
Productivity-Based Software Estimation Models and Process Improvement: an

Empirical Study

Alain Abran, Jean-Marc Desharnais Mohammad Zarour Onur Demirörs
Department of Software Engineering & IT

École de technologie supérieure,

University of Québec,

Montreal, Canada

alain.abran@etsmtl.ca,

 jean-marc.desharnais@etsmtl.ca

College of Computer and

Information Sciences

Prince Sultan University,

Riyadh, Saudi Arabia

mzarour@psu.edu.sa

Middle East Technical University,

Ankara, Turkey

demirors@metu.edu.tr

Abstract—This paper proposes an approach to software

estimation based on productivity models with fixed/variable

costs and economies/diseconomies of scale. The paper looks

first at productivity alone as a single variable model, and

then discusses multi-variable models for estimation in

specific contexts. An empirical study in a Canadian

organization that illustrates the contribution of these

concepts from economics in developing tailor-made

estimation models based on the performance of the

organization studied is presented, as well as the use of the

SWEBOK Guide for the identification of process
improvements areas.

Keywords-Software economics; productivity models; fixed

variable cost; estimation models; Function Point.

I. INTRODUCTION

Over the past 40 years researchers have approached

software effort estimation using different mixes of cost

drivers as well as various techniques that combine costs

drivers with either expert opinion or mathematical

models. The main goal is to produce ‘accurate estimates’,

either intuitively based on expert opinion, or through

mathematical models.

In contrast to traditional approaches and strategies in

software engineering that focus strictly on estimation, this

paper examines an approach common in economics that

looks first at productivity alone as a single variable
model, before moving on to multi-variable models for

estimation in specific contexts. The paper expands on

these concepts and reports on an empirical study that

illustrates the contribution of these concepts from

economics to develop tailor-made estimation models

based on the performance of the organization studied.

This paper reports in more detail on the empirical study

presented briefly in [1], including data quality controls,

functional size measurement and the identification of

process improvement based on the SWEBOK Guide [2].

Some of the concepts introduced in this paper have been

explored initially in [3] that identified a new approach to
software benchmarking and estimation.

The mathematical estimation models from the

literature are broadly derived from two distinct strategies

that take into account information from completed

projects:

 Strategy 1: Statistical analyses represented by multi-

variable models with as many independent variables

as the cost drivers taken into account. Some examples

are linear and nonlinear regressions techniques,

neural network models, and genetic algorithms [4, 5].

For an adequate statistical analysis, it is generally

accepted that there should be 20 to 30 observations

for each independent quantitative variable.

 Strategy 2: Statistical analyses with a unique

independent variable (typically size) combined with a
single adjustment that combines the impact of

multiple cost drivers, individual values of which

come from fixed pre-determined step-functions for

each cost driver. This can be observed, for instance,

in COCOMO-like models [6, 7].

Multi variables models built with insufficient data

points (as in strategy 1) or with models with an

adjustment factor bundling multiple categorical variables

(strategy 2) do not necessarily reduce the risks inherent in

estimation. They may lead managers to believe that the

majority of important cost drivers have been duly taken
into account by the models whereas, in practice, even

more uncertainty may have been created [8, 9]. Numerous

other mathematical techniques exist in software

engineering, such as analogy-based reasoning and

machine learning estimation models, which differ from

the above in their mathematical peculiarities, but which

similarly use a multi-variable approach [10, 11].

Although accurate estimation of a single project is

important, estimation is not the unique management

concern, nor the most important one for a specific project

or for a set of projects for an organization or a customer.
For example, greater productivity, profitability, and high

quality have often greater management relevance than

accuracy of estimation.

Many current estimation models are built without

reference to productivity issues, frequently taking into

account a large number of variables (at times over too

small data sets) in an attempt to predict the better fit of

data points, and then evaluating these models by how

103

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

close the models ‘estimates’ are to ‘actual data’.

However, when actual (internal or external) data come

from highly unproductive projects (and uncompetitive

ones) plagued with numerous quality issues, that an

estimation model estimate ‘accurately’ is of limited value

to customers.
Similarly, how relevant are estimation models built

from external data when a software organization cannot

compare its own productivity with the productivity of the

organizations the data is coming from? If its own

productivity is lower, an external-based estimation

technique will under estimate: without insights into its

own productivity, use of external-based estimation tools is

an inadequate approach.

The rest of the paper is organized as follows. Section II

presents the productivity concept as defined in economics

to represent the performance of a production process,

including fixed/variable costs and
economies/diseconomies of scale. This section also

illustrates how to recognize these concepts in software

engineering data sets. Section III presents how these

concepts are used in a Canadian organization to address

management requests for information on the productivity

of their development process. Section IV presents the

productivity analysis and the estimation models

developed for the organization on the basis of economic

concepts. Section V presents the usage of the SWEBOK

Guide to identify process improvement opportunities for

the organization. Section VI presents a summary and
implications for estimation effort.

