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Abstract—This paper proposes an approach to software 

estimation based on productivity models with fixed/variable 

costs and economies/diseconomies of scale. The paper looks 

first at productivity alone as a single variable model, and 

then discusses multi-variable models for estimation in 

specific contexts. An empirical study in a Canadian 

organization that illustrates the contribution of these 

concepts from economics in developing tailor-made 

estimation models based on the performance of the 

organization studied is presented, as well as the use of the 

SWEBOK Guide for the identification of process 
improvements areas. 

Keywords-Software economics; productivity models; fixed 

variable cost; estimation models; Function Point. 

I.  INTRODUCTION 

Over the past 40 years researchers have approached 

software effort estimation using different mixes of cost 

drivers as well as various techniques that combine costs 

drivers with either expert opinion or mathematical 

models. The main goal is to produce ‘accurate estimates’, 

either intuitively based on expert opinion, or through 

mathematical models.  

In contrast to traditional approaches and strategies in 

software engineering that focus strictly on estimation, this 

paper examines an approach common in economics that 

looks first at productivity alone as a single variable 
model, before moving on to multi-variable models for 

estimation in specific contexts. The paper expands on 

these concepts and reports on an empirical study that 

illustrates the contribution of these concepts from 

economics to develop tailor-made estimation models 

based on the performance of the organization studied. 

This paper reports in more detail on the empirical study 

presented briefly in [1], including data quality controls, 

functional size measurement and the identification of 

process improvement based on the SWEBOK Guide [2]. 

Some of the concepts introduced in this paper have been 

explored initially in [3] that identified a new approach to 
software benchmarking and estimation. 

The mathematical estimation models from the 

literature are broadly derived from two distinct strategies 

that take into account information from completed 

projects: 

 Strategy 1: Statistical analyses represented by multi-

variable models with as many independent variables 

as the cost drivers taken into account. Some examples 

are linear and nonlinear regressions techniques, 

neural network models, and genetic algorithms [4, 5]. 

For an adequate statistical analysis, it is generally 

accepted that there should be 20 to 30 observations 

for each independent quantitative variable.   

 Strategy 2:  Statistical analyses with a unique 

independent variable (typically size) combined with a 
single adjustment that combines the impact of 

multiple cost drivers, individual values of which 

come from fixed pre-determined step-functions for 

each cost driver. This can be observed, for instance, 

in COCOMO-like models [6, 7].  

Multi variables models built with insufficient data 

points (as in strategy 1) or with models with an 

adjustment factor bundling multiple categorical variables 

(strategy 2) do not necessarily reduce the risks inherent in 

estimation. They may lead managers to believe that the 

majority of important cost drivers have been duly taken 
into account by the models whereas, in practice, even 

more uncertainty may have been created [8, 9]. Numerous 

other mathematical techniques exist in software 

engineering, such as analogy-based reasoning and 

machine learning estimation models, which differ from 

the above in their mathematical peculiarities, but which 

similarly use a multi-variable approach [10, 11]. 

Although accurate estimation of a single project is 

important, estimation is not the unique management 

concern, nor the most important one for a specific project 

or for a set of projects for an organization or a customer. 
For example, greater productivity, profitability, and high 

quality have often greater management relevance than 

accuracy of estimation.  

Many current estimation models are built without 

reference to productivity issues, frequently taking into 

account a large number of variables (at times over too 

small data sets) in an attempt to predict the better fit of 

data points, and then evaluating these models by how 
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close the models ‘estimates’ are to ‘actual data’. 

However, when actual (internal or external) data come 

from highly unproductive projects (and uncompetitive 

ones) plagued with numerous quality issues, that an 

estimation model estimate ‘accurately’ is of limited value 

to customers.  
Similarly, how relevant are estimation models built 

from external data when a software organization cannot 

compare its own productivity with the productivity of the 

organizations the data is coming from? If its own 

productivity is lower, an external-based estimation 

technique will under estimate: without insights into its 

own productivity, use of external-based estimation tools is 

an inadequate approach. 

The rest of the paper is organized as follows. Section II 

presents the productivity concept as defined in economics 

to represent the performance of a production process, 

including fixed/variable costs and 
economies/diseconomies of scale. This section also 

illustrates how to recognize these concepts in software 

engineering data sets. Section III presents how these 

concepts are used in a Canadian organization to address 

management requests for information on the productivity 

of their development process. Section IV presents the 

productivity analysis and the estimation models 

developed for the organization on the basis of economic 

concepts. Section V presents the usage of the SWEBOK 

Guide to identify process improvement opportunities for 

the organization. Section VI presents a summary and 
implications for estimation effort. 

