target concept is salient for humans,
another region may be falsely regarded as salient. A feature
based on such a salient region incorrectly emphasises a non-
target concept. To alleviate this, we develop a method that
filters out shots where the target concept is unlikely to appear
in salient regions, using regions predicted by the classifier in
WSL. This enables us to appropriately capture characteristics
of the target concept.

This paper is an extended version of our previous paper
that only briefly illustrates our SIN method based on FoA due
to the space limitation [1]. Specifically, the survey of related
methods was quite insufficient in [1]. In contrast, the next
section of this paper gives a comprehensive comparison of
our method to various methods in four research fields, namely
FoA, salient object detection, discriminative saliency detection,
and SIN. In addition, while only a brief and conceptual
explanation of our method was introduced in [1], its details
and mathematical formulations are presented in Section III of
this paper. Furthermore, although the experimental results in
Section IV is the same to those in [1], Section V offers new
ideas of how our method can be applied to different state-of-
the-art features. Finally, for the sake of clarity, the Appendix
provides a list of many abbreviations used in this paper.

II. RELATED WORK

FoA has been studied in the fields of computer vision, psy-
chology and neurobiology for a long time. In particular, the
development of a principled top-down process is one of the
most important research topics [9]. Below, some types of
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knowledge used in the top-down process of existing methods
are presented. First, contextual cueing means that a user can
easily search a particular object, if he/she saw the same or
similar spatial layout of objects in the past [12], [13], [14],
[15]. Salient regions in a test shot are adaptively extracted
based on salient regions in training shots with similar spatial
layouts. The symmetry indicates that while viewing a sym-
metric object, eye fixations are concentrated on the centre of
symmetry [17]. Based on this, salient regions are preferentially
located around centres of regions, which individually have a
symmetric pattern of intensity or colour values. In addition,
the focusness prior represents that a camera is often focused
on the most salient object [18]. According to this, regions with
low degrees of blur are more likely to be regarded as salient.
Furthermore, the centre prior expresses that the main content
is displayed near the centre, and is used to emphasise regions
around the centre as salient [19]. Please refer to [9], [10] for
other types of knowledge in the top-down process.

Among the knowledge described above, we use contextual
cueing because it can be generally applied to any kind of
videos. In particular, we target ‘unconstrained’ web videos that
can be taken by arbitrary camera techniques and in arbitrary
shooting environments [20]. Apart from contextual cueing, the
symmetry highly depends on directions of a concept. Although
the frontal appearance of the concept is symmetric, its side
appearance may not be so. In addition, the focusness and centre
priors are considered as valid only for professional videos,
which follow shooting and editing rules to clearly convey the
content to viewers. On the other hand, web videos are usually
created by amateurs without taking such rules in account. As a
result, the main content in a shot is often captured unfocused,
and is not necessarily displayed near the centre of a video
frame. In contrast, the generality of contextual cueing can be
enhanced using a large amount of training shots, so that a
variety of salient regions in web videos can be covered. Also,
while existing methods based on contextual cueing require
training shots that are annotated with salient regions [12],
[13], [14] or eye fixations [14], [15], we use WSL to generate
such annotation from shots labelled only with the presence or
absence of a concept.

Our method is now compared to two extensions of FoA.
The first is Salient Object Detection (SOD) that extracts the
region of an object attracting the most user attention [10],
[21], [22]. Since the principle of FoA is to detect regions
where people look as salient, it is not guaranteed that salient
regions correspond to semantically meaningful objects. It often
happens that salient regions only characterise parts of an
object, where these parts are visually distinctive or contrastive
compared to the surrounding ones. Thus, SOD detects regions
that not only are salient but also characterise meaningful
objects. Also, there is an experimental evidence indicating
that salient regions are strongly correlated with attractive
objects [23]. Our method differs from SOD in the following
two points: First, although most SOD methods need training
shots where regions of salient objects are annotated [21], [22],
our method using WSL only needs training shots annotated
with the presence or absence of a target concept. Second, SOD
just detects the region of a salient object without identifying
its category. In contrast, the category of a target concept is
considered in our method based on WSL. Here, regions of the
target concept are identified as the ones that are commonly
contained in training shots annotated with its presence, but

are not contained in training shots annotated with its absence.
Using these identified regions, depending on the target concept,
we adaptively find regions that are not only salient but also
likely to contain it.