II. PRODUCTIVITY MODELS AND ECONOMICS

CONCEPTS

A. A productivity model represents a ‘production’

process

A project is typically set up to plan and manage a
unique event, with a start date, an end date, and a unique

outcome that typically has not been produced before.

Building a house is a project, building a road is a project,

as is developing a software application A for customer B

for a specific deadline.

To improve the odds of meeting the project targets a

project process is implemented to plan activities, monitor

project progress and take remedial action when something

goes off track. Similarly, even though each piece of

software is different, its delivery is organized in a

structured manner and not left to randomness and
individual moods and intuitions of the day. To deliver the

right outcome on time and within the expected cost and

level of quality, a ‘development process’ is implemented

to meet the target taking into account the set of priorities

within a reasonable range of predictability.

A project, including software projects, is a process and

each process corresponds to a level of performance

aligned with its own specificities in terms of activities,

structure of activities, constraints and resources involved

in the process. The question is: How can the performance

of a process be estimated in the future if its current and

past performance and any variations in performance are

not known? What are the economic concepts at work in

software projects? And, when this is understood and
quantified, how can these economics insights be used for

estimation purposes?

A software development project can be modeled as a

production process, in its simplest form using three main

components:

1) Inputs: to calculate productivity, the people involved

in the production process are considered as the inputs

from an economics perspective. In a software project,

the inputs are typically measured in work-hours (or

person-days/-weeks/-months).

2) Activities within the process itself: for calculating

productivity, all of the activities and constraints of
the process are considered as a black-box and are not

taken into account: they are, therefore, implicit

variables, not explicit variables in productivity

calculations.

3) Outputs: the outputs are represented by the number of

functional units produced by the process. The output

of the software development process is the set of

functions delivered to the users, which functions can

now be quantified with international standards of

measurements, such as with any of the relevant ISO

standards on software functional size [12-15].
The productivity of a process is its ratio of outputs

over the inputs used to produce such output. In software,

the productivity of a software project can be represented,

for example, as 10 Function Points per work-month. It is

to be observed as well that, by convention, the

productivity ratio ignores all process characteristics: it is

process and technology independent and, therefore,

allows objective comparison of the productivity of a

process across technologies, organizations and time.

Productivity describes this single concept, and does

not explain why the productivity has varied and may vary

over time within the same process, or across distinct
processes. To explain productivity variability (within and

across processes) additional variables are necessary.

Multi-variable models are useful to investigate which

variable impacts productivity (in a positive or negative

manner), and to what extent. The investigation of why the

productivity of a process varies is the realm of efficiency

studies, not productivity studies.

B. Productivity models with fixed and variable costs

The use of productivity models has a long history that

can be traced back to a large body of knowledge

developed in the domains of economics and engineering.

This section introduces some of these concepts, which

may also be useful in modeling, analyzing and estimating

the performance of software projects.

104

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A productivity model is typically built with data from

completed projects, that is, it uses the information of a

project for which there is no more uncertainty:

 The outputs: i.e., all the software functions have been

delivered; and,

 The hours worked on the project: i.e., they have been
accurately entered into a time reporting system.

This is illustrated in Fig. 1 where:

 The x axis represents the functional size of the

software projects completed;

 The y axis represents the effort in number of hours

that it took to deliver a software project.

The straight line across Fig. 1 represents a statistical

model of the productivity of the software projects. More

specifically, this single independent variable linear

regression model represents the relationship between

effort and size, and is represented by the following
formula:

Y (effort in hours) = f(size)

 = a x Size + b where:

 Size = number of Function Points (FP)

 a = variable cost = number of hours per function

point (hours/FP)

 b = constant representing fixed cost in hours

In terms of units, this equation gives:

Y (hours) = (hours/FP) x FP + hours = hours

Figure 1: Fixed & variable cost in a productivity model

Insights from economics have identified two distinct

types of costs incurred to produce different quantities of

the same types of outputs:

Fixed costs: the portion of the resources expended (i.e.,

inputs) that does not vary with an increase in the number

of outputs. In Fig. 1, this corresponds to b, the constant in

hours at the origin when size = 0.

Example of a fixed cost: a cost of b hours of project effort

is required for mandatory project management activities,

whatever the size of the software to be developed.

Variable costs: the portion of the resources expended (i.e.,
inputs) that depends directly on the number of outputs

produced. In Fig. 1, this corresponds to the slope of the

model, that is: slope = a in terms of hours/FP (i.e., the

number of work hours required to produce an additional

unit of output).

It is to be observed that in productivity models, the

constant b does not represent the errors in the estimates as

in multi-variable estimation models. In productivity

models, b has a practical interpretation corresponding to
the economic concepts explained above, that is: the

portion of the cost that does not vary with increases in the

production outputs.

C. Wedge-shaped datasets in software engineering

Often, a graphical representation of projects in large

datasets has the wedge-shaped distribution illustrated in
Fig. 2 with the software size as the single independent

variable. It can be observed in Fig. 2 that, as the project

size increases on the x axis, there is a correspondingly

larger dispersion of the data points across the vertical axi.