II. PRODUCTIVITY MODELS AND ECONOMICS 

CONCEPTS  

A. A productivity model represents a ‘production’ 

process 

A project is typically set up to plan and manage a 
unique event, with a start date, an end date, and a unique 

outcome that typically has not been produced before. 

Building a house is a project, building a road is a project, 

as is developing a software application A for customer B 

for a specific deadline. 

To improve the odds of meeting the project targets a 

project process is implemented to plan activities, monitor 

project progress and take remedial action when something 

goes off track. Similarly, even though each piece of 

software is different, its delivery is organized in a 

structured manner and not left to randomness and 
individual moods and intuitions of the day. To deliver the 

right outcome on time and within the expected cost and 

level of quality, a ‘development process’ is implemented 

to meet the target taking into account the set of priorities 

within a reasonable range of predictability. 

A project, including software projects, is a process and 

each process corresponds to a level of performance 

aligned with its own specificities in terms of activities, 

structure of activities, constraints and resources involved 

in the process. The question is: How can the performance 

of a process be estimated in the future if its current and 

past performance and any variations in performance are 

not known? What are the economic concepts at work in 

software projects? And, when this is understood and 
quantified, how can these economics insights be used for 

estimation purposes? 

A software development project can be modeled as a 

production process, in its simplest form using three main 

components:  

1) Inputs: to calculate productivity, the people involved 

in the production process are considered as the inputs 

from an economics perspective. In a software project, 

the inputs are typically measured in work-hours (or 

person-days/-weeks/-months). 

2) Activities within the process itself: for calculating 

productivity, all of the activities and constraints of 
the process are considered as a black-box and are not 

taken into account: they are, therefore, implicit 

variables, not explicit variables in productivity 

calculations. 

3) Outputs: the outputs are represented by the number of 

functional units produced by the process.  The output 

of the software development process is the set of 

functions delivered to the users, which functions can 

now be quantified with international standards of 

measurements, such as with any of the relevant ISO 

standards on software functional size [12-15]. 
The productivity of a process is its ratio of outputs 

over the inputs used to produce such output. In software, 

the productivity of a software project can be represented, 

for example, as 10 Function Points per work-month. It is 

to be observed as well that, by convention, the 

productivity ratio ignores all process characteristics: it is 

process and technology independent and, therefore, 

allows objective comparison of the productivity of a 

process across technologies, organizations and time. 

Productivity describes this single concept, and does 

not explain why the productivity has varied and may vary 

over time within the same process, or across distinct 
processes. To explain productivity variability (within and 

across processes) additional variables are necessary. 

Multi-variable models are useful to investigate which 

variable impacts productivity (in a positive or negative 

manner), and to what extent. The investigation of why the 

productivity of a process varies is the realm of efficiency 

studies, not productivity studies.  

B. Productivity models with fixed and variable costs 

The use of productivity models has a long history that 

can be traced back to a large body of knowledge 

developed in the domains of economics and engineering. 

This section introduces some of these concepts, which 

may also be useful in modeling, analyzing and estimating 

the performance of software projects. 
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A productivity model is typically built with data from 

completed projects, that is, it uses the information of a 

project for which there is no more uncertainty: 

 The outputs: i.e., all the software functions have been 

delivered; and,  

 The hours worked on the project: i.e., they have been 
accurately entered into a time reporting system.  

This is illustrated in Fig. 1 where: 

 The x axis represents the functional size of the 

software projects completed; 

 The y axis represents the effort in number of hours 

that it took to deliver a software project.  

The straight line across Fig. 1 represents a statistical 

model of the productivity of the software projects. More 

specifically, this single independent variable linear 

regression model represents the relationship between 

effort and size, and is represented by the following 
formula:  

Y (effort in hours) = f(size)  

  = a x Size + b  where: 

 Size = number of Function Points (FP) 

 a = variable cost = number of hours per function 

point (hours/FP) 

 b = constant representing fixed cost in hours  

In terms of units, this equation gives:  

Y (hours) = (hours/FP) x FP + hours = hours 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 1: Fixed & variable cost in a productivity model  

 
Insights from economics have identified two distinct 

types of costs incurred to produce different quantities of 

the same types of outputs: 

Fixed costs: the portion of the resources expended (i.e., 

inputs) that does not vary with an increase in the number 

of outputs. In Fig. 1, this corresponds to b, the constant in 

hours at the origin when size = 0. 

Example of a fixed cost:  a cost of b hours of project effort 

is required for mandatory project management activities, 

whatever the size of the software to be developed. 