The second extension of FoA is Discriminant Saliency
Detection (DSD) that extracts salient regions based on the
discrimination power of descriptors for recognising a target
concept (object) [24], [25]. Roughly speaking, DSD first
regards the extraction of descriptors from patches as the
bottom-up process, because they can be directly derived from
images/videos (i.e., stimuli from the external environment).
Then, the top-down process is performed as the selection
of ‘salient’ descriptors, which best discriminate between the
target concept and the others. Salient regions are computed
based on locations of salient descriptors. However, as seen
from the above-mentioned overview, DSD is significantly
biased towards the recognition task, and does not care whether
the region of the target concept is perceptually salient or not.
In other words, DSD regards the target concept as salient
even if it is shown in a small background region. Compared
to this, we develop a filtering method that eliminates shots
where the target concept is unlikely to appear in salient regions,
by checking the coincidence between salient regions detected
by FoA and regions identified by WSL. Appearances of the
target concept in non-salient regions are considered as useless,
because they do not attract user attention.

Finally, SIN is established in TRECVID that is a NIST-
sponsored annual worldwide competition on video analysis and
retrieval [2]. New SIN methods are being developed every year.
The most popular approach is to extract a feature of a shot by
encoding the distribution of descriptors using a histogram [4],
using Gaussian Mixture Model (GMM) representing both
means and variances of the descriptor distribution [5], [6],
and using Fisher vector considering the first and second order
differences between the distribution and the reference one [7].
Recently, researchers have started to adopt deep learning where
a multi-layer convolutional neural network is used to extract
a feature hierarchy with higher-level features formed by the
composition of lower-level ones [7]. Despite this advancement
of features, to our best knowledge, no method utilises FoA
to enhance the quality of features. In this paper, we demon-
strate the effectiveness of FoA to improve the most standard
histogram-type feature.

III.SIN BASED ON FOA EXTENDED BY WSL

Figure 3 presents an overview of our SIN method. We call
training shots annotated with the presence and absence of a
target concept positive shots and negative shots, respectively.
Since the target concept is Car in Figure 3, it is displayed and
not displayed in positive and negative shots, respectively. For
each of these training shots, FoA is performed to obtain its
saliency map as shown in the middle of Figure 3. This map is
an image representing the degree of saliency at each pixel. The
higher saliencies of pixels are, the brighter they are depicted.
Figure 3 shows saliency maps obtained for the positive and
negative shots presented at the left. In the positive shot, the
region of the moving car is regarded as salient. In the negative
shot where a person is making a hand gesture, the region of
his moving hand is regarded as salient.

After FoA, the feature of a training shot is extracted by
weighting each descriptor based on the saliency of the patch
from which the descriptor is derived. More concretely, red dot-
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Figure 3. An overview of our SIN method using FoA extended by WSL

ted arrows starting from the positive shot in Figure 3 illustrate
that the descriptor extracted from a patch in a salient region
and the one extracted from a patch in a non-salient region have
large and small influences on the feature, respectively. Finally,
SIN is carried out by regarding training shots represented with
such features as points in the multi-dimensional space. For the
sake of visualisation, Figure 3 only depicts a three-dimensional
space where triangles and rectangles indicate positive and
negative shots, respectively. As shown in the dotted curve in
this space, a detector is constructed to discriminate between
positive and negative shots, and used to examine the presence
of the target concept in test shots.

In Figure 3, the FoA module first conducts the bottom-
up process on each training shot to compute its ‘intermedi-
ate’ saliency map, called bottom-up saliency map. This map
is based only on features because the bottom-up process
implements how eyes react to the visual information (see
Section I). Specifically, regions that are visually different from
surrounding ones are regarded as salient. However, it is difficult
to accurately detect salient regions only using features. For
example, Figure 3 shows the bottom-up saliency map for the
positive shot, where in addition to the region of the car many
background regions are also regarded as salient. Hence, the
top-down process is needed to refine bottom-up saliency maps.
To this end, WSL is firstly applied to training shots in order to
prepare salient region annotation necessary for the top-down
process. As a result, a classifier that identifies regions of the
target concept is built. In Figure 3, the image under the FoA
module and the black-and-white image over it indicate that,
regions identified in positive shots (i.e., red rectangle) are
used as annotated salient regions. Based on this, the top-down
process is performed to refine a bottom-up saliency map into
the final one.