In other words, there are increasingly wide variations in

project effort on the y axis as the project size increases,

that is, large productivity differences across software of

similar size delivered. Such wedge-shaped datasets have

initially been observed by [16, 17] and are representative

of datasets collected from multiple organizations, each

with their own distinct development processes using a
variety of technologies and corresponding distinct

abilities to exploit them.

Looked at from a control process view point within a

single organization, a wedge-shape data set could

represent:

A. A process ‘out of control,’ that is, a process with a

large variation in productivity across increases in the

size of the outputs is due to a lack of repeatability in

a process, i.e., an ad-hoc process dependent on

individual actions and expertise and unknown

quality, rather than repeatable and ‘under control,’ as

happens when a development methodology is
enforced, leading to repeatability However, a process

‘under control’ may be highly repeatable, predictable

and with high quality, but it may concurrently be

highly inefficient and expensive; or,

B. Data originating from various distinct processes, each

with their distinct productivity ratios, thereby ‘only

appearing as out of control’ because the single-

variable model does not take into account the

presence of the distinct processes of each

organization, each with their distinct productivity

ratios; or
C. A process where each project has large variations in

unit-effort due to factors other than size, that is a

multi-variable dependent process. Adequate

modeling of such factors in multi-variable models is

only feasible when there are enough data points (i.e.,

the sample size should increase by 20 to 30 projects

for each additional variable introduced in the model).

Models introducing multi-variables without sufficient

data points will provide mathematical models with

105

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

quantitative parameters, but will have no

generalization power for future usage, including in

similar contexts.

Figure 2: Example of a wedge-shaped productivity dataset

It is obvious from Fig. 2 that a single-variable

productivity model built from this data set is not directly

useful for estimation purposes in this context. All other

process and product variables combined together have a

large impact on the total variation of the dependent

variable (i.e., here, Effort). Therefore, for estimation

purposes, multi-variable models would be necessary.

However, such multi-variable models, while useful for

estimation purposes, do not allow productivity

comparisons and evaluation.
The next question is: what causes these different

behaviors? Of course, the answers cannot be found by

graphical analysis alone, since in the productivity model

there is only a single independent quantitative variable in

a two-dimensional graph. This single independent

variable does not provide, by itself, any information about

the other variables, or about similar or distinct

characteristics of the completed projects for which data

are available. Efficiency investigation with additional

independent variable can help identify which other

variables cause variations in productivity and to what
extent for each.

When a data set is large enough (that is 20 to 30 data

points for each independent variable), the impact of the

other variables can be analyzed by statistical methods. In

practice, most software organizations do not have data set

large enough for valid multi-variable statistical analysis.

However, within a single organization the projects

included within a data set can be identified nominally by

the organizations that collected the data [3, 16]. Each

project in each subset should be subsequently analyzed to

determine:

 Which of their characteristics (or cost drivers) have
similar values within the same subset; and

 Which characteristics have very dissimilar values

across the two (or three) subsets.

Of course, some of these values can be descriptive

variables with categories (i.e., on a ‘nominal’ scale type:

for example, a specific Data Base Management System

(DBMS) has been used for a subset of projects, etc.). It

then becomes necessary to discover which additional

independent variables have the most impact on the

relationship with project effort. The different values of

such characteristics can then be used to characterize such

datasets, and set the parameters for selecting which of

these productivity models to use later on for estimation
purposes.

D. Homogeneous datasets in software engineering

Another type of project distribution is represented in

Fig. 3, which illustrates a strong consistency in the

dispersion of the effort as size increases. This would

represent more homogeneous data sets in which the
increase in software size explains well the increase in

effort. Such a homogeneous distribution of software

projects data appears as well in the literature [18-21]. In

these datasets, the increase in functional size explains

80% to 90% of the increase in effort, while all of the other

factors together explain at most 10% to 20% of the

increase in effort. Such datasets would be considered

homogeneous with respect to the dependent and

independent variables being investigated. This low

dispersion in project productivity would typically have

one or a mix of the following causes:

 The project data comes from a single organization

with well implemented development standards.

 The project data is representing the development of

software products with very similar characteristics in

terms of software domains, non-functional

requirements and other characteristics.

 The development process is under control with a

predictable productivity performance.

 Data collected in an organization based on an in-

process sound measurement program, and where

standardized measurement definitions have been
adopted by all projects participants, leading to high

data integrity.

Figure 3: A homogeneous productivity dataset

It is obvious from Fig. 3 that the one-variable

productivity model built from this data set is directly

useful for estimation purposes. All other process variables

combined together have a very small impact on the total

variation of the dependent variable (i.e., here, Effort).

Looked at from a control process view point, this data set

represents a process ‘under control’, that is a process with

106

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a predictable performance, both in terms of productivity

and efficiency.

III. A PRACTICAL USE OF THESE ECONOMIC CONCEPTS:
AN EMPIRICAL STUDY

A. Context

A Canadian organization interested in determining its

own productivity, in understanding some of the key

drivers behind its major productivity variations, and in

using the findings to improve its organizational

performance in general and its estimation process in

particular was selected for the empirical study.