Variable costs: the portion of the resources expended (i.e., 
inputs) that depends directly on the number of outputs 

produced. In Fig. 1, this corresponds to the slope of the 

model, that is: slope = a in terms of hours/FP (i.e., the 

number of work hours required to produce an additional 

unit of output).  

It is to be observed that in productivity models, the 

constant b does not represent the errors in the estimates as 

in multi-variable estimation models. In productivity 

models, b has a practical interpretation corresponding to 
the economic concepts explained above, that is: the 

portion of the cost that does not vary with increases in the 

production outputs. 

C. Wedge-shaped datasets in software engineering 

Often, a graphical representation of projects in large 

datasets has the wedge-shaped distribution illustrated in 
Fig. 2 with the software size as the single independent 

variable. It can be observed in Fig. 2 that, as the project 

size increases on the x axis, there is a correspondingly 

larger dispersion of the data points across the vertical axi. 

In other words, there are increasingly wide variations in 

project effort on the y axis as the project size increases, 

that is, large productivity differences across software of 

similar size delivered. Such wedge-shaped datasets have 

initially been observed by [16, 17] and are representative 

of datasets collected from multiple organizations, each 

with their own distinct development processes using a 
variety of technologies and corresponding distinct 

abilities to exploit them.   

Looked at from a control process view point within a 

single organization, a wedge-shape data set could 

represent: 

A. A process ‘out of control,’ that is, a process with a 

large variation in productivity across increases in the 

size of the outputs is due to a lack of repeatability in 

a process, i.e., an ad-hoc process dependent on 

individual actions and expertise and unknown 

quality, rather than repeatable and ‘under control,’ as 

happens when a development methodology is 
enforced, leading to repeatability  However, a process 

‘under control’ may be highly repeatable, predictable 

and with high quality, but it may concurrently be 

highly inefficient and expensive; or,  

B. Data originating from various distinct processes, each 

with their distinct productivity ratios, thereby ‘only 

appearing as out of control’ because the single-

variable model does not take into account the 

presence of the distinct processes of each 

organization, each with their distinct productivity 

ratios; or 
C. A process where each project has large variations in 

unit-effort due to factors other than size, that is a 

multi-variable dependent process. Adequate 

modeling of such factors in multi-variable models is 

only feasible when there are enough data points (i.e., 

the sample size should increase by 20 to 30 projects 

for each additional variable introduced in the model). 

Models introducing multi-variables without sufficient 

data points will provide mathematical models with 
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quantitative parameters, but will have no 

generalization power for future usage, including in 

similar contexts. 

 

 
Figure 2: Example of a wedge-shaped productivity dataset 

 

It is obvious from Fig. 2 that a single-variable 

productivity model built from this data set is not directly 

useful for estimation purposes in this context. All other 

process and product variables combined together have a 

large impact on the total variation of the dependent 

variable (i.e., here, Effort). Therefore, for estimation 

purposes, multi-variable models would be necessary. 

However, such multi-variable models, while useful for 

estimation purposes, do not allow productivity 

comparisons and evaluation.  
The next question is: what causes these different 

behaviors? Of course, the answers cannot be found by 

graphical analysis alone, since in the productivity model 

there is only a single independent quantitative variable in 

a two-dimensional graph. This single independent 

variable does not provide, by itself, any information about 

the other variables, or about similar or distinct 

characteristics of the completed projects for which data 

are available. Efficiency investigation with additional 

independent variable can help identify which other 

variables cause variations in productivity and to what 
extent for each. 

When a data set is large enough (that is 20 to 30 data 

points for each independent variable), the impact of the 

other variables can be analyzed by statistical methods.  In 

practice, most software organizations do not have data set 

large enough for valid multi-variable statistical analysis. 

However, within a single organization the projects 

included within a data set can be identified nominally by 

the organizations that collected the data [3, 16]. Each 

project in each subset should be subsequently analyzed to 

determine: 

 Which of their characteristics (or cost drivers) have 
similar values within the same subset; and 

 Which characteristics have very dissimilar values  

across the two (or three) subsets. 

Of course, some of these values can be descriptive 

variables with categories (i.e., on a ‘nominal’ scale type: 

for example, a specific Data Base Management System 

(DBMS) has been used for a subset of projects, etc.). It 

then becomes necessary to discover which additional 

independent variables have the most impact on the 

relationship with project effort. The different values of 

such characteristics can then be used to characterize such 

datasets, and set the parameters for selecting which of 

these productivity models to use later on for estimation 
purposes. 