The SIN module in Figure 3 involves filtering. Let us
consider the positive shot and its saliency map on the left
of the “Filtering” box in Figure 3. The positive shot shows
Car only in the small background region depicted by the red
rectangle. Correspondingly, this region is not so salient while
the region of the woman in the foreground is regarded as
the most salient. The feature extracted from this positive shot
falsely emphasises the non-target concept Person, and misleads
a detector to detect it. Thus, filtering is performed to eliminate
positive shots where the target concept is unlikely to appear

in salient regions. Below, we describe the bottom-up and top-
down processes, WSL method, and SIN method with filtering.

A. Bottom-up Process

Figure 4 illustrates an overview of the bottom-up process
where the positive shot on the left of Figure 3 is used as an
example. We use a retina model to design how the bottom-
up saliency map of a shot is created based on the visual
information received by human eyes [14]. As shown in the
upper part of Figure 4, it is known that the visual information
is sequentially processed by horizontal, bipolar and Amacrine
cells in the retina. The first cells perform smoothing to em-
phasise contrasts in the visual information, the second cells
detect edges (or contours), and the last ones conduct the second
smoothing to emphasise detected edges. Finally, according the
feature integration theory [26], the above cells process different
types of visual information in parallel, and the brain integrates
processing results to focus the attention on certain regions.
In what follows, we explain how to implement each cell’s
mechanism and how to integrate processing results.

First of all, as the encoding of the visual information
that arrives at eyes, the following six features related to cell
responses in the retina are extracted [14]:

Intensity: I =
r + g + b

3
, (1)

Red-Green (RG) contrast: RG =
r − g

max(r, g, b)
, (2)

Blue-Yellow (BY) contrast: BY =
b−min(r, g)

max(r, g, b)
, (3)

Flicker: F = I − I ′, (4)

Motion direction: Θ = tan−1(
v

u
), (5)

Motion strength: Γ =
√

u2 + v2, (6)

where r, g and b represent the red-, green- and blue-channel
values of a pixel in a video frame, respectively. In Equation (4),
I ′ is the intensity in the previous video frame. In Equations (5)
and (6), u and v are the horizontal and vertical displacements
of the optical flow starting at a pixel. It should be noted that
the above-mentioned features are extracted from each pixel
in the video frame. Thus, each feature is represented as an
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Figure 4. An overview of the bottom-up process in our FoA method

image, called ‘feature map’, which has the same size to the
video frame, as shown at the left of Figure 4.

Then, smoothing by horizontal cells is implemented as
wavelet transform on each feature map. As shown in Fig-
ure 4, the feature map is scaled down into 1/2, 1/4 and
1/8 sizes of images, termed as ‘wavelet images’. This down-
scaling is useful for emphasising contrasts in the feature
map while removing noises. In addition, wavelet images with
three scales facilitate flexibly detecting salient regions with
different sizes. Subsequently, edge detection by bipolar cells
is simulated by applying high-pass filtering to each wavelet
image. Three Sobel filters are used to extract edges (high-
frequency components) in the vertical, horizontal and diagonal
directions, as seen from Figure 4. This converts the wavelet
image into three ‘edge images’ where an edge represents
the saliency of the corresponding pixel, because this edge
indicates the difference between the pixel and surrounding
ones. Afterwards, to highlight such edges and suppress noises,
the second smoothing by Amacrine cells is conducted using
Gaussian filter for each edge image. We name the resulting
image as a ‘Gaussian image’.

As a result of the aforementioned steps, 54 Gaussian
images are obtained for each video frame (i.e., 6 feature maps
× 3 wavelet scales × 3 edge directions). These Gaussian
images are now integrated into a bottom-up saliency map. For
computational efficiency, each Gaussian image is firstly scaled
to the size 22 × 18 pixels. Note that each pixel in this scaled
image corresponds to a region in the original video frame,
based on the relative positional relation between the pixel and
the region. In this sense, pixels in the scaled Gaussian image
are called macro-blocks. The subsequent bottom-up saliency
map extraction and top-down process use macro-blocks as the
unit. Also, keep in mind that in Figures 3, 4 and 7, each
saliency map with the size 22 × 18 pixels is resized to the
original video frame size. As is clear from red dotted arrows
in Figure 3, this resizing allows us to determine the saliency of
each patch in the original video frame. The bottom-up saliency
map of the video frame is created by taking the average of 54
Gaussian images for each macro-block. In addition, this map
is normalised so that the most and least salient macro-blocks
have 0 and 1, respectively.