This organization, a government agency, provides
specialized financial services to the public, and its

software applications are similar to those of banking and

insurance providers. It has a software development

methodology fully implemented across all of its projects.

The main objectives of the empirical study were:

1. Internal benchmarking, i.e., compare the productivity

of individual projects.

2. Develop estimation model(s) based on the data

collected.

3. Identify and explain significant productivity

variations across the organization’s projects.
4. Identify opportunities for process improvement.

B. Data collection procedures

The initial step was to identify projects that could be

measured for the productivity and benchmarking

analyses. The selection criteria were:

 Projects completed within the previous two years,
and

 Project documentation available for functional size

measurement.

For this study, all data were recorded using the data

field definitions of the data collection questionnaire of the

International Software Benchmarking Standards Group

[22].

C. Data Quality Controls

Quality control of the data collection process is

important for any productivity study. Here, two

quantitative variables are critical: the effort reported for

each project, and the project functional size:

A- Effort data: in this organization, the time reporting

system is considered highly reliable and is used for

decision making, including payment of invoices when

external resources are hired to complement project

staffing.
B- Measurement of functional size: the quality of the

measurement results depends on the expertise of the

measurers and on the quality of the documentation

available for the measurement process. For this

productivity study: all functional size measurements were

carried out by the same measurer with 20 years expertise

in functional size measurement.

Table I from [23] lists the criteria used to rank the

quality of the documentation used for measuring

functional size, on the basis of the documentation of the

individual functional processes developed [23, 24]. Note
that this is not a global subjective assessment of the

documentation, but an assessment of the documentation

of each of the functional processes based on the detailed

documentation elements available for measurement. The

individual rankings of each functional process were

recorded by the measurer in parallel to the measurement

of the functional size of each of the 16 projects.

Table I: Criteria for ranking documentation quality [23]

Rank Criteria

A Every function completely documented

B Function documented, but without a precise data
model

C Functions identified at a high level, but without any

detail

D An approximation of the number of functions is

available, with the individual functions not listed

E Some functions are not explicitly described in the
documentation, but an expert measurer adds
information based on his expertise, e.g., missing
validation functions

Table II reports the documentation quality rankings of

each project and specifies for each project what

proportion of the project documentation met the various

criteria listed in Table I. For this study, the documentation

is considered ‘good’ when it meets criterion A or B in

Table I. The following observations were made from
Table II:

- For 11 projects: the documentation of more than 95%

of the functional processes measured was rated as

being of good quality (equal to A or B). Considering

the extended measurement expertise of the measurer

and the high quality of documentation, the size

measured for these 11 projects can be considered

highly accurate.

- For Projects 3 and 13: the documentation quality was

rated as being of good quality for 62% and 71% of

the functional processes respectively.
- For project 10: the documentation was rated as being

of average quality (criterion C). This could impact

the accuracy of the size measured for this project, as

it used less detailed documentation.

- The documentation of Project 7 was rated as being of

good quality for 31% of the functional processes.

- For Project 8: most of the functions measured had to

be derived from documentation at a very high level,

that is criterion E = 100%. This means that the

107

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

functional size for this project has been approximated

rather than measured precisely, with an undetermined

range of size variation.

Overall, at the detailed level, 85% of all the processes

measured for the 16 projects had a good level of

documentation and provided a sound basis for the
measurement of the functional size of the projects

included in the productivity analysis reported in this

paper.

Table II: Quality of the documentation ranked at the

functional process level

D. Descriptive Analysis

1) Projects characteristics
For this study, the 16 software development and

improvement projects were measured in terms of
functional size, effort, and various environment qualifiers.

The staff who developed these projects included both

internal and external developers, distributed equally

overall. In this dataset:

 Project size varied from a minimum of 111 FP to a

maximum of 646 FP.

 Effort varied from 4,879 hours to 29,246 hours.

 Unit effort varies from 14 h/FP 12 to up to 98 h/FP, a

factor of approximately eight between the least

productive and the most productive within the same

organization.

 Duration varied from 10 to 35 months.

 Maximum development team size for 12 of the 16

projects ranged from 6 to 35 employees.

The descriptive statistics of this dataset are as follows,

while details are reported in [8 – Table 12.2]:

 Average project effort = 12,033 hours (or, 1,718

person-days at 7 hours per day, or 82 person-months

at 21 days per month).

 Average unit effort = 41.5 h/FP

 Average project duration = 18 calendar months.

 One-third of the projects = newly developed

software.

 Two-thirds of the projects = functional enhancements

to existing software.

2) Project priorities
Each project typically met four targets that are determined

at project inception:

 Project scope (i.e., the functions to be delivered to the

users)

 Project cost (or effort)

 Project deadline

 Quality of software delivered

In a context of limited resources and a high level of

uncertainty, it is extremely challenging to meet all these

targets at the same time, and a number of compromises

must be made during a project life cycle. To empower
project managers to make such compromises, an

organization will typically determine the priority targets

for each project among those specific to any one project.