D. Homogeneous datasets in software engineering 

Another type of project distribution is represented in 

Fig. 3, which illustrates a strong consistency in the 

dispersion of the effort as size increases. This would 

represent more homogeneous data sets in which the 
increase in software size explains well the increase in 

effort. Such a homogeneous distribution of software 

projects data appears as well in the literature [18-21]. In 

these datasets, the increase in functional size explains 

80% to 90% of the increase in effort, while all of the other 

factors together explain at most 10% to 20% of the 

increase in effort. Such datasets would be considered 

homogeneous with respect to the dependent and 

independent variables being investigated. This low 

dispersion in project productivity would typically have 

one or a mix of the following causes: 

 The project data comes from a single organization 

with well implemented development standards. 

 The project data is representing the development of 

software products with very similar characteristics in 

terms of software domains, non-functional 

requirements and other characteristics. 

 The development process is under control with a 

predictable productivity performance. 

 Data collected in an organization based on an in-

process sound measurement program, and where 

standardized measurement definitions have been 
adopted by all projects participants, leading to high 

data integrity. 

 

 
Figure 3: A homogeneous productivity dataset 

  

It is obvious from Fig. 3 that the one-variable 

productivity model built from this data set is directly 

useful for estimation purposes. All other process variables 

combined together have a very small impact on the total 

variation of the dependent variable (i.e., here, Effort). 

Looked at from a control process view point, this data set 

represents a process ‘under control’, that is a process with 
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a predictable performance, both in terms of productivity 

and efficiency. 

III. A PRACTICAL USE OF THESE ECONOMIC CONCEPTS: 
AN EMPIRICAL STUDY 

A. Context  

A Canadian organization interested in determining its 

own productivity, in understanding some of the key 

drivers behind its major productivity variations, and in 

using the findings to improve its organizational 

performance in general and its estimation process in 

particular was selected for the empirical study.  

This organization, a government agency, provides 
specialized financial services to the public, and its 

software applications are similar to those of banking and 

insurance providers. It has a software development 

methodology fully implemented across all of its projects. 

The main objectives of the empirical study were: 

1. Internal benchmarking, i.e., compare the productivity 

of individual projects. 

2. Develop estimation model(s) based on the data 

collected. 

3. Identify and explain significant productivity 

variations across the organization’s projects. 
4. Identify opportunities for process improvement. 

B. Data collection procedures 

The initial step was to identify projects that could be 

measured for the productivity and benchmarking 

analyses. The selection criteria were: 

 Projects completed within the previous two years, 
and 

 Project documentation available for functional size 

measurement.  

For this study, all data were recorded using the data 

field definitions of the data collection questionnaire of the 

International Software Benchmarking Standards Group 

[22].  

C. Data Quality Controls 

Quality control of the data collection process is 

important for any productivity study. Here, two 

quantitative variables are critical: the effort reported for 

each project, and the project functional size: 

A- Effort data: in this organization, the time reporting 

system is considered highly reliable and is used for 

decision making, including payment of invoices when 

external resources are hired to complement project 

staffing. 
B- Measurement of functional size: the quality of the 

measurement results depends on the expertise of the 

measurers and on the quality of the documentation 

available for the measurement process. For this 

productivity study: all functional size measurements were 

carried out by the same measurer with 20 years expertise 

in functional size measurement. 

Table I from [23] lists the criteria used to rank the 

quality of the documentation used for measuring 

functional size, on the basis of the documentation of the 

individual functional processes developed [23, 24]. Note 
that this is not a global subjective assessment of the 

documentation, but an assessment of the documentation 

of each of the functional processes based on the detailed 

documentation elements available for measurement. The 

individual rankings of each functional process were 

recorded by the measurer in parallel to the measurement 

of the functional size of each of the 16 projects. 

 

Table I: Criteria for ranking documentation quality [23] 

Rank Criteria 

A Every function completely documented 
 

B Function documented, but without a precise data 
model  

C Functions identified at a high level, but without any 

detail 

D An approximation of the number of functions is 

available, with the individual functions not listed 

E Some functions are not explicitly described in the 
documentation, but an expert measurer adds 
information based on his expertise, e.g., missing 
validation functions 

   
Table II reports the documentation quality rankings of 

each project and specifies for each project what 

proportion of the project documentation met the various 

criteria listed in Table I. For this study, the documentation 

is considered ‘good’ when it meets criterion A or B in 

Table I.  The following observations were made from 
Table II:   

- For 11 projects: the documentation of more than 95% 

of the functional processes measured was rated as 

being of good quality (equal to A or B).  Considering 

the extended measurement expertise of the measurer 

and the high quality of documentation, the size 

measured for these 11 projects can be considered 

highly accurate. 