Task 1:    Long shots for cars moving from right to left in outdoor situations
            Regions of moving cars are salient

Task 2:    Close-up shots for car fronts in outdoor situations
            Regions of cars are salient

Target concept: Car

Figure 5. Two conceptual examples of tasks

B. Top-down Process

The top-down process implements attention related to tasks.
According to the contextual cueing described in Section II, we
define a task as the expectation that, for shots with a certain
type of spatial layouts, a human supposes to locate salient
regions of a target concept at similar places. In Figure 5, where
the target concept is Car, let us consider the situation where
the human already saw the top-left shot and confirmed that the
region of the moving car is salient. Based on this experience,
the human expects that the region of the moving car in the
top-right shot is also salient, because it has the similar spatial
layout to the top-left shot. Similarly, when the human knows
that the region of the car front in the bottom-left shot is
salient, he/she should apply the same logic to the bottom-right
shot. Like this, a task is the human’s expectation for salient
regions of the target concept based on the similarity in camera
techniques and shooting environments. However, only using
such tasks lacks the examination of whether detected regions
are visually (perceptually) salient or not. To resolve this, it is
important to integrate the top-down and bottom-up processes.
Hence, the top-down process in our method works to refine the
bottom-up saliency map, so that salient regions detected by the
bottom-up process are biased based on task-related attention
described above.

First, we explain how to model task-related attention, which
generally occurs by adjusting responses of cells in the retina
to a specific type of stimuli [13], [14], [15]. Based on this,
we re-use the retina model in Figure 4 and model task-related
attention as the adjustment of 54 Gaussian images to a target
concept [14]. Let us assume P positive shots, where each of
them is associated with L (= 54) Gaussian images that are
individually represented with N (= 22×18) macro-blocks. For
the ith positive shot (1 ≤ i ≤ P ), we create an L-dimensional
vector xin = (x1

in, · · · , x
L
in) by aggregating values at the

nth macro-block (1 ≤ n ≤ N ) in L Gaussian images.
For example, assuming that the positive shot in Figure 4
is the ith one, xi1 is the collection of values at the top-
left macro-block in 54 Gaussian images. Note that the exact
definition is xii′n corresponding to the nth macro-block for
the i′th video frame in the ith positive shot. But, this makes
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the discussion unnecessarily complex. Thus, we use xin for
simplicity. Extending xin to xii′n is straightforward, and our
experiments are conducted using video frames sampled at
every second.

A task is modelled as a function ft to adjust xin. Here,

ft is a linear function ft(xin) =
∑L

l=1 w
l
tx

l
in where {wl

t}
L
l=1

is a parameter set estimated using salient region annotation
obtained by WSL in the next section. However, it is difficult
to deterministically decide which task is used for a positive
shot. In other words, it is impossible to objectively find to
what extent each task is applicable for the positive shot, in
terms of differences in appearances of the target concept,
camera techniques and shooting environments. For example,
in comparison to the top-left shot in Figure 5, let us consider
a shot where a car is moving from left to right, the camera
is placed closer to the car, and the situation is urban. It is
unknown whether “Task 1” in Figure 5 can be used for this
shot. Hence, we adopt a ‘soft assignment’ approach where
functions {ft}

T
t=1 for T tasks are probabilistically related to

each positive shot. That is, xin is adjusted by
∑T

t=1 citft(xin)
where cit represents the weight of ft for the ith positive shot.

Using task-related attention based on fts, we explain how
to refine a bottom-up saliency map. Let bin be the value
at the nth macro-block in the bottom-up saliency map for
the ith positive shot. We carry out the refinement of bin as
the weighted combination of bin and the adjustment of xin,

that is,
∑T

t=1 citft(xin) + αibbin. Here, αib is the weight
representing the importance of the bottom-up saliency map.
The top-down process estimates the following two compo-
nents: The one is a set of parameter sets for T functions
F = {{wl

t}
L
l=1}

T
t=1, and the other is a set of weight vectors

C = {ci = (ci1, · · · , ciT , αib)}
P
i=1 where ci represents weights

of functions and the bottom-up saliency map for the ith
positive shot. These F and C are estimated so as to accurately
approximate salient region annotation yin ∈ {0, 1}, where
yin = 1 means that the nth macro-block in the ith positive
shot is salient, otherwise non-salient. Note that by regarding
the binary value yin as continuous, F and C are estimated
as the regression problem of such continuous values using
∑T

t=1 citft(xin) + αibbin.
In particular, for effective estimation of F , we employ

multi-task learning that simultaneously estimates the parameter
set {wl

t}
L
l=1 for each of T functions by considering their

correlation [14]. Compared to estimating such sets indepen-
dently, the correlation can make it clearer what kind of salient
regions are handled by each function. To sum up, the following
optimisation is performed to estimate F and C [14]:

min
F,C

1

PN

P
∑

i=1

N
∑

n=1

l

(

T
∑

t=1

citft(xin) + αibbin, yin

)

, (7)

where l(·) indicates the loss (error) computed as the squared
difference between the refined saliency value (

∑

citft(xin)+
αibbin) and the annotated one (yin). Equation (7) aims to
extract F and C that minimise the average refinement error
for P ×N macro-blocks. This optimisation can be solved by
an EM-like algorithm, which iteratively switches between the
estimation of C keeping F fixed, and the one of F keeping C
fixed (see [14] for more details).