The information on the priorities assigned to each of these

four targets was collected through interviews of the

project managers of these projects and recorded during

the data collection process. A summary of project

priorities is presented in Table III, where:

 For 8 of the 16 of the projects (i.e., 50%), the

‘deadline’ target was listed as priority 1.

 For 75% of the projects, the ‘scope’ target was listed
as priority 1 or 2.

 For 50% of the projects, ‘quality’ was listed as

priority 2 (and two projects listed it as priority 1).

 For none (0%) of the projects was the ‘cost’ target

listed as priority 1 (and only one project listed cost as

priority 2).

Table III: Summary of project priorities
 Number of projects

Priority

1
Priority

2
Priority

3
Priority

4

Deadline 8 1 1 6
Scope 6 6 4 0

Quality 2 8 2 4

Cost 0 1 9 6

These observations indicate that for this organization

the project’s deadline is a high priority, while cost is a

low priority. The reasons for favoring the deadline over

the cost of the measured project were the following:

 The urgency to solve the problem for internal

reasons;

 Obligations linked to current laws or future ones;

 The pressures of client managers for the reasons

mentioned above or other reasons.

108

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. PRODUCTIVITY ANALYSIS AND ESTIMATION

MODELS

A. The overall productivity model for the organization

The dispersion of points for the organization is

illustrated in Fig. 4 for all 16 projects, with functional size

on the x axis, and effort on the y axis: at first sight it

appears somewhat like a wedge-shape data set rather than

an homogeneous data set with respect to the functional
size at the independent variable.

Figure 4: The dispersion of project productivity for the

organization – N = 16 projects [8]

Fig. 5 shows next the overall single-variable

productivity model for the organization, using a single

regression model:

Effort = 30.7 h/FP x project size + 2,411 h (Fig. 5)

The coefficient of determination (R2) of this model is

relatively low, at 0.39.

Figure 5: The organization’s overall productivity model –

N = 16 projects [1]

The practical interpretation of the above equation is as

follows:

 Fixed effort = 2,411 h

 Variable effort = 30.7 h/FP

Possible reasons for the high fixed and high variable

unit effort numbers discussed with the managers, and the

following observations provided in terms of the

development methodology deployed in the organization:

A. It is highly procedural and time-consuming.

B. It included heavy documentation requirements.

C. It required lengthy consensus building procedures

across stakeholders and development staff.
D. It required a relatively high number of inspections.

This is the productivity model that should be used,

across the 2-year time period, for later internal

benchmarking as well as for external benchmarking.

Productivity models based only on functional size allow

independent comparisons across time periods and

variations of technologies of processes used by others.

From Fig.5, it can be observed that, for this

organization, five projects had effort 100% higher than

projects of comparable functional size:

 A project of approximately 100 FP required twice as

much effort as two other projects of similar size.

 Four large projects (between 400 and 500 FP)

required two or three times more effort than, projects

only relatively smaller (between 350 and 400 FP).

The effect of these four projects was to pull up the

linear model (and corresponding slope) and

considerably influence both the fixed and variable

costs.

Therefore, this data sample was split into two groups

for further analysis.

A. The group of 11 projects that have the best

productivity (i.e., lower unit effort, and that are
below or very close to the regression line in Fig. 5).

B. The group of five projects that have a productivity

much worse (i.e., a unit effort twice the unit effort of

the 11 other projects, and that are largely above the

regression line in Fig. 5).

B. Organizational process capability: the most

productive projects

Fig. 6 presents the 11 projects with a much lower unit

effort per project that is, those which were most

productive. For these projects, the linear regression model

is:

Effort = 17.1 h/FP x size of the project + 3,208 h

The coefficient of determination (R2) of this model is

0.589, higher, relatively, than that for the overall model.

The practical interpretation of this equation is:

 Fixed costs = 3,208 h

 Variable Costs = 17.1 h/FP

C. Productivity model of the least productive projects

For the five least productive projects in group B, the

productivity model in Fig. 7 is:

Effort = 33.4 h/FP x project size + 8,257 h

The coefficient of determination (R2) of this model is

better, at 0.637. Of course, with a sample of only five
projects, this number is not statistically significant, but is

still interesting for the organization.

109

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6: Most productive projects - N = 11 projects [8]

Figure 7: The productivity model of the least productive

projects – N = 5 [8]

The practical interpretation of the above equation is

as follows:

 Fixed effort = 8.257 h

 Variable effort = 33.4 h/FP

This group of the five least productive projects is

characterized by a fixed cost that is almost four times

higher than that of the full set of projects (8,257 hours vs.

2,411 hours), and a relatively similar variable effort unit

(33.4 h/FP vs. 30.7 h/PF).

The group of 11 most productive projects is

characterized by a fixed cost approximately 40% lower

than that of the least productive projects (3208 hours vs.

8257 hours), and a variable unit effort almost 50% lower

(17.1 h/FP vs. 32.4 h/FP); that is, with interesting
economies of scale and an R2 of 0.55.