- For Projects 3 and 13: the documentation quality was 

rated as being of good quality for 62% and 71% of 

the functional processes respectively.   
- For project 10: the documentation was rated as being 

of average quality (criterion C). This could impact 

the accuracy of the size measured for this project, as 

it used less detailed documentation.  

- The documentation of Project 7 was rated as being of 

good quality for 31% of the functional processes.   

- For Project 8: most of the functions measured had to 

be derived from documentation at a very high level, 

that is criterion E = 100%. This means that the 
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functional size for this project has been approximated 

rather than measured precisely, with an undetermined 

range of size variation. 

Overall, at the detailed level, 85% of all the processes 

measured for the 16 projects had a good level of 

documentation and provided a sound basis for the 
measurement of the functional size of the projects 

included in the productivity analysis reported in this 

paper.  

 

Table II: Quality of the documentation ranked at the 

functional process level 

 
 

D. Descriptive Analysis 

1) Projects characteristics 
For this study, the 16 software development and 

improvement projects were measured in terms of 
functional size, effort, and various environment qualifiers. 

The staff who developed these projects included both 

internal and external developers, distributed equally 

overall. In this dataset: 

 Project size varied from a minimum of 111 FP to a 

maximum of 646 FP.   

 Effort varied from 4,879 hours to 29,246 hours. 

 Unit effort varies from 14 h/FP 12 to up to 98 h/FP, a 

factor of approximately eight between the least 

productive and the most productive within the same 

organization.  

 Duration varied from 10 to 35 months.   

 Maximum development team size for 12 of the 16 

projects ranged from 6 to 35 employees.   

The descriptive statistics of this dataset are as follows, 

while details are reported in [8 – Table 12.2]:  

 Average project effort = 12,033 hours (or, 1,718 

person-days at 7 hours per day, or 82 person-months 

at 21 days per month).   

 Average unit effort = 41.5 h/FP 

 Average project duration = 18 calendar months.   

 One-third of the projects = newly developed 

software. 

 Two-thirds of the projects = functional enhancements 

to existing software.  

2) Project priorities  
Each project typically met four targets that are determined 

at project inception: 

 Project scope (i.e., the functions to be delivered to the 

users) 

 Project cost (or effort)   

 Project deadline   

 Quality of software delivered 

In a context of limited resources and a high level of 

uncertainty, it is extremely challenging to meet all these 

targets at the same time, and a number of compromises 

must be made during a project life cycle. To empower 
project managers to make such compromises, an 

organization will typically determine the priority targets 

for each project among those specific to any one project. 

The information on the priorities assigned to each of these 

four targets was collected through interviews of the 

project managers of these projects and recorded during 

the data collection process. A summary of project 

priorities is presented in Table III, where:   

 For 8 of the 16 of the projects (i.e., 50%), the 

‘deadline’ target was listed as priority 1.   

 For 75% of the projects, the ‘scope’ target was listed 
as priority 1 or 2.   

 For 50% of the projects, ‘quality’ was listed as 

priority 2 (and two projects listed it as priority 1).   

 For none (0%) of the projects was the ‘cost’ target 

listed as priority 1 (and only one project listed cost as 

priority 2).   

 

Table III: Summary of project priorities 
 Number of projects 

 
Priority 

1 
Priority 

2 
Priority 

3 
Priority 

4 

Deadline 8 1 1 6 
Scope 6 6 4 0 

Quality 2 8 2 4 

Cost 0 1 9 6 

 

These observations indicate that for this organization 

the project’s deadline is a high priority, while cost is a 

low priority. The reasons for favoring the deadline over 

the cost of the measured project were the following:   

 The urgency to solve the problem for internal 

reasons;  

 Obligations linked to current laws or future ones;  

 The pressures of client managers for the reasons 

mentioned above or other reasons. 
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IV. PRODUCTIVITY ANALYSIS AND ESTIMATION 

MODELS 

A. The overall productivity model for the organization 

The dispersion of points for the organization is 

illustrated in Fig. 4 for all 16 projects, with functional size 

on the x axis, and effort on the y axis: at first sight it 

appears somewhat like a wedge-shape data set rather than 

an homogeneous data set with respect to the functional 
size at the independent variable. 

 

 
Figure 4: The dispersion of project productivity for the 

organization – N = 16 projects [8] 

 

Fig. 5 shows next the overall single-variable 

productivity model for the organization, using a single 

regression model:  

Effort = 30.7 h/FP x project size + 2,411 h (Fig. 5) 

The coefficient of determination (R2) of this model is 

relatively low, at 0.39. 