The bottom-up saliency map of each test shot is refined
using the estimated F and C. Let us assume the jth test shot

where the nth macro-block is characterised by xjn based on 54
Gaussian images and bjn of the bottom-up saliency map. Based
on the contextual cueing in Section II, the same refinement
mechanism is used for shots with similar spatial layouts. Thus,

we first find the îth positive shot that has the most similar
spatial layout to the jth test shot. Then, the saliency value of
the nth macro-block is refined into sjn using F and the weight

vector cî for the îth positive shot [14]:

sjn =

T
∑

t=1

cît ft(xjn) + αîb bjn. (8)

The computation of similarities regarding spatial layouts re-
quires to consider the global visual characteristic of a shot. To
this end, for each of six feature maps in Figure 4, a histogram
is created by quantising the value of every pixel into eight bins.
This histogram represents the overall distribution of values in
the feature map with respect to intensity, red-green contrast,
blue-yellow contrast, or so forth. We use the concatenation of
such histograms as the feature of the shot, and compute the
similarity between two shots as their cosine similarity.

C. Weakly Supervised Learning

Motivated by the success of Support Vector Machines (SVMs)
in object detection/recognition and SIN [20], [27], we employ
the WSL method that is an extended SVM for WSL [16].
Usually, an SVM is trained using training shots associated
with binary labels, that is, the presence or absence of a target
concept. Then, it is used to predict the same type of binary
labels for test shots. On the other hand, the method in [16]
uses training shots with binary labels to build an SVM that
can identify regions of the target concept. The main idea is
that the method simultaneously localises the most distinctive
regions and builds an SVM to distinguish those regions. More
specifically, the SVM is trained so as to characterise regions
that are contained in every positive shot, but are not contained
in any negative shot. These regions are likely to contain the
target concept.

First of all, we explain how regions of a target concept
are localised by the method in [16]. Let x be an arbitrary
shot without specifying it is positive or negative. We define
the localisation as the problem to find the best ‘rectangular’
region r̂ from the set of all possible regions R(x) in x.
With respect to this, one rectangular region is defined by
four parameters, the top-left, top-right, bottom-left and bottom-
right positions. Thus, simply speaking, R(x) includes W 2H2

rectangular regions if the frame size of x is W × H pixels.
Since efficient search of r̂ will be discussed later, we here
concentrate on the localisation mechanism. Assuming that a
feature vector ϕ(r) can be computed for any region r ∈ R(x)
using descriptors in r, a linear SVM with the discrimination
function wϕ(r) + b is used to examine whether r contains
the target concept. Here, b is a bias term and w is an weight
vector in which each dimension represents the relevance to the
presence of the target concept. As ϕ(r) has larger values on
more relevant dimensions, the target concept is more likely
to appear in r. Therefore, r̂ is determined as the region that
maximises the discrimination function [16]:

r̂ = argmax
r∈R(x)

(ϕ(r) + b). (9)
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Based on this localisation mechanism, let x+
i and x−

j be
the ith positive and jth negative shots for a target concept,
respectively. The parameters of the SVM (i.e., w and b) is
estimated by solving the following optimisation problem [16]:

min
w,b





1

2
||w||+ C

∑

i

αi + C
∑

j

βj



 , (10)

s.t. max
r∈R(x+

i
)
(wϕ(r) + b) ≥ +1− αi (αi ≥ 0), (11)

max
r∈R(x−

i
)
(wϕ(r) + b) ≤ −1 + βi (βi ≥ 0), (12)

where αi (or βj) is a slack variable representing the degree of

mis-classification for the region in the x+
i (or x−

j ). In addition,
C is a parameter to control the effect of mis-classification.
The optimal w and b yields the situation where at least one
region in x+

i is classified as positive (Equation (11)), while all

regions in x−

j are classified as negative (Equation (12)). The
optimisation is solved using a coordinate descent approach,
which iterates examining each training shot to find the best
region that maximises the current discrimination function, and
updating this function using newly found best regions [16].