A summary of each group is presented in Table IV,

where 11 projects represent what the organization is

'capable' of delivering in normal conditions and the other

five projects illustrate how projects are significantly

impacted by the presence of factors that have not yet been

identified through the single independent variable (i.e.,

functional size) analysis. Exploration of these additional

impact factors is discussed in the next sub-section D.

The single variable productivity model still provides

useful insights to the organization and allows it to monitor

its own productivity models across time. For example:
A. Would the fixed-variable cost improve over the next

two-year period? A subsidiary question would be to

identify the factors that caused this positive (or

‘negative’) impact?

B. Could the organization avoid or, when avoidance is

not possible, more effectively mitigate, the

occurrence of the negative factors beyond the project

manager’s control?

Table IV: Fixed & variable efforts: Capability versus least

productive projects [1]

Samples/

Regression coefficients
All 16

projects

Most

productive:

11 projects

Least

productive:

5 projects

Fixed

effort (hours)
2,411 3,208

8,257

Variable effort (h/FP) 30.7 17.1

34.4

D. Qualitative causal analysis

The data collected has allowed us to identify the

overall productivity of the organization, to observe the

fixed and variable contributions of its process capability,

as well as observing an 100% increase in both fixed and

variable costs when there were factors negatively

impacting on the productivity.

Of course a single independent variable model cannot

explain the causes of such variations. Furthermore, with a
dataset of only 16 projects, there are not enough data

points within a single organization (unless they have been

collecting data for many years) to rely on quantitative

analysis. Each additional independent typically requires

20 to 30 additional data points. In the absence of sample

sizes large enough for quantitative analysis, qualitative

analysis can help identify probable causes of increases. In

the context here, qualitative analysis will not attempt to

quantify precisely the impact of a cause (or cost drivers),

but will attempt to identify qualitatively factors that could

have the greatest negative impact on productivity.
Firstly, in the causal analysis of the productivity

variations in the organization, we eliminated two

candidate cost drivers since they were considered constant

in both groups of productivity performance:

- Development methodology: in the organization the

use of the industry-tailored development

methodology was fully deployed across all software

development projects: none of the activities and

controls was bypassed. Therefore, there was no

development methodology difference across all

projects.

- Project management expertise: some of the projects
managers had, within this same two-year period,

supervised projects that were both among the most

productive and the least productive. Therefore, the

expertise of specific project managers could not

explain large project productivity differences.

110

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The question that arises: What are the factors that led

to such large (i.e., +100%) increases in unit effort? What

may be the major cause-effect relationships? To identify

and investigate these relationships, available project

managers were interviewed to obtain feedback as what

they believed had contributed to either an increase or a
decrease in the productivity of their respective projects.

The project managers interviewed had managed seven of

the 16 projects:

A. Three projects with the lowest productivity (i.e., the

highest unit effort);

B. Two projects with average productivity;

C. Two projects with the highest productivity (i.e., the

lowest unit effort).

The aim of the interviews was to obtain qualitative

information from the project managers on the factors they

believed had contributed, or not, to the increase in project

effort compared to that of other projects of similar size
developed in the organization’s environment or elsewhere

during their project management practice. Their feedback

is summarized as follows:

A- The most productive projects had the following

characteristics:

1. Users familiar were with both the business and

software development processes;

2. Users were involved throughout the project;

3. Software developers working on the projects were

experienced in the use of the development

environment.
B. The least productive projects had the following

characteristics:

B1. Customer related issues:

1. Customer requirements were poorly expressed,

or a customer representative did not know his

environment (business area), leading to frequent

change requests during a project life cycle.

2. High turnover of users involved in the projects,

leading to instability in the requirements and

delays in decision making.

3. Customers not familiar with the software

development process in the organization,
including their required involvement in project

activities, including activity reviews.

B2. Project constraints:

1. Tight project deadlines for legal constraints or

public face-saving leading to compressed

scheduling and resources ‘piled up’ to make the

problem disappear.

2. New technologies unknown to the developers.

B3: Product constraints: Multiple links with other

software applications of the organization.

An example of a negative product constraint was
reported for the project with the highest unit effort (98

h/FP). The software delivered by this project was of a

small functional size, but required twice as much effort to

develop as another of similar size as it interacted with

almost all the other software applications of the

organization and was dependent on other organizational

units. Another project had a very tight deadline, which led

management to ‘throw’ resources at the problem to meet

the deadline irrespective of the total effort required.

It can be observed that although it was possible to
identify ‘qualitatively’ some factors with major negative

impact, the sample size was much too small for statistical

tests to quantify such impact.

V. IDENTIFICATION OF PROCESS IMPROVEMENTS

USING THE SWEBOK GUIDE

A. Implementation and coverage of best practices

In previous years, the organization had invested

considerably in designing and deploying improvements to

its development methodology. For this empirical study,

additional analyses were carried out to identify process

strengths and weaknesses in order to identify

improvement opportunities in development processes and

techniques.