 

 
Figure 5: The organization’s overall productivity model – 

N = 16 projects [1] 

 

The practical interpretation of the above equation is as 

follows: 

 Fixed effort = 2,411 h  

 Variable effort = 30.7 h/FP  

Possible reasons for the high fixed and high variable 

unit effort numbers discussed with the managers, and the 

following observations provided in terms of the 

development methodology deployed in the organization: 

A. It is highly procedural and time-consuming. 

B. It included heavy documentation requirements. 

C. It required lengthy consensus building procedures 

across stakeholders and development staff.  
D. It required a relatively high number of inspections. 

This is the productivity model that should be used, 

across the 2-year time period, for later internal 

benchmarking as well as for external benchmarking. 

Productivity models based only on functional size allow 

independent comparisons across time periods and 

variations of technologies of processes used by others.  

From Fig.5, it can be observed that, for this 

organization, five projects had effort 100% higher than 

projects of comparable functional size:  

 A project of approximately 100 FP required twice as 

much effort as two other projects of similar size. 

 Four large projects (between 400 and 500 FP) 

required two or three times more effort than, projects 

only relatively smaller (between 350 and 400 FP). 

The effect of these four projects was to pull up the 

linear model (and corresponding slope) and 

considerably influence both the fixed and variable 

costs.  

Therefore, this data sample was split into two groups 

for further analysis.   

A. The group of 11 projects that have the best 

productivity (i.e., lower unit effort, and that are 
below or very close to the regression line in Fig. 5). 

B. The group of five projects that have a productivity 

much worse (i.e., a unit effort twice the unit effort of 

the 11 other projects, and that are largely above the 

regression line in Fig. 5). 

B. Organizational process capability: the most 

productive projects 

Fig. 6 presents the 11 projects with a much lower unit 

effort per project that is, those which were most 

productive. For these projects, the linear regression model 

is:  

Effort = 17.1 h/FP x size of the project + 3,208 h 

The coefficient of determination (R2) of this model is 

0.589, higher, relatively, than that for the overall model.  

The practical interpretation of this equation is: 

 Fixed costs = 3,208 h  

 Variable Costs = 17.1 h/FP 

C. Productivity model of the least productive projects  

For the five least productive projects in group B, the 

productivity model in Fig. 7 is:  

Effort = 33.4 h/FP x project size + 8,257 h 

The coefficient of determination (R2) of this model is 

better, at 0.637. Of course, with a sample of only five 
projects, this number is not statistically significant, but is 

still interesting for the organization. 
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Figure 6: Most productive projects - N = 11 projects [8] 

 

 
Figure 7: The productivity model of the least productive 

projects – N = 5 [8] 

 

The practical interpretation of the above equation is 

as follows:  

 Fixed effort = 8.257 h  

 Variable effort = 33.4 h/FP  

This group of the five least productive projects is 

characterized by a fixed cost that is almost four times 

higher than that of the full set of projects (8,257 hours vs. 

2,411 hours), and a relatively similar variable effort unit 

(33.4 h/FP vs. 30.7 h/PF). 

The group of 11 most productive projects is 

characterized by a fixed cost approximately 40% lower 

than that of the least productive projects (3208 hours vs. 

8257 hours), and a variable unit effort almost 50% lower 

(17.1 h/FP vs. 32.4 h/FP); that is, with interesting 
economies of scale and an R2 of 0.55. 

A summary of each group is presented in Table IV, 

where 11 projects represent what the organization is 

'capable' of delivering in normal conditions and the other 

five projects illustrate how projects are significantly 

impacted by the presence of factors that have not yet been 

identified through the single independent variable (i.e., 

functional size) analysis. Exploration of these additional 

impact factors is discussed in the next sub-section D. 

The single variable productivity model still provides 

useful insights to the organization and allows it to monitor 

its own productivity models across time. For example:  
A. Would the fixed-variable cost improve over the next 

two-year period? A subsidiary question would be to 

identify the factors that caused this positive (or 

‘negative’) impact? 

B. Could the organization avoid or, when avoidance is 

not possible, more effectively mitigate, the 

occurrence of the negative factors beyond the project 

manager’s control? 
 

Table IV: Fixed & variable efforts: Capability versus least 

productive projects [1] 

Samples/ 

Regression coefficients 
All 16 

projects 

Most 

productive:  

11 projects 

Least 

productive:  

5 projects 

Fixed 

effort  (hours) 
2,411 3,208 

 
8,257 

Variable effort (h/FP) 30.7 17.1 

 
34.4 

D. Qualitative causal analysis 

The data collected has allowed us to identify the 

overall productivity of the organization, to observe the 

fixed and variable contributions of its process capability, 

as well as observing an 100% increase in both fixed and 

variable costs when there were factors negatively 

impacting on the productivity. 