For efficient optimisation, it is important to quickly find the
best region for each training shot. To this end, we employ the
region search method developed in [16], [28]. First, we use
‘Bag-of-Visual-Word’ (BoVW) representation to express the
feature ϕ(r) by quantising ‘Scale-Invariant Feature Transform’
(SIFT) descriptors in r. Each SIFT descriptor represents the
edge shape in a patch, reasonably invariant to changes in scale,
rotation, viewpoint and illumination [4]. As pre-processing,
SIFT descriptors are extracted from patches, which have the
radius of 10 pixels and are located at every sixth pixel in each
training shot. Then, one million SIFT descriptors are randomly
sampled and grouped into 1000 clusters, where each cluster
centre is a ‘Visual Word’ (VW) representing a characteristic
SIFT descriptor. Afterwords, by assigning each SIFT descrip-
tor in r to the most similar VW, ϕ(r) = (ϕ1(r), · · · , ϕD(r))
(D = 1000) is created where ϕd(r) represents the frequency
of the dth VW.

With the BoVW representation, the discrimination function
of a linear SVM can be transformed as follows [28]:

wϕ(r) + b =
D
∑

d=1

wdϕd(r) + b =
N
∑

n=1

w(VWn) + b, (13)

where N is the number of SIFT descriptors in r, and w(VWn)
is the weight in w = (w1, · · · , wD) corresponding to the
VW associated with the nth SIFT descriptor. For example,
w(VWn) = w1 if the nth SIFT descriptor is assigned to the
first VW. Equation (13) means that the discrimination function
can be computed by simply adding weights of VWs linked
to SIFT descriptors in r. This enables us to estimate the
‘upper bound’ for a set of regions [28]. No region in this set
takes the discrimination function value larger than the upper
bound. Hence, the best region r̂ maximising the discrimination
function can be efficiently found by discarding many sets of
regions for which upper bounds are small.

Finally, r̂ that is detected in the ith positive shot x+
i using

the optimised w and b, is used as the annotated salient region
in the top-down process. Note that since the top-down process
is based on 22 × 18 macro-blocks (pixels), the video frame
in x+

i is resized to this size by preserving the relative spatial

relation between r̂ and the frame. Then, if the nth macro-block
falls in r̂, yin = 1 otherwise yin = 0.

D. Semantic Indexing with Filtering

As a result of FoA with WSL, saliency maps have been
computed for all shots. As illustrated in Figure 3, our SIN
method extracts the feature of a shot as an extended BoVW
representation by weighting descriptors based on its saliency
map. Let {VWn}

N
n=1 be a set of VWs that are associated with

N SIFT descriptors extracted from the whole of the shot. Also,
let us denote by {pn}

N
n=1 a set of centre positions of patches

from which the N SIFT descriptors are extracted. That is,
VWn is the VW associated with the nth SIFT descriptor, which
is extracted from the nth patch having the centre position pn.
Since the size of the saliency map is 22 × 18 pixels (macro-
blocks), it is resized to the same size as the video frame of
the shot. By checking this resized saliency map, we obtain
{sn}

N
n=1 where sn represents the saliency of pn. Then, an

‘weighted’ D-dimensional vector φ = (φ1, · · · , φD) is created.
Regarding this, in the normal BoVW representation, the value
of the dimension corresponding to VWn is incremented, so
that the resulting feature represents the frequency of each VW.
Different from this, in our extended BoVW representation,
the value of the dimension is increased by sn. Thereby, if
VWn is extracted from the patch in a salient region where
the target concept probably appears, VWn’s effect is large,
otherwise small (see red dotted arrows in Figure 3). Like this,
the weighted vector φ emphasises the appearance of the target
concept while suppressing effects of other concepts. Finally,
using positive and negative shots represented by such φs, a
detector is constructed as a non-linear SVM with Radial Basis
Function (RBF) kernel [29].

Before constructing the detector, filtering is performed to
eliminate positive shots where the target concept appears in
non-salient regions, because their weighted vectors falsely
emphasise other concepts. To this end, we make a simple
assumption that the target concept is salient if its region is
large. Hence, positive shots are filtered out if regions detected
by the WSL method are smaller than a threshold. Also, this
filtering is executed when applying the detector to test shots.
But, the purpose is to distinguish test shots where salient
regions certainly include the target concept from the other
ones. For the latter, we take into account FoA failures where
falsely detected salient regions would cause weighted vectors
undesirably emphasising non-target concepts. Thus, weighted
vectors are extracted only from test shots where regions
detected by the WSL method are larger than the threshold.
For the other shots, non-weighted vectors are extracted based
on the normal BoVW representation. Finally, the list of sorted
test shots in terms of the detector’s outputs is returned as the
SIN result .