The study included verification of the use of the

recommended best software engineering practices in the

participating organization. For this verification, the

software engineering practices listed in the SWEBOK
Guide [2] were used. This guide represents a broad

international consensus on the concepts and practices of

software engineering that are recognized as providing

benefits to the majority of projects in most cases. All 10

knowledge areas of the 2004 version of the SWEBOK

Guide were taken into account, with the exception of the

maintenance knowledge area, which was not relevant for

this empirical study – see Table V.

To collect this information, the quality specialist

participating in all project phases for each project was

interviewed and asked to confirm whether or not each of

the practices in the SWEBOK Guide was indeed being
widely used across all projects in the organization.

B. Coverage of best practices

The percentages of software engineering practices in

use in the organization for each knowledge area are

presented in Table VI, in decreasing order of coverage.

These percentages represent the ratio between the

practices observed to be in general use in this

organization, divided by the total number of practices

listed in each of the SWEBOK knowledge areas.

From all the knowledge areas related directly to the
development life cycle, that is, from requirements

engineering up to software testing, those with over 60%

coverage indicates a very widespread use of

organizational processes across the organization. In

comparison to the capability level of the CMMI model,

this would align with a number of Key Process Areas at

Level 3, meaning that the software engineering processes

111

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in the organization have been deployed and are in use

throughout the organization.

Table V: SWEBOK 2004 Knowledge Areas

SWEBOK Knowledge Areas

Requirements Engineering

Software Design

Software Construction

Software Testing

Software Maintenance

Software Engineering Management

Configuration Management

Software Engineering Process

Software Quality

Tools and Methods

Table VI: Coverage of SWEBOK practices

SWEBOK Knowledge Areas %

coverage

Software Design 89

Software Management 75

Configuration Management 74

Requirements Engineering 73

Software Construction 71

Software Testing 61

Tools & Methods 54

Software Engineering Process 44

Software Quality 38

However, coverage was much less extensive in

support areas, such as Tools & Methods, Software

Engineering Process, and Software Quality, where the

product and process measures were not covered at all. For

this reason, the organization had no measurable

information on the effectiveness of the implementation of

their practices and the benefits derived, that is,

quantitative information to support the decision making

process was lacking.

This can be illustrated in the following way: while

each project must use the corporate development process
it generally lacked data for its evaluation and control

functions. Therefore, the organization would not qualify

for the fourth level of capability using the CMMI process

evaluation model.

VI. SUMMARY AND IMPLICATIONS FOR MANAGEMENT

This paper has reported on productivity analysis of

software projects developed by a governmental

organization utilizing the productivity concepts from the

field of economics, including fixed/variable costs

modeling. For the organization studied, three productivity

models were identified that represented respectively:
- An overall productivity model of the organization

that can be used for external benchmarking purposes.

This overall productivity model can be used later

across other times periods to verify whether or not

productivity of the organization is improving over

time, and with respect to external similar

organizations.

- A productivity model built from the best productive

projects representing a capability to deliver a
software project with a lower fixed/variable effort

structure, in the absence of major disruptive factors.

- A productivity model based on the five projects with

the highest unit effort: in this case, the presence of

disruptive factors led to greater than 100% increase

in project effort in comparison to the organization’s

capability for process productivity.

Of course, the limited number of projects available in

these mathematical models does not permit generalization

to other contexts, but does describe quantitatively and

objectively many features of productivity in the

organization. These models are representative of the
organization studied where a unique software

development methodology is widely implemented and

represents well deployed, repeatable corporate software

practices, rather than unpredictable individual and ad-hoc

practices.

For future project estimation, the organization should

use the process capability model represented by the best

performing projects, provided that a risk analysis has not

detected the presence of any of the disruptive factors that

have in the past increased effort twofold. Whenever such

disruptive factors are identified with a high probability of
occurrence the organization should estimate such projects

using the productivity model derived from the least

productive projects. The use of these two single-variable

productivity models would be expected to provide more

accurate estimates than the overall productivity model

combining all previous projects.

An organization such as the one studied having

measured only a small set of projects is typical of many

organizations without much historical data: there are not

enough data points to build with high confidence multi-

variable estimation models representing local conditions

and related organizational performance.
The insights from productivity models developed from

an economic perspective are important since relevant

improvement activity may directly impact the

productivity of the organization, by lowering either the

fixed or variable project costs.

Furthermore, the empirical study also identified

opportunities for improvement in three areas, namely:

1. Early identification of project risks with a potentially

twofold impact on project effort.

2. Increase in project management efficiency:

 Improvement in productivity analysis and
current productivity models.

 Improvement in the estimation process.

3. Process improvement:

112

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Establishment of mechanisms for monitoring and

evaluating processes.

 Reduction in fixed effort (establishment of

predefined selection rules in the project context).

 Monitoring the impact of new technologies and

new development processes.

REFERENCES

[1] A. Abran, J. M. Desharnais, M. Zarour, and O.

Demirors, "Productivity Based Software

Estimation Model: An Economics Perspective

and an Empirical Study," 9th International

Conference on Software Engineering Advances -

ICSEA 2014, Nice (France), pp. 196-201, 2014.