Of course a single independent variable model cannot 

explain the causes of such variations. Furthermore, with a 
dataset of only 16 projects, there are not enough data 

points within a single organization (unless they have been 

collecting data for many years) to rely on quantitative 

analysis. Each additional independent typically requires 

20 to 30 additional data points. In the absence of sample 

sizes large enough for quantitative analysis, qualitative 

analysis can help identify probable causes of increases. In 

the context here, qualitative analysis will not attempt to 

quantify precisely the impact of a cause (or cost drivers), 

but will attempt to identify qualitatively factors that could 

have the greatest negative impact on productivity. 
Firstly, in the causal analysis of the productivity 

variations in the organization, we eliminated two 

candidate cost drivers since they were considered constant 

in both groups of productivity performance: 

- Development methodology: in the organization the 

use of the industry-tailored development 

methodology was fully deployed across all software 

development projects: none of the activities and 

controls was bypassed. Therefore, there was no 

development methodology difference across all 

projects. 

- Project management expertise: some of the projects 
managers had, within this same two-year period, 

supervised projects that were both among the most 

productive and the least productive. Therefore, the 

expertise of specific project managers could not 

explain large project productivity differences.  
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The question that arises: What are the factors that led 

to such large (i.e., +100%) increases in unit effort? What 

may be the major cause-effect relationships? To identify 

and investigate these relationships, available project 

managers were interviewed to obtain feedback as what 

they believed had contributed to either an increase or a 
decrease in the productivity of their respective projects. 

The project managers interviewed had managed seven of 

the 16 projects:  

A. Three projects with the lowest productivity (i.e., the 

highest unit effort);  

B. Two projects with average productivity;  

C. Two projects with the highest productivity (i.e., the 

lowest unit effort).  

The aim of the interviews was to obtain qualitative 

information from the project managers on the factors they 

believed had contributed, or not, to the increase in project 

effort compared to that of other projects of similar size 
developed in the organization’s environment or elsewhere 

during their project management practice. Their feedback 

is summarized as follows:  

A- The most productive projects had the following 

characteristics:   

1. Users familiar were with both the business and 

software development processes;  

2. Users were involved throughout the project;  

3. Software developers working on the projects were 

experienced in the use of the development 

environment.  
B. The least productive projects had the following 

characteristics:   

B1. Customer related issues: 

1. Customer requirements were poorly expressed, 

or a customer representative did not know his 

environment (business area), leading to frequent 

change requests during a project life cycle.  

2. High turnover of users involved in the projects, 

leading to instability in the requirements and 

delays in decision making. 

3. Customers not familiar with the software 

development process in the organization, 
including their required involvement in project 

activities, including activity reviews. 

B2. Project constraints: 

1. Tight project deadlines for legal constraints or 

public face-saving leading to compressed 

scheduling and resources ‘piled up’ to make the 

problem disappear. 

2. New technologies unknown to the developers. 

B3: Product constraints: Multiple links with other 

software applications of the organization.  

An example of a negative product constraint was 
reported for the project with the highest unit effort (98 

h/FP). The software delivered by this project was of a 

small functional size, but required twice as much effort to 

develop as another of similar size as it interacted with 

almost all the other software applications of the 

organization and was dependent on other organizational 

units. Another project had a very tight deadline, which led 

management to ‘throw’ resources at the problem to meet 

the deadline irrespective of the total effort required. 

It can be observed that although it was possible to 
identify ‘qualitatively’ some factors with major negative 

impact, the sample size was much too small for statistical 

tests to quantify such impact. 

V. IDENTIFICATION OF PROCESS IMPROVEMENTS 

USING THE SWEBOK GUIDE 

A. Implementation and coverage of best practices 

In previous years, the organization had invested 

considerably in designing and deploying improvements to 

its development methodology. For this empirical study, 

additional analyses were carried out to identify process 

strengths and weaknesses in order to identify 

improvement opportunities in development processes and 

techniques. 

The study included verification of the use of the 

recommended best software engineering practices in the 

participating organization. For this verification, the 

software engineering practices listed in the SWEBOK 
Guide [2] were used. This guide represents a broad 

international consensus on the concepts and practices of 

software engineering that are recognized as providing 

benefits to the majority of projects in most cases. All 10 

knowledge areas of the 2004 version of the SWEBOK 

Guide were taken into account, with the exception of the 

maintenance knowledge area, which was not relevant for 

this empirical study – see Table V. 

To collect this information, the quality specialist 

participating in all project phases for each project was 

interviewed and asked to confirm whether or not each of 

the practices in the SWEBOK Guide was indeed being 
widely used across all projects in the organization.  