IV.EXPERIMENTAL RESULTS

In this section, we firstly examine the effectiveness of our FoA
method extended by WSL, and then evaluate the performance
of SIN based on this extended FoA method.

A. Evaluation of FoA based on WSL

To examine the adequacy of incorporating WSL into FoA,
we target three concepts Person, Car and Explosion Fire. For
each concept, we use 1000 positive shots and 5000 negative
shots in TRECVID 2009 video data [2]. The performance is
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Figure 6. Performance comparison between WSL and Manual.

evaluated on 1000 test shots where the ground truth of salient
regions is manually provided. We compare two FoA methods,
WSL and Manual, which use positive shots where salient
regions are annotated by WSL and by manual, respectively.
Using manually annotated salient regions can be considered as
the best approach. Hence, the comparison between WSL and
Manual aims to investigate how useful salient regions obtained
by WSL are, compared to those provided by the best manual
approach.

Figure 6 shows Receiver Operating Characteristic (ROC)
curves for WSL and Manual. Each curve is created by calcu-
lating True Positive (TP) and False Positive (FP) rates using
different thresholds. Here, a macro-block in a saliency map is
regarded as salient if its saliency is larger than a threshold. A
TP is the number of macro-blocks that are correctly detected
as salient, and an FP is the number of macro-blocks falsely
detected as salient. A high performance is depicted by an ROC
curve biased towards the top-left. In Figure 6, ROC curves
of WSL and Manual are nearly the same for all concepts.
As another evaluation measure, an Area Under Curve (AUC)
represents the area under an ROC curve. A larger AUC
indicates a superior performance where a high TP is achieved
with a small FP. Figure 6 presents that WSL’s AUCs are nearly
the same or even larger than those of Manual. The results
described above verifies that salient regions annotated by WSL
lead to the FoA performance that is comparable to the one
based on the best manual approach.

It should be noted that several regions where a target
concept does not appear are falsely detected by WSL, and
used as annotated salient regions in the top-down process. For
example, the red rectangular region in Figure 7 (a) is falsely
regarded as showing a car. However, as seen from the bottom-
up saliency map in Figure 7 (b), the saliency of this region is
very low. More specifically, marco-blocks in this region have
very small xjn and bjn in Equation (8). Thus, they cannot be
regarded as salient even with the refinement by the top-down
process, as shown in Figure 7 (c). Like this, errors in WSL
are alleviated based on saliencies obtained by the bottom-up
process. In other words, FoA works appropriately as long as
regions obtained by WSL are mostly correct.

B. Evaluation of SIN using FoA

We evaluate the effectiveness of SIN utilising FoA using video
data in TRECVID 2011 SIN light task [2]. According to the
official guideline, 23 target concepts shown in Figure 8 are
selected. For each target concept, a detector is constructed
with 30000 training shots collected from 240918 shots in
11485 development videos. Here, positive shots are collected
based on the result of web-based collaborative annotation

(a) (c)(b)

Figure 7. An example of alleviating errors in WSL based on bottom-up
saliency maps.

effort where many users on the web collaboratively annotate
shots in development videos [30]. Negative shots are collected
as randomly selected shots in development videos. This is
because the concept usually appears only in a small number
of shots, so almost all of randomly selected shots can serve
as negative [31]. Although annotation data collected by [30]
contain negative shots, our preliminary experiment showed that
they lead to worse performance than randomly selected shots.
One main reason is the ‘biased’ shot selection based on active
learning, where users are asked to only annotate shots similar
to already collected positive shots [30]. In contrast, negative
shots by ‘non-biased’ random selection yield more accurate
concept detection. The constructed detector is tested on 125880
shots in 8215 test videos.