[2] Abran A. and Moore, J. (co-executive editors),

Bourque, P. and Dupuis, R. (co-editors), Tripp,

L. (2005), "Guide to the Software Engineering

Body of Knowledge - 2004 Version -
SWEBOK," IEEE-Computer Society Press, 200

pages.

[3] A. Abran and J. J. Cuadrado, "Software

Estimation Models & Economies of Scale,"

presented at the 21st International Conference on

Software Engineering and Knowledge

Engineering - SEKE'2009, Boston (USA), July

1-3, 2009.

[4] M. Jørgensen and M. Shepperd, "A Systematic

Review of Software Development Cost

Estimation Studies," IEEE Transactions on

Software Engineering, vol. 33 no. 1, pp. 33-53,
2007.

[5] M. Shepperd and M. and S. MacDonell,

"Evaluating prediction systems in software

project estimation," Information and Software

Technology, Elsevier, vol. 54, pp. 820–827,

2012.

[6] B. Boehm, Software Engineering Economics:

Englewood Cliffs, NJ, Prentice Hall, 1981.

[7] B. Boehm, C. Abts, A. W. Brown, S. Chulani, B.

Clark, E. Horowitz, et al., Software Cost

Estimation with COCOMO II: Prentice Hall,
2000.

[8] A. Abran, Software Project Estimation – The

Fundamentals for Providing High Quality

Information to Decision Makers: IEEE-CS Press

& John Wiley & Sons – Hoboken, New Jersey,

2015.

[9] Barbara Kitchenham and E. Mendes, "Why

comparative effort prediction studies may be

invalid," in 5th International Conference on

Predictor Models in Software Engineering,

PROMISE, Vancouver, BC, Canada, 2009.

[10] F. A. Amazal, A. Idri, and A. Abran, "Analogy-
based Software Development Effort Estimation:

A Systematic Mapping and Review,"

Information and Software Technology, vol. 58,

pp. 206-230., 2014.

[11] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang,

"Systematic literature review of machine

learning based software development effort

estimation models," Information and Software
Technology, Elsevier, vol. 54, pp. 41-59, 2012.

[12] International Organization for Standardization

(ISO), "ISO/IEC 20968: Software Engineering -

Mk II Function Point Analysis - Counting

Practices Manual," ed. International

Organization for Standardization, Geneva, 2002.

[13] International Organization for Standardization

(ISO), "ISO/IEC 24750: Software Engineering -

NESMA functional size measurement method

version 2.1 - Definitions and counting guidelines

for the application of Function Point Analysis,"

ed. International Organization for
Standardization, Geneva, 2005.

[14] International Organization for Standardization

(ISO), "ISO/IEC 20926: Software Engineering -

IFPUG 4.1 Unadjusted functional size

measurement method - Counting Practices

Manual," ed. International Organization for

Standardization, Geneva, 2009.

[15] International Organization for Standardization

(ISO), "ISO/IEC 19761: Software Engineering –

COSMIC - A Functional Size Measurement

Method," ed. International Organization for
Standardization, Geneva, 2011.

[16] B. Kitchenham, "Empirical studies of

assumptions that underlie software cost-

estimation models," Information and Software

Technology, vol. 34, pp. 211-218, 1992.

[17] B. Kitchenham and N. Taylor, "Software Cost

Models," ICL Technical Journal, vol. 4, pp. 73-

102, 1984.

[18] K. Lind and R. Heldal, "Estimation of Real-Time

Software Code Size using COSMIC FSM,"

presented at the IEEE Intl. Symposium on

Object/component/service-oriented Real-time
distributed Computing (ISORC), Tokyo, Japan,

2009.

[19] K. Lind and R. Heldal, "A Model-Based and

Automated Approach to Size Estimation of

Embedded Software Components," presented at

the ACM/IEEE 14th International Conference on

Model Driven Engineering Languages and

Systems, Wellington, New Zealand, 2011.

[20] S. Stern and O. Guetta, "Manage the automotive

embedded software development cost by using a

Functional Size Measurement Method
(COSMIC)," presented at the 5th International

Congress and Exhibition: Embedded Real Time

Software and Systems, ERTS, Toulouse, France,

2010.

113

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[21] A. Abran and P. Robillard, "Function Points

Analysis: An Empirical Study of its

Measurement Processes," IEEE Transactions on

Software Engineering, vol. 22, pp. 895-909,

1996.

[22] ISBSG R11. (2009, 2015.01.15). International
Software Benchmarking Standard Group.

Available: http://www.isbsg.org/

[23] J. M. Desharnais and A. Abran, "Quality of

Functional User Requirements documentation

using COSMIC ISO 19761: verification

process," presented at the International

Workshop on Software Measurement – IWSM

Stuttgart, Germany, 2010.

[24] J. M. Desharnais, B. Kocatürk, and A. Abran,

"Using the COSMIC Method to Evaluate the

Quality of the Documentation of Agile User

Stories," presented at the 21st International
Workshop on Software Measurement – 6th

International Conference on Software Process

and Product Measurement - IWSM-Mensura,

Nara, Japan, 2011.

114

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