 

B. Coverage of best practices 

The percentages of software engineering practices in 

use in the organization for each knowledge area are 

presented in Table VI, in decreasing order of coverage. 

These percentages represent the ratio between the 

practices observed to be in general use in this 

organization, divided by the total number of practices 

listed in each of the SWEBOK knowledge areas. 

From all the knowledge areas related directly to the 
development life cycle, that is, from requirements 

engineering up to software testing, those with over 60% 

coverage indicates a very widespread use of 

organizational processes across the organization. In 

comparison to the capability level of the CMMI model, 

this would align with a number of Key Process Areas at 

Level 3, meaning that the software engineering processes 
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in the organization have been deployed and are in use 

throughout the organization. 

 

Table V: SWEBOK 2004 Knowledge Areas 

SWEBOK Knowledge Areas 

Requirements Engineering 

Software Design 

Software Construction 

Software Testing 

Software Maintenance 

Software Engineering Management 

Configuration Management 

Software Engineering Process 

Software Quality 

Tools and Methods 

 

Table VI: Coverage of SWEBOK practices 

SWEBOK Knowledge Areas % 

coverage 

Software Design 89 

Software Management 75 

Configuration Management 74 

Requirements Engineering 73 

Software Construction 71 

Software Testing 61 

Tools & Methods 54 

Software Engineering Process 44 

Software Quality 38 

 

However, coverage was much less extensive in 

support areas, such as Tools & Methods, Software 

Engineering Process, and Software Quality, where the 

product and process measures were not covered at all. For 

this reason, the organization had no measurable 

information on the effectiveness of the implementation of 

their practices and the benefits derived, that is, 

quantitative information to support the decision making 

process was lacking.  

This can be illustrated in the following way: while 

each project must use the corporate development process 
it generally lacked data for its evaluation and control 

functions. Therefore, the organization would not qualify 

for the fourth level of capability using the CMMI process 

evaluation model. 

VI. SUMMARY AND IMPLICATIONS FOR MANAGEMENT 

This paper has reported on productivity analysis of 

software projects developed by a governmental 

organization utilizing the productivity concepts from the 

field of economics, including fixed/variable costs 

modeling. For the organization studied, three productivity 

models were identified that represented respectively: 
- An overall productivity model of the organization 

that can be used for external benchmarking purposes. 

This overall productivity model can be used later 

across other times periods to verify whether or not 

productivity of the organization is improving over 

time, and with respect to external similar 

organizations. 

- A productivity model built from the best productive 

projects representing a capability to deliver a 
software project with a lower fixed/variable effort 

structure, in the absence of major disruptive factors. 

- A productivity model based on the five projects with 

the highest unit effort: in this case, the presence of 

disruptive factors led to greater than 100% increase 

in project effort in comparison to the organization’s 

capability for process productivity. 

Of course, the limited number of projects available in 

these mathematical models does not permit generalization 

to other contexts, but does describe quantitatively and 

objectively many features of productivity in the 

organization. These models are representative of the 
organization studied where a unique software 

development methodology is widely implemented and 

represents well deployed, repeatable corporate software 

practices, rather than unpredictable individual and ad-hoc 

practices. 

For future project estimation, the organization should 

use the process capability model represented by the best 

performing projects, provided that a risk analysis has not 

detected the presence of any of the disruptive factors that 

have in the past increased effort twofold. Whenever such 

disruptive factors are identified with a high probability of 
occurrence the organization should estimate such projects 

using the productivity model derived from the least 

productive projects. The use of these two single-variable 

productivity models would be expected to provide more 

accurate estimates than the overall productivity model 

combining all previous projects.  

An organization such as the one studied having 

measured only a small set of projects is typical of many 

organizations without much historical data: there are not 

enough data points to build with high confidence multi-

variable estimation models representing local conditions 

and related organizational performance. 
The insights from productivity models developed from 

an economic perspective are important since relevant 

improvement activity may directly impact the 

productivity of the organization, by lowering either the 

fixed or variable project costs.  

Furthermore, the empirical study also identified 

opportunities for improvement in three areas, namely:  

1. Early identification of project risks with a potentially 

twofold impact on project effort.  

2. Increase in project management efficiency:  

 Improvement in productivity analysis and 
current productivity models. 

 Improvement in the estimation process. 

3. Process improvement:  

112

International Journal on Advances in Software, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/software/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 Establishment of mechanisms for monitoring and 

evaluating processes. 

 Reduction in fixed effort (establishment of 

predefined selection rules in the project context). 

 Monitoring the impact of new technologies and 

new development processes. 
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