To examine the effectiveness of weighting descriptors
based on FoA and that of filtering, we compare three methods
Baseline, Weight and Weight+Filter. Baseline and Weight use
features that are extracted as BoVW representations without
and with weighting, respectively. Weight+Filter extends Weight
by adding the filtering process. Figure 8 shows the performance
comparison among Baseline, Weight and Weight+Filter in form
of a bar graph. For each concept, the top, middle and bottom
bars represent Average Precisions (APs) of Baseline, Weight
and Weight+Filter, respectively. An AP approximates the area
under a recall-precision curve. Regarding its computation, a
SIN result for a target concept is a list of 2000 test shots
ranked in terms of the detector’s outputs. The AP is the average
of precisions, each of which is computed at a position where
a ‘correct’ test shot showing the target concept is ranked. A
larger AP means a better SIN result where correct test shots
are ranked at higher positions. Also, each of three bars at the
bottom of Figure 8 presents the Mean of APs (MAP) over 23
concepts as an overall evaluation measure. Figure 8 indicates
that Weight outperforms Baseline for many concepts. The MAP
of the former (0.0708) is about 5% higher than that of the
latter (0.0676). This validates the effectiveness of using FoA
in SIN. In addition, Weight+Filter’s MAP (0.0731) exhibits
that adding the filtering process improves Weight’s MAP by
about 3%. This verifies the effectiveness of filtering.
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Figure 8. Performance comparison among Baseline, Weight and
Weight+Filter.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a SIN method that detects a target
concept based on FoA. Our method extracts the feature of a
shot by weighting descriptors based on saliencies of patches,
from which these descriptors are derived. This enables us to
suppress adverse effects of regions irrelevant to the target con-
cept, and emphasise its appearance. For effective integration
of SIN and FoA, WSL is employed so that salient region
annotation required for the top-down process can be generated
from shots labelled only with the presence or absence of the
target concept. In addition, filtering is conducted to eliminate
shots where non-target concepts are emphasised, by examining
the coincidence between salient regions detected by FoA and
the target concept’s regions identified by WSL. Experimental

results validated the effectiveness of all the three contributions,
that is, using FoA in SIN, extending FoA with WSL, and
filtering.

We will investigate the following two issues in the future:
The first is that we used the most standard feature (i.e.,
BoVW representation) to justify the framework of using FoA
in SIN. But, it is relatively straightforward to extend this
framework to more sophisticated features, such as the ones
based on GMM [5], [6], Fisher vector [7] and deep learning [7]
described in Section II. Our ideas for this are summarised
below. First, the extraction of GMM-based features starts with
estimating a reference GMM using randomly sampled descrip-
tors. Then, the GMM for a shot is computed by modifying the
reference GMM based on descriptors extracted from the shot.
FoA can be used to control the degree of modification based
on the saliency of each descriptor, so that descriptors extracted
from patches in salient regions have large influences on the
resulting GMM. Second, the reference GMM is also used
for Fisher vector-based features. Here, the feature of a shot
is computed by averaging first (or second) order differences
of descriptors to the mean of each Gaussian component in
the reference GMM [32]. This averaging can be improved by
considering the saliency of each descriptor. Last, one key factor
in deep learning is how to define receptive fields, each of which
represents a region that a neuron uses to extract a feature. FoA
can be used to prioritise or select receptive fields of neurons
by checking saliencies of regions. We will test each of the
above-mentioned extensions.

The second issue is that FoA causes the performance
degradation for some concepts such as Explosion Fire and
Mountain in Figure 8. One main region is non-rectangular
shapes of these concepts, because our current WSL method can
only identify rectangular regions. However, rectangular regions
are too coarse to precisely localise non-rectangular concepts,
and inevitably include other concepts. As a result, the top-down
process does not work well. Hence, we will extend our WSL
method by adopting an efficient search algorithm for regions
with arbitrary shapes [33].

APPENDIX

LIST OF ABBREVIATIONS

The list below shows abbreviations used in this paper. Each
line presents an abbreviation, its full name, and the section
where it appears for the first time.

SIN : Semantic INdexing (Section I)
FoA : Focus of Attention (Section I)
WSL : Weakly Supervised Learning (Section I)
SOD : Salient Object Detection (Section II)
DSD : Discriminant Saliency Detection (Section II)
GMM : Gaussian Mixture Model (Section II)
SVM : Support Vector Machines (Section III-C)
BoVW : Bag-of-Visual-Word (Section III-C)
VW : Visual Word (Section III-C)
SIFT : Scale-Invariant Feature Transform (Section III-C)
RBF : Radial Basis Function (Section III-D)
ROC : Receiver Operating Characteristic (Section IV-A)
TP : True Positive (Section IV-A)
FP : False Positive (Section IV-A)
AUC : Area Under Curve (Section IV-A)
AP : Average Precisions (Section IV-B)
MAP : Mean of Average Precision (Section IV-B)
